-
Notifications
You must be signed in to change notification settings - Fork 23.3k
/
Copy pathswa_utils.py
478 lines (411 loc) · 18.6 KB
/
swa_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# mypy: allow-untyped-defs
r"""Implementation for Stochastic Weight Averaging implementation."""
import itertools
import math
import warnings
from collections.abc import Iterable
from copy import deepcopy
from typing import Any, Callable, Literal, Optional, Union
import torch
from torch import Tensor
from torch.nn import Module
from torch.optim.lr_scheduler import _format_param, LRScheduler
from torch.utils._foreach_utils import _get_foreach_kernels_supported_devices
from .optimizer import Optimizer
__all__ = [
"AveragedModel",
"update_bn",
"SWALR",
"get_ema_multi_avg_fn",
"get_swa_multi_avg_fn",
"get_ema_avg_fn",
"get_swa_avg_fn",
]
from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
PARAM_LIST = Union[tuple[Tensor, ...], list[Tensor]]
def get_ema_multi_avg_fn(decay=0.999):
"""Get the function applying exponential moving average (EMA) across multiple params."""
if decay < 0.0 or decay > 1.0:
raise ValueError(
f"Invalid decay value {decay} provided. Please provide a value in [0,1] range."
)
@torch.no_grad()
def ema_update(ema_param_list: PARAM_LIST, current_param_list: PARAM_LIST, _):
# foreach lerp only handles float and complex
if torch.is_floating_point(ema_param_list[0]) or torch.is_complex(
ema_param_list[0]
):
torch._foreach_lerp_(ema_param_list, current_param_list, 1 - decay)
else:
for p_ema, p_model in zip(ema_param_list, current_param_list):
p_ema.copy_(p_ema * decay + p_model * (1 - decay))
return ema_update
def get_swa_multi_avg_fn():
"""Get the function applying stochastic weight average (SWA) across multiple params."""
@torch.no_grad()
def swa_update(
averaged_param_list: PARAM_LIST,
current_param_list: PARAM_LIST,
num_averaged: Union[Tensor, int],
):
# foreach lerp only handles float and complex
if torch.is_floating_point(averaged_param_list[0]) or torch.is_complex(
averaged_param_list[0]
):
torch._foreach_lerp_(
averaged_param_list, current_param_list, 1 / (num_averaged + 1)
)
else:
diffs = torch._foreach_sub(current_param_list, averaged_param_list)
if isinstance(num_averaged, Tensor):
torch._foreach_addcdiv_(
averaged_param_list,
diffs,
[num_averaged + 1] * len(averaged_param_list),
)
else:
torch._foreach_add_(
averaged_param_list, diffs, alpha=1.0 / (num_averaged + 1)
)
return swa_update
def get_ema_avg_fn(decay=0.999):
"""Get the function applying exponential moving average (EMA) across a single param."""
if decay < 0.0 or decay > 1.0:
raise ValueError(
f"Invalid decay value {decay} provided. Please provide a value in [0,1] range."
)
@torch.no_grad()
def ema_update(ema_param: Tensor, current_param: Tensor, num_averaged):
return decay * ema_param + (1 - decay) * current_param
return ema_update
def get_swa_avg_fn():
"""Get the function applying stochastic weight average (SWA) across a single param."""
@torch.no_grad()
def swa_update(
averaged_param: Tensor, current_param: Tensor, num_averaged: Union[Tensor, int]
):
return averaged_param + (current_param - averaged_param) / (num_averaged + 1)
return swa_update
class AveragedModel(Module):
r"""Implements averaged model for Stochastic Weight Averaging (SWA) and Exponential Moving Average (EMA).
Stochastic Weight Averaging was proposed in `Averaging Weights Leads to
Wider Optima and Better Generalization`_ by Pavel Izmailov, Dmitrii
Podoprikhin, Timur Garipov, Dmitry Vetrov and Andrew Gordon Wilson
(UAI 2018).
Exponential Moving Average is a variation of `Polyak averaging`_,
but using exponential weights instead of equal weights across iterations.
AveragedModel class creates a copy of the provided module :attr:`model`
on the device :attr:`device` and allows to compute running averages of the
parameters of the :attr:`model`.
Args:
model (torch.nn.Module): model to use with SWA/EMA
device (torch.device, optional): if provided, the averaged model will be
stored on the :attr:`device`
avg_fn (function, optional): the averaging function used to update
parameters; the function must take in the current value of the
:class:`AveragedModel` parameter, the current value of :attr:`model`
parameter, and the number of models already averaged; if None,
an equally weighted average is used (default: None)
multi_avg_fn (function, optional): the averaging function used to update
parameters inplace; the function must take in the current values of the
:class:`AveragedModel` parameters as a list, the current values of :attr:`model`
parameters as a list, and the number of models already averaged; if None,
an equally weighted average is used (default: None)
use_buffers (bool): if ``True``, it will compute running averages for
both the parameters and the buffers of the model. (default: ``False``)
Example:
>>> # xdoctest: +SKIP("undefined variables")
>>> loader, optimizer, model, loss_fn = ...
>>> swa_model = torch.optim.swa_utils.AveragedModel(model)
>>> scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
>>> T_max=300)
>>> swa_start = 160
>>> swa_scheduler = SWALR(optimizer, swa_lr=0.05)
>>> for i in range(300):
>>> for input, target in loader:
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
>>> if i > swa_start:
>>> swa_model.update_parameters(model)
>>> swa_scheduler.step()
>>> else:
>>> scheduler.step()
>>>
>>> # Update bn statistics for the swa_model at the end
>>> torch.optim.swa_utils.update_bn(loader, swa_model)
You can also use custom averaging functions with the `avg_fn` or `multi_avg_fn` parameters.
If no averaging function is provided, the default is to compute
equally-weighted average of the weights (SWA).
Example:
>>> # xdoctest: +SKIP("undefined variables")
>>> # Compute exponential moving averages of the weights and buffers
>>> ema_model = torch.optim.swa_utils.AveragedModel(model,
>>> torch.optim.swa_utils.get_ema_multi_avg_fn(0.9), use_buffers=True)
.. note::
When using SWA/EMA with models containing Batch Normalization you may
need to update the activation statistics for Batch Normalization.
This can be done either by using the :meth:`torch.optim.swa_utils.update_bn`
or by setting :attr:`use_buffers` to `True`. The first approach updates the
statistics in a post-training step by passing data through the model. The
second does it during the parameter update phase by averaging all buffers.
Empirical evidence has shown that updating the statistics in normalization
layers increases accuracy, but you may wish to empirically test which
approach yields the best results in your problem.
.. note::
:attr:`avg_fn` and `multi_avg_fn` are not saved in the :meth:`state_dict` of the model.
.. note::
When :meth:`update_parameters` is called for the first time (i.e.
:attr:`n_averaged` is `0`) the parameters of `model` are copied
to the parameters of :class:`AveragedModel`. For every subsequent
call of :meth:`update_parameters` the function `avg_fn` is used
to update the parameters.
.. _Averaging Weights Leads to Wider Optima and Better Generalization:
https://arxiv.org/abs/1803.05407
.. _There Are Many Consistent Explanations of Unlabeled Data: Why You Should
Average:
https://arxiv.org/abs/1806.05594
.. _SWALP: Stochastic Weight Averaging in Low-Precision Training:
https://arxiv.org/abs/1904.11943
.. _Stochastic Weight Averaging in Parallel: Large-Batch Training That
Generalizes Well:
https://arxiv.org/abs/2001.02312
.. _Polyak averaging:
https://paperswithcode.com/method/polyak-averaging
"""
n_averaged: Tensor
def __init__(
self,
model: Module,
device: Optional[Union[int, torch.device]] = None,
avg_fn: Optional[Callable[[Tensor, Tensor, Union[Tensor, int]], Tensor]] = None,
multi_avg_fn: Optional[
Callable[[PARAM_LIST, PARAM_LIST, Union[Tensor, int]], None]
] = None,
use_buffers=False,
): # noqa: D107
super().__init__()
assert (
avg_fn is None or multi_avg_fn is None
), "Only one of avg_fn and multi_avg_fn should be provided"
self.module = deepcopy(model)
if device is not None:
self.module = self.module.to(device)
self.register_buffer(
"n_averaged", torch.tensor(0, dtype=torch.long, device=device)
)
self.avg_fn = avg_fn
self.multi_avg_fn = multi_avg_fn
self.use_buffers = use_buffers
def forward(self, *args, **kwargs):
"""Forward pass."""
return self.module(*args, **kwargs)
def update_parameters(self, model: Module):
"""Update model parameters."""
self_param = (
itertools.chain(self.module.parameters(), self.module.buffers())
if self.use_buffers
else self.parameters()
)
model_param = (
itertools.chain(model.parameters(), model.buffers())
if self.use_buffers
else model.parameters()
)
self_param_detached: list[Optional[Tensor]] = []
model_param_detached: list[Optional[Tensor]] = []
for p_averaged, p_model in zip(self_param, model_param):
p_model_ = p_model.detach().to(p_averaged.device)
self_param_detached.append(p_averaged.detach())
model_param_detached.append(p_model_)
if self.n_averaged == 0:
p_averaged.detach().copy_(p_model_)
if self.n_averaged > 0:
if self.multi_avg_fn is not None or self.avg_fn is None:
grouped_tensors = _group_tensors_by_device_and_dtype(
[self_param_detached, model_param_detached]
)
for (device, _), (
[self_params, model_params],
_,
) in grouped_tensors.items():
if self.multi_avg_fn:
self.multi_avg_fn(
self_params, model_params, self.n_averaged.to(device) # type: ignore[arg-type]
)
elif (
device is not None
and device.type in _get_foreach_kernels_supported_devices()
):
multi_avg_fn = get_swa_multi_avg_fn()
multi_avg_fn(
self_params, model_params, self.n_averaged.to(device)
)
else:
avg_fn = get_swa_avg_fn()
n_averaged = self.n_averaged.to(device)
for p_averaged, p_model in zip(self_params, model_params): # type: ignore[assignment]
p_averaged.copy_(avg_fn(p_averaged, p_model, n_averaged))
else:
for p_averaged, p_model in zip( # type: ignore[assignment]
self_param_detached, model_param_detached
):
n_averaged = self.n_averaged.to(p_averaged.device)
p_averaged.detach().copy_(
self.avg_fn(p_averaged.detach(), p_model, n_averaged)
)
if not self.use_buffers:
# If not apply running averages to the buffers,
# keep the buffers in sync with the source model.
for b_swa, b_model in zip(self.module.buffers(), model.buffers()):
b_swa.detach().copy_(b_model.detach().to(b_swa.device))
self.n_averaged += 1
@torch.no_grad()
def update_bn(
loader: Iterable[Any],
model: Module,
device: Optional[Union[int, torch.device]] = None,
):
r"""Update BatchNorm running_mean, running_var buffers in the model.
It performs one pass over data in `loader` to estimate the activation
statistics for BatchNorm layers in the model.
Args:
loader (torch.utils.data.DataLoader): dataset loader to compute the
activation statistics on. Each data batch should be either a
tensor, or a list/tuple whose first element is a tensor
containing data.
model (torch.nn.Module): model for which we seek to update BatchNorm
statistics.
device (torch.device, optional): If set, data will be transferred to
:attr:`device` before being passed into :attr:`model`.
Example:
>>> # xdoctest: +SKIP("Undefined variables")
>>> loader, model = ...
>>> torch.optim.swa_utils.update_bn(loader, model)
.. note::
The `update_bn` utility assumes that each data batch in :attr:`loader`
is either a tensor or a list or tuple of tensors; in the latter case it
is assumed that :meth:`model.forward()` should be called on the first
element of the list or tuple corresponding to the data batch.
"""
momenta = {}
for module in model.modules():
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
module.reset_running_stats()
momenta[module] = module.momentum
if not momenta:
return
was_training = model.training
model.train()
for module in momenta.keys():
module.momentum = None
for input in loader:
if isinstance(input, (list, tuple)):
input = input[0]
if device is not None:
input = input.to(device)
model(input)
for bn_module in momenta.keys():
bn_module.momentum = momenta[bn_module]
model.train(was_training)
class SWALR(LRScheduler):
r"""Anneals the learning rate in each parameter group to a fixed value.
This learning rate scheduler is meant to be used with Stochastic Weight
Averaging (SWA) method (see `torch.optim.swa_utils.AveragedModel`).
Args:
optimizer (torch.optim.Optimizer): wrapped optimizer
swa_lrs (float or list): the learning rate value for all param groups
together or separately for each group.
annealing_epochs (int): number of epochs in the annealing phase
(default: 10)
annealing_strategy (str): "cos" or "linear"; specifies the annealing
strategy: "cos" for cosine annealing, "linear" for linear annealing
(default: "cos")
last_epoch (int): the index of the last epoch (default: -1)
The :class:`SWALR` scheduler can be used together with other
schedulers to switch to a constant learning rate late in the training
as in the example below.
Example:
>>> # xdoctest: +SKIP("Undefined variables")
>>> loader, optimizer, model = ...
>>> lr_lambda = lambda epoch: 0.9
>>> scheduler = torch.optim.lr_scheduler.MultiplicativeLR(optimizer,
>>> lr_lambda=lr_lambda)
>>> swa_scheduler = torch.optim.swa_utils.SWALR(optimizer,
>>> anneal_strategy="linear", anneal_epochs=20, swa_lr=0.05)
>>> swa_start = 160
>>> for i in range(300):
>>> for input, target in loader:
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
>>> if i > swa_start:
>>> swa_scheduler.step()
>>> else:
>>> scheduler.step()
.. _Averaging Weights Leads to Wider Optima and Better Generalization:
https://arxiv.org/abs/1803.05407
"""
def __init__(
self,
optimizer: Optimizer,
swa_lr: float,
anneal_epochs=10,
anneal_strategy: Literal["cos", "linear"] = "cos",
last_epoch=-1,
): # noqa: D107
swa_lrs = _format_param("swa_lr", optimizer, swa_lr)
for swa_lr, group in zip(swa_lrs, optimizer.param_groups):
group["swa_lr"] = swa_lr
if anneal_strategy not in ["cos", "linear"]:
raise ValueError(
"anneal_strategy must by one of 'cos' or 'linear', "
f"instead got {anneal_strategy}"
)
elif anneal_strategy == "cos":
self.anneal_func = self._cosine_anneal
elif anneal_strategy == "linear":
self.anneal_func = self._linear_anneal
if not isinstance(anneal_epochs, int) or anneal_epochs < 0:
raise ValueError(
f"anneal_epochs must be equal or greater than 0, got {anneal_epochs}"
)
self.anneal_epochs = anneal_epochs
super().__init__(optimizer, last_epoch)
@staticmethod
def _linear_anneal(t):
return t
@staticmethod
def _cosine_anneal(t):
return (1 - math.cos(math.pi * t)) / 2
@staticmethod
def _get_initial_lr(lr, swa_lr, alpha):
if alpha == 1:
return swa_lr
return (lr - alpha * swa_lr) / (1 - alpha)
def get_lr(self):
"""Get learning rate."""
# `_get_lr_called_within_step` is only available `_enable_get_lr_call`,
# so we ignore the type error here. See `LRScheduler.step()` for more details.
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.",
UserWarning,
)
# Set in `LRScheduler._initial_step()`
step = self._step_count - 1
if self.anneal_epochs == 0:
step = max(1, step)
prev_t = max(0, min(1, (step - 1) / max(1, self.anneal_epochs)))
prev_alpha = self.anneal_func(prev_t)
prev_lrs = [
self._get_initial_lr(group["lr"], group["swa_lr"], prev_alpha)
for group in self.optimizer.param_groups
]
t = max(0, min(1, step / max(1, self.anneal_epochs)))
alpha = self.anneal_func(t)
return [
group["swa_lr"] * alpha + lr * (1 - alpha)
for group, lr in zip(self.optimizer.param_groups, prev_lrs)
]