-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathtest_transforms_v2_refactored.py
1657 lines (1363 loc) · 66.8 KB
/
test_transforms_v2_refactored.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import contextlib
import inspect
import math
import re
from typing import get_type_hints
from unittest import mock
import numpy as np
import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms
from common_utils import (
assert_equal,
assert_no_warnings,
cache,
cpu_and_cuda,
ignore_jit_no_profile_information_warning,
make_bounding_box,
make_detection_mask,
make_image,
make_segmentation_mask,
make_video,
set_rng_seed,
)
from torch.testing import assert_close
from torchvision import datapoints
from torchvision.transforms._functional_tensor import _max_value as get_max_value
from torchvision.transforms.functional import pil_modes_mapping
from torchvision.transforms.v2 import functional as F
@pytest.fixture(autouse=True)
def fix_rng_seed():
set_rng_seed(0)
yield
def _to_tolerances(maybe_tolerance_dict):
if not isinstance(maybe_tolerance_dict, dict):
return dict(rtol=None, atol=None)
tolerances = dict(rtol=0, atol=0)
tolerances.update(maybe_tolerance_dict)
return tolerances
def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs):
"""Checks if the kernel produces closes results for inputs on GPU and CPU."""
if input.device.type != "cuda":
return
input_cuda = input.as_subclass(torch.Tensor)
input_cpu = input_cuda.to("cpu")
actual = kernel(input_cuda, *args, **kwargs)
expected = kernel(input_cpu, *args, **kwargs)
assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol)
@cache
def _script(fn):
try:
return torch.jit.script(fn)
except Exception as error:
raise AssertionError(f"Trying to `torch.jit.script` '{fn.__name__}' raised the error above.") from error
def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs):
"""Checks if the kernel is scriptable and if the scripted output is close to the eager one."""
if input.device.type != "cpu":
return
kernel_scripted = _script(kernel)
input = input.as_subclass(torch.Tensor)
with ignore_jit_no_profile_information_warning():
actual = kernel_scripted(input, *args, **kwargs)
expected = kernel(input, *args, **kwargs)
assert_close(actual, expected, rtol=rtol, atol=atol)
def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs):
"""Checks if the kernel produces close results for batched and unbatched inputs."""
unbatched_input = input.as_subclass(torch.Tensor)
for batch_dims in [(2,), (2, 1)]:
repeats = [*batch_dims, *[1] * input.ndim]
actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs)
expected = kernel(unbatched_input, *args, **kwargs)
# We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata
if isinstance(expected, torch.Tensor):
expected = expected.repeat(repeats)
else:
tensor, *metadata = expected
expected = (tensor.repeat(repeats), *metadata)
assert_close(actual, expected, rtol=rtol, atol=atol)
for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]:
degenerate_batched_input = torch.empty(
degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device
)
output = kernel(degenerate_batched_input, *args, **kwargs)
# Most kernels just return a tensor, but some also return some additional metadata
if not isinstance(output, torch.Tensor):
output, *_ = output
assert output.shape[: -input.ndim] == degenerate_batch_dims
def check_kernel(
kernel,
input,
*args,
check_cuda_vs_cpu=True,
check_scripted_vs_eager=True,
check_batched_vs_unbatched=True,
**kwargs,
):
initial_input_version = input._version
output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs)
# Most kernels just return a tensor, but some also return some additional metadata
if not isinstance(output, torch.Tensor):
output, *_ = output
# check that no inplace operation happened
assert input._version == initial_input_version
assert output.dtype == input.dtype
assert output.device == input.device
if check_cuda_vs_cpu:
_check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu))
if check_scripted_vs_eager:
_check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager))
if check_batched_vs_unbatched:
_check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched))
def _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs):
"""Checks if the dispatcher can be scripted and the scripted version can be called without error."""
if not isinstance(input, datapoints.Image):
return
dispatcher_scripted = _script(dispatcher)
with ignore_jit_no_profile_information_warning():
dispatcher_scripted(input.as_subclass(torch.Tensor), *args, **kwargs)
def _check_dispatcher_dispatch(dispatcher, kernel, input, *args, **kwargs):
"""Checks if the dispatcher correctly dispatches the input to the corresponding kernel and that the input type is
preserved in doing so. For bounding boxes also checks that the format is preserved.
"""
if isinstance(input, datapoints._datapoint.Datapoint):
# Due to our complex dispatch architecture for datapoints, we cannot spy on the kernel directly,
# but rather have to patch the `Datapoint.__F` attribute to contain the spied on kernel.
spy = mock.MagicMock(wraps=kernel, name=kernel.__name__)
with mock.patch.object(F, kernel.__name__, spy):
# Due to Python's name mangling, the `Datapoint.__F` attribute is only accessible from inside the class.
# Since that is not the case here, we need to prefix f"_{cls.__name__}"
# See https://docs.python.org/3/tutorial/classes.html#private-variables for details
with mock.patch.object(datapoints._datapoint.Datapoint, "_Datapoint__F", new=F):
output = dispatcher(input, *args, **kwargs)
spy.assert_called_once()
else:
with mock.patch(f"{dispatcher.__module__}.{kernel.__name__}", wraps=kernel) as spy:
output = dispatcher(input, *args, **kwargs)
spy.assert_called_once()
assert isinstance(output, type(input))
if isinstance(input, datapoints.BoundingBox):
assert output.format == input.format
def check_dispatcher(
dispatcher,
kernel,
input,
*args,
check_scripted_smoke=True,
check_dispatch=True,
**kwargs,
):
with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy:
dispatcher(input, *args, **kwargs)
spy.assert_any_call(f"{dispatcher.__module__}.{dispatcher.__name__}")
unknown_input = object()
with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))):
dispatcher(unknown_input, *args, **kwargs)
if check_scripted_smoke:
_check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs)
if check_dispatch:
_check_dispatcher_dispatch(dispatcher, kernel, input, *args, **kwargs)
def _check_dispatcher_kernel_signature_match(dispatcher, *, kernel, input_type):
"""Checks if the signature of the dispatcher matches the kernel signature."""
dispatcher_signature = inspect.signature(dispatcher)
dispatcher_params = list(dispatcher_signature.parameters.values())[1:]
kernel_signature = inspect.signature(kernel)
kernel_params = list(kernel_signature.parameters.values())[1:]
if issubclass(input_type, datapoints._datapoint.Datapoint):
# We filter out metadata that is implicitly passed to the dispatcher through the input datapoint, but has to be
# explicitly passed to the kernel.
kernel_params = [param for param in kernel_params if param.name not in input_type.__annotations__.keys()]
dispatcher_params = iter(dispatcher_params)
for dispatcher_param, kernel_param in zip(dispatcher_params, kernel_params):
try:
# In general, the dispatcher parameters are a superset of the kernel parameters. Thus, we filter out
# dispatcher parameters that have no kernel equivalent while keeping the order intact.
while dispatcher_param.name != kernel_param.name:
dispatcher_param = next(dispatcher_params)
except StopIteration:
raise AssertionError(
f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` "
f"has no corresponding parameter on the dispatcher `{dispatcher.__name__}`."
) from None
if issubclass(input_type, PIL.Image.Image):
# PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check
# them in the first place.
dispatcher_param._annotation = kernel_param._annotation = inspect.Parameter.empty
assert dispatcher_param == kernel_param
def _check_dispatcher_datapoint_signature_match(dispatcher):
"""Checks if the signature of the dispatcher matches the corresponding method signature on the Datapoint class."""
dispatcher_signature = inspect.signature(dispatcher)
dispatcher_params = list(dispatcher_signature.parameters.values())[1:]
datapoint_method = getattr(datapoints._datapoint.Datapoint, dispatcher.__name__)
datapoint_signature = inspect.signature(datapoint_method)
datapoint_params = list(datapoint_signature.parameters.values())[1:]
# Some annotations in the `datapoints._datapoint` module
# are stored as strings. The block below makes them concrete again (non-strings), so they can be compared to the
# natively concrete dispatcher annotations.
datapoint_annotations = get_type_hints(datapoint_method)
for param in datapoint_params:
param._annotation = datapoint_annotations[param.name]
assert dispatcher_params == datapoint_params
def check_dispatcher_signatures_match(dispatcher, *, kernel, input_type):
_check_dispatcher_kernel_signature_match(dispatcher, kernel=kernel, input_type=input_type)
_check_dispatcher_datapoint_signature_match(dispatcher)
def _check_transform_v1_compatibility(transform, input):
"""If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static
``get_params`` method, is scriptable, and the scripted version can be called without error."""
if not hasattr(transform, "_v1_transform_cls"):
return
if type(input) is not torch.Tensor:
return
if hasattr(transform._v1_transform_cls, "get_params"):
assert type(transform).get_params is transform._v1_transform_cls.get_params
scripted_transform = _script(transform)
with ignore_jit_no_profile_information_warning():
scripted_transform(input)
def check_transform(transform_cls, input, *args, **kwargs):
transform = transform_cls(*args, **kwargs)
output = transform(input)
assert isinstance(output, type(input))
if isinstance(input, datapoints.BoundingBox):
assert output.format == input.format
_check_transform_v1_compatibility(transform, input)
def transform_cls_to_functional(transform_cls, **transform_specific_kwargs):
def wrapper(input, *args, **kwargs):
transform = transform_cls(*args, **transform_specific_kwargs, **kwargs)
return transform(input)
wrapper.__name__ = transform_cls.__name__
return wrapper
def make_input(input_type, *, dtype=None, device="cpu", spatial_size=(17, 11), mask_type="segmentation", **kwargs):
if input_type in {torch.Tensor, PIL.Image.Image, datapoints.Image}:
input = make_image(size=spatial_size, dtype=dtype or torch.uint8, device=device, **kwargs)
if input_type is torch.Tensor:
input = input.as_subclass(torch.Tensor)
elif input_type is PIL.Image.Image:
input = F.to_image_pil(input)
elif input_type is datapoints.BoundingBox:
kwargs.setdefault("format", datapoints.BoundingBoxFormat.XYXY)
input = make_bounding_box(
dtype=dtype or torch.float32,
device=device,
spatial_size=spatial_size,
**kwargs,
)
elif input_type is datapoints.Mask:
if mask_type == "segmentation":
make_mask = make_segmentation_mask
default_dtype = torch.uint8
elif mask_type == "detection":
make_mask = make_detection_mask
default_dtype = torch.bool
else:
raise ValueError(f"`mask_type` can be `'segmentation'` or `'detection'`, but got {mask_type}.")
input = make_mask(size=spatial_size, dtype=dtype or default_dtype, device=device, **kwargs)
elif input_type is datapoints.Video:
input = make_video(size=spatial_size, dtype=dtype or torch.uint8, device=device, **kwargs)
else:
raise TypeError(
f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
f"but got {input_type} instead."
)
return input
def param_value_parametrization(**kwargs):
"""Helper function to turn
@pytest.mark.parametrize(
("param", "value"),
("a", 1),
("a", 2),
("a", 3),
("b", -1.0)
("b", 1.0)
)
into
@param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0])
"""
return pytest.mark.parametrize(
("param", "value"),
[(param, value) for param, values in kwargs.items() for value in values],
)
def adapt_fill(value, *, dtype):
"""Adapt fill values in the range [0.0, 1.0] to the value range of the dtype"""
if value is None:
return value
max_value = get_max_value(dtype)
if isinstance(value, (int, float)):
return type(value)(value * max_value)
elif isinstance(value, (list, tuple)):
return type(value)(type(v)(v * max_value) for v in value)
else:
raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")
EXHAUSTIVE_TYPE_FILLS = [
None,
1,
0.5,
[1],
[0.2],
(0,),
(0.7,),
[1, 0, 1],
[0.1, 0.2, 0.3],
(0, 1, 0),
(0.9, 0.234, 0.314),
]
CORRECTNESS_FILLS = [
v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)
]
# We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well
INTERPOLATION_MODES = [
transforms.InterpolationMode.NEAREST,
transforms.InterpolationMode.NEAREST_EXACT,
transforms.InterpolationMode.BILINEAR,
transforms.InterpolationMode.BICUBIC,
]
@contextlib.contextmanager
def assert_warns_antialias_default_value():
with pytest.warns(UserWarning, match="The default value of the antialias parameter of all the resizing transforms"):
yield
def reference_affine_bounding_box_helper(bounding_box, *, format, spatial_size, affine_matrix):
def transform(bbox):
# Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
in_dtype = bbox.dtype
if not torch.is_floating_point(bbox):
bbox = bbox.float()
bbox_xyxy = F.convert_format_bounding_box(
bbox.as_subclass(torch.Tensor),
old_format=format,
new_format=datapoints.BoundingBoxFormat.XYXY,
inplace=True,
)
points = np.array(
[
[bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
[bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0],
[bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0],
[bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
]
)
transformed_points = np.matmul(points, affine_matrix.T)
out_bbox = torch.tensor(
[
np.min(transformed_points[:, 0]).item(),
np.min(transformed_points[:, 1]).item(),
np.max(transformed_points[:, 0]).item(),
np.max(transformed_points[:, 1]).item(),
],
dtype=bbox_xyxy.dtype,
)
out_bbox = F.convert_format_bounding_box(
out_bbox, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
)
# It is important to clamp before casting, especially for CXCYWH format, dtype=int64
out_bbox = F.clamp_bounding_box(out_bbox, format=format, spatial_size=spatial_size)
out_bbox = out_bbox.to(dtype=in_dtype)
return out_bbox
return torch.stack([transform(b) for b in bounding_box.reshape(-1, 4).unbind()]).reshape(bounding_box.shape)
class TestResize:
INPUT_SIZE = (17, 11)
OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]
def _make_max_size_kwarg(self, *, use_max_size, size):
if use_max_size:
if not (isinstance(size, int) or len(size) == 1):
# This would result in an `ValueError`
return None
max_size = (size if isinstance(size, int) else size[0]) + 1
else:
max_size = None
return dict(max_size=max_size)
def _compute_output_size(self, *, input_size, size, max_size):
if not (isinstance(size, int) or len(size) == 1):
return tuple(size)
if not isinstance(size, int):
size = size[0]
old_height, old_width = input_size
ratio = old_width / old_height
if ratio > 1:
new_height = size
new_width = int(ratio * new_height)
else:
new_width = size
new_height = int(new_width / ratio)
if max_size is not None and max(new_height, new_width) > max_size:
# Need to recompute the aspect ratio, since it might have changed due to rounding
ratio = new_width / new_height
if ratio > 1:
new_width = max_size
new_height = int(new_width / ratio)
else:
new_height = max_size
new_width = int(new_height * ratio)
return new_height, new_width
@pytest.mark.parametrize("size", OUTPUT_SIZES)
@pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
@pytest.mark.parametrize("use_max_size", [True, False])
@pytest.mark.parametrize("antialias", [True, False])
@pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_kernel_image_tensor(self, size, interpolation, use_max_size, antialias, dtype, device):
if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
return
# In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA.
# Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that.
atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1
check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol)
check_kernel(
F.resize_image_tensor,
make_input(datapoints.Image, dtype=dtype, device=device, spatial_size=self.INPUT_SIZE),
size=size,
interpolation=interpolation,
**max_size_kwarg,
antialias=antialias,
check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances,
check_scripted_vs_eager=not isinstance(size, int),
)
@pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
@pytest.mark.parametrize("size", OUTPUT_SIZES)
@pytest.mark.parametrize("use_max_size", [True, False])
@pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_kernel_bounding_box(self, format, size, use_max_size, dtype, device):
if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
return
bounding_box = make_input(
datapoints.BoundingBox, dtype=dtype, device=device, format=format, spatial_size=self.INPUT_SIZE
)
check_kernel(
F.resize_bounding_box,
bounding_box,
spatial_size=bounding_box.spatial_size,
size=size,
**max_size_kwarg,
check_scripted_vs_eager=not isinstance(size, int),
)
@pytest.mark.parametrize("mask_type", ["segmentation", "detection"])
def test_kernel_mask(self, mask_type):
check_kernel(
F.resize_mask,
make_input(datapoints.Mask, spatial_size=self.INPUT_SIZE, mask_type=mask_type),
size=self.OUTPUT_SIZES[-1],
)
def test_kernel_video(self):
check_kernel(
F.resize_video,
make_input(datapoints.Video, spatial_size=self.INPUT_SIZE),
size=self.OUTPUT_SIZES[-1],
antialias=True,
)
@pytest.mark.parametrize("size", OUTPUT_SIZES)
@pytest.mark.parametrize(
("input_type", "kernel"),
[
(torch.Tensor, F.resize_image_tensor),
(PIL.Image.Image, F.resize_image_pil),
(datapoints.Image, F.resize_image_tensor),
(datapoints.BoundingBox, F.resize_bounding_box),
(datapoints.Mask, F.resize_mask),
(datapoints.Video, F.resize_video),
],
)
def test_dispatcher(self, size, input_type, kernel):
check_dispatcher(
F.resize,
kernel,
make_input(input_type, spatial_size=self.INPUT_SIZE),
size=size,
antialias=True,
check_scripted_smoke=not isinstance(size, int),
)
@pytest.mark.parametrize(
("input_type", "kernel"),
[
(torch.Tensor, F.resize_image_tensor),
(PIL.Image.Image, F.resize_image_pil),
(datapoints.Image, F.resize_image_tensor),
(datapoints.BoundingBox, F.resize_bounding_box),
(datapoints.Mask, F.resize_mask),
(datapoints.Video, F.resize_video),
],
)
def test_dispatcher_signature(self, kernel, input_type):
check_dispatcher_signatures_match(F.resize, kernel=kernel, input_type=input_type)
@pytest.mark.parametrize("size", OUTPUT_SIZES)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"input_type",
[torch.Tensor, PIL.Image.Image, datapoints.Image, datapoints.BoundingBox, datapoints.Mask, datapoints.Video],
)
def test_transform(self, size, device, input_type):
input = make_input(input_type, device=device, spatial_size=self.INPUT_SIZE)
check_transform(
transforms.Resize,
input,
size=size,
antialias=True,
)
def _check_output_size(self, input, output, *, size, max_size):
assert tuple(F.get_spatial_size(output)) == self._compute_output_size(
input_size=F.get_spatial_size(input), size=size, max_size=max_size
)
@pytest.mark.parametrize("size", OUTPUT_SIZES)
# `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
# The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
@pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
@pytest.mark.parametrize("use_max_size", [True, False])
@pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
def test_image_correctness(self, size, interpolation, use_max_size, fn):
if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
return
image = make_input(torch.Tensor, dtype=torch.uint8, device="cpu", spatial_size=self.INPUT_SIZE)
actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True)
expected = F.to_image_tensor(
F.resize(F.to_image_pil(image), size=size, interpolation=interpolation, **max_size_kwarg)
)
self._check_output_size(image, actual, size=size, **max_size_kwarg)
torch.testing.assert_close(actual, expected, atol=1, rtol=0)
def _reference_resize_bounding_box(self, bounding_box, *, size, max_size=None):
old_height, old_width = bounding_box.spatial_size
new_height, new_width = self._compute_output_size(
input_size=bounding_box.spatial_size, size=size, max_size=max_size
)
if (old_height, old_width) == (new_height, new_width):
return bounding_box
affine_matrix = np.array(
[
[new_width / old_width, 0, 0],
[0, new_height / old_height, 0],
],
dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
)
expected_bboxes = reference_affine_bounding_box_helper(
bounding_box,
format=bounding_box.format,
spatial_size=(new_height, new_width),
affine_matrix=affine_matrix,
)
return datapoints.BoundingBox.wrap_like(bounding_box, expected_bboxes, spatial_size=(new_height, new_width))
@pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
@pytest.mark.parametrize("size", OUTPUT_SIZES)
@pytest.mark.parametrize("use_max_size", [True, False])
@pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
def test_bounding_box_correctness(self, format, size, use_max_size, fn):
if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
return
bounding_box = make_input(datapoints.BoundingBox, spatial_size=self.INPUT_SIZE)
actual = fn(bounding_box, size=size, **max_size_kwarg)
expected = self._reference_resize_bounding_box(bounding_box, size=size, **max_size_kwarg)
self._check_output_size(bounding_box, actual, size=size, **max_size_kwarg)
torch.testing.assert_close(actual, expected)
@pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES))
@pytest.mark.parametrize(
"input_type",
[torch.Tensor, PIL.Image.Image, datapoints.Image, datapoints.Video],
)
def test_pil_interpolation_compat_smoke(self, interpolation, input_type):
input = make_input(input_type, spatial_size=self.INPUT_SIZE)
with (
contextlib.nullcontext()
if isinstance(input, PIL.Image.Image)
# This error is triggered in PyTorch core
else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}")
):
F.resize(
input,
size=self.OUTPUT_SIZES[0],
interpolation=interpolation,
)
def test_dispatcher_pil_antialias_warning(self):
with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"):
F.resize(
make_input(PIL.Image.Image, spatial_size=self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False
)
@pytest.mark.parametrize("size", OUTPUT_SIZES)
@pytest.mark.parametrize(
"input_type",
[torch.Tensor, PIL.Image.Image, datapoints.Image, datapoints.BoundingBox, datapoints.Mask, datapoints.Video],
)
def test_max_size_error(self, size, input_type):
if isinstance(size, int) or len(size) == 1:
max_size = (size if isinstance(size, int) else size[0]) - 1
match = "must be strictly greater than the requested size"
else:
# value can be anything other than None
max_size = -1
match = "size should be an int or a sequence of length 1"
with pytest.raises(ValueError, match=match):
F.resize(make_input(input_type, spatial_size=self.INPUT_SIZE), size=size, max_size=max_size, antialias=True)
@pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
@pytest.mark.parametrize(
"input_type",
[torch.Tensor, datapoints.Image, datapoints.Video],
)
def test_antialias_warning(self, interpolation, input_type):
with (
assert_warns_antialias_default_value()
if interpolation in {transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC}
else assert_no_warnings()
):
F.resize(
make_input(input_type, spatial_size=self.INPUT_SIZE),
size=self.OUTPUT_SIZES[0],
interpolation=interpolation,
)
@pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
@pytest.mark.parametrize(
"input_type",
[torch.Tensor, PIL.Image.Image, datapoints.Image, datapoints.Video],
)
def test_interpolation_int(self, interpolation, input_type):
# `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to
# `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a
# difference and thus we don't test it here.
if issubclass(input_type, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT:
return
input = make_input(input_type, spatial_size=self.INPUT_SIZE)
expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True)
actual = F.resize(
input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True
)
assert_equal(actual, expected)
def test_transform_unknown_size_error(self):
with pytest.raises(ValueError, match="size can either be an integer or a list or tuple of one or two integers"):
transforms.Resize(size=object())
@pytest.mark.parametrize(
"size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)]
)
@pytest.mark.parametrize(
"input_type",
[torch.Tensor, PIL.Image.Image, datapoints.Image, datapoints.BoundingBox, datapoints.Mask, datapoints.Video],
)
def test_noop(self, size, input_type):
input = make_input(input_type, spatial_size=self.INPUT_SIZE)
output = F.resize(input, size=size, antialias=True)
# This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there
# is a good reason to break this, feel free to downgrade to an equality check.
if isinstance(input, datapoints._datapoint.Datapoint):
# We can't test identity directly, since that checks for the identity of the Python object. Since all
# datapoints unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check
# that the underlying storage is the same
assert output.data_ptr() == input.data_ptr()
else:
assert output is input
@pytest.mark.parametrize(
"input_type",
[torch.Tensor, PIL.Image.Image, datapoints.Image, datapoints.BoundingBox, datapoints.Mask, datapoints.Video],
)
def test_no_regression_5405(self, input_type):
# Checks that `max_size` is not ignored if `size == small_edge_size`
# See https://github.com/pytorch/vision/issues/5405
input = make_input(input_type, spatial_size=self.INPUT_SIZE)
size = min(F.get_spatial_size(input))
max_size = size + 1
output = F.resize(input, size=size, max_size=max_size, antialias=True)
assert max(F.get_spatial_size(output)) == max_size
class TestHorizontalFlip:
@pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_kernel_image_tensor(self, dtype, device):
check_kernel(F.horizontal_flip_image_tensor, make_input(torch.Tensor, dtype=dtype, device=device))
@pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
@pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_kernel_bounding_box(self, format, dtype, device):
bounding_box = make_input(datapoints.BoundingBox, dtype=dtype, device=device, format=format)
check_kernel(
F.horizontal_flip_bounding_box,
bounding_box,
format=format,
spatial_size=bounding_box.spatial_size,
)
@pytest.mark.parametrize("mask_type", ["segmentation", "detection"])
def test_kernel_mask(self, mask_type):
check_kernel(F.horizontal_flip_mask, make_input(datapoints.Mask, mask_type=mask_type))
def test_kernel_video(self):
check_kernel(F.horizontal_flip_video, make_input(datapoints.Video))
@pytest.mark.parametrize(
("input_type", "kernel"),
[
(torch.Tensor, F.horizontal_flip_image_tensor),
(PIL.Image.Image, F.horizontal_flip_image_pil),
(datapoints.Image, F.horizontal_flip_image_tensor),
(datapoints.BoundingBox, F.horizontal_flip_bounding_box),
(datapoints.Mask, F.horizontal_flip_mask),
(datapoints.Video, F.horizontal_flip_video),
],
)
def test_dispatcher(self, kernel, input_type):
check_dispatcher(F.horizontal_flip, kernel, make_input(input_type))
@pytest.mark.parametrize(
("input_type", "kernel"),
[
(torch.Tensor, F.horizontal_flip_image_tensor),
(PIL.Image.Image, F.horizontal_flip_image_pil),
(datapoints.Image, F.horizontal_flip_image_tensor),
(datapoints.BoundingBox, F.horizontal_flip_bounding_box),
(datapoints.Mask, F.horizontal_flip_mask),
(datapoints.Video, F.horizontal_flip_video),
],
)
def test_dispatcher_signature(self, kernel, input_type):
check_dispatcher_signatures_match(F.horizontal_flip, kernel=kernel, input_type=input_type)
@pytest.mark.parametrize(
"input_type",
[torch.Tensor, PIL.Image.Image, datapoints.Image, datapoints.BoundingBox, datapoints.Mask, datapoints.Video],
)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_transform(self, input_type, device):
input = make_input(input_type, device=device)
check_transform(transforms.RandomHorizontalFlip, input, p=1)
@pytest.mark.parametrize(
"fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
)
def test_image_correctness(self, fn):
image = make_input(torch.Tensor, dtype=torch.uint8, device="cpu")
actual = fn(image)
expected = F.to_image_tensor(F.horizontal_flip(F.to_image_pil(image)))
torch.testing.assert_close(actual, expected)
def _reference_horizontal_flip_bounding_box(self, bounding_box):
affine_matrix = np.array(
[
[-1, 0, bounding_box.spatial_size[1]],
[0, 1, 0],
],
dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
)
expected_bboxes = reference_affine_bounding_box_helper(
bounding_box,
format=bounding_box.format,
spatial_size=bounding_box.spatial_size,
affine_matrix=affine_matrix,
)
return datapoints.BoundingBox.wrap_like(bounding_box, expected_bboxes)
@pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
@pytest.mark.parametrize(
"fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
)
def test_bounding_box_correctness(self, format, fn):
bounding_box = make_input(datapoints.BoundingBox, format=format)
actual = fn(bounding_box)
expected = self._reference_horizontal_flip_bounding_box(bounding_box)
torch.testing.assert_close(actual, expected)
@pytest.mark.parametrize(
"input_type",
[torch.Tensor, PIL.Image.Image, datapoints.Image, datapoints.BoundingBox, datapoints.Mask, datapoints.Video],
)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_transform_noop(self, input_type, device):
input = make_input(input_type, device=device)
transform = transforms.RandomHorizontalFlip(p=0)
output = transform(input)
assert_equal(output, input)
class TestAffine:
_EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
# float, int
angle=[-10.9, 18],
# two-list of float, two-list of int, two-tuple of float, two-tuple of int
translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)],
# float
scale=[0.5],
# float, int,
# one-list of float, one-list of int, one-tuple of float, one-tuple of int
# two-list of float, two-list of int, two-tuple of float, two-tuple of int
shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)],
# None
# two-list of float, two-list of int, two-tuple of float, two-tuple of int
center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
)
# The special case for shear makes sure we pick a value that is supported while JIT scripting
_MINIMAL_AFFINE_KWARGS = {
k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list))
for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
}
_CORRECTNESS_AFFINE_KWARGS = {
k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)]
for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
}
_EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
degrees=[30, (-15, 20)],
translate=[None, (0.5, 0.5)],
scale=[None, (0.75, 1.25)],
shear=[None, (12, 30, -17, 5), 10, (-5, 12)],
)
_CORRECTNESS_TRANSFORM_AFFINE_RANGES = {
k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()
}
def _check_kernel(self, kernel, input, *args, **kwargs):
kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy()
kwargs_.update(kwargs)
check_kernel(kernel, input, *args, **kwargs_)
@param_value_parametrization(
angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
fill=EXHAUSTIVE_TYPE_FILLS,
)
@pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_kernel_image_tensor(self, param, value, dtype, device):
if param == "fill":
value = adapt_fill(value, dtype=dtype)
self._check_kernel(
F.affine_image_tensor,
make_input(torch.Tensor, dtype=dtype, device=device),
**{param: value},
check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))),
check_cuda_vs_cpu=dict(atol=1, rtol=0)
if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR
else True,
)
@param_value_parametrization(
angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
)
@pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat))
@pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_kernel_bounding_box(self, param, value, format, dtype, device):
bounding_box = make_input(datapoints.BoundingBox, format=format, dtype=dtype, device=device)