Releases: pymc-devs/pymc
PyMC3 3.11.3 (19 August 2021)
Release PyMC3 v3.11.3 (#4941) * Release PyMC3 v3.11.3 * Update RELEASE-NOTES.md
PyMC3 3.11.2 (14 March 2021)
PyMC3 3.11.2 (14 March 2021)
New Features
pm.math.cartesian
can now handle inputs that are themselves >1D (see #4482).- Statistics and plotting functions that were removed in
3.11.0
were brought back, albeit with deprecation warnings if an old naming scheme is used (see #4536). In order to future proof your code, rename these function calls:pm.traceplot
→pm.plot_trace
pm.compareplot
→pm.plot_compare
(here you might need to rename some columns in the input according to thearviz.plot_compare
documentation)pm.autocorrplot
→pm.plot_autocorr
pm.forestplot
→pm.plot_forest
pm.kdeplot
→pm.plot_kde
pm.energyplot
→pm.plot_energy
pm.densityplot
→pm.plot_density
pm.pairplot
→pm.plot_pair
Maintenance
- ⚠ Our memoization mechanism wasn't robust against hash collisions (#4506), sometimes resulting in incorrect values in, for example, posterior predictives. The
pymc3.memoize
module was removed and replaced withcachetools
. Thehashable
function andWithMemoization
class were moved topymc3.util
(see #4525). pm.make_shared_replacements
now retains broadcasting information which fixes issues with Metropolis samplers (see #4492).
Release manager for 3.11.2: Michael Osthege (@michaelosthege)
PyMC3 3.11.1 (12 February 2021)
New Features
- Automatic imputations now also work with
ndarray
data, not justpd.Series
orpd.DataFrame
(see#4439). pymc3.sampling_jax.sample_numpyro_nuts
now returns samples from transformed random variables, rather than from the unconstrained representation (see #4427).
Maintenance
- We upgraded to
Theano-PyMC v1.1.2
which includes bugfixes for...- ⚠ a problem with
tt.switch
that affected the behavior of several distributions, including at least the following special cases (see #4448)Bernoulli
when all the observed values were the same (e.g.,[0, 0, 0, 0, 0]
).TruncatedNormal
whensigma
was constant andmu
was being automatically broadcasted to match the shape of observations.
- Warning floods and compiledir locking (see #4444)
- ⚠ a problem with
math.log1mexp_numpy
no longer raises RuntimeWarning when given very small inputs. These were commonly observed during NUTS sampling (see #4428).ScalarSharedVariable
can now be used as an input to other RVs directly (see #4445).pm.sample
andpm.find_MAP
no longer change thestart
argument (see #4458).- Fixed
Dirichlet.logp
method to work with unit batch or event shapes (see #4454). - Bugfix in logp and logcdf methods of
Triangular
distribution (see #4470).
Release manager for 3.11.1: Michael Osthege (@michaelosthege)
PyMC3 3.11.0 (21 January 2021)
This release breaks some APIs w.r.t. 3.10.0
. It also brings some dreadfully awaited fixes, so be sure to go through the (breaking) changes below.
Breaking Changes
- ⚠ Many plotting and diagnostic functions that were just aliasing ArviZ functions were removed (see 4397). This includes
pm.summary
,pm.traceplot
,pm.ess
and many more! - Changed shape behavior: No longer collapse length 1 vector shape into scalars. (see #4206 and #4214)
- ⚠ We now depend on
Theano-PyMC
version1.1.0
exactly (see #4405). Major refactorings were done inTheano-PyMC
1.1.0. If you implement customOp
s or interact with Theano in any way yourself, make sure to read the Theano-PyMC 1.1.0 release notes. - ⚠ Python 3.6 support was dropped (by no longer testing) and Python 3.9 was added (see #4332).
- ⚠ Changed shape behavior: No longer collapse length 1 vector shape into scalars. (see #4206 and #4214)
- Applies to random variables and also the
.random(size=...)
kwarg! - To create scalar variables you must now use
shape=None
orshape=()
. shape=(1,)
andshape=1
now become vectors. Previously they were collapsed into scalars- 0-length dimensions are now ruled illegal for random variables and raise a
ValueError
.
- Applies to random variables and also the
- In
sample_prior_predictive
thevars
kwarg was removed in favor ofvar_names
(see #4327). - Removed
theanof.set_theano_config
because it illegally changed Theano's internal state (see #4329).
New Features
- Option to set
check_bounds=False
when instantiatingpymc3.Model()
. This turns off bounds checks that ensure that input parameters of distributions are valid. For correctly specified models, this is unneccessary as all parameters get automatically transformed so that all values are valid. Turning this off should lead to faster sampling (see #4377). OrderedProbit
distribution added (see #4232).plot_posterior_predictive_glm
now works witharviz.InferenceData
as well (see #4234)- Add
logcdf
method to all univariate discrete distributions (see #4387). - Add
random
method toMvGaussianRandomWalk
(see #4388) AsymmetricLaplace
distribution added (see #4392).DirichletMultinomial
distribution added (see #4373).- Added a new
predict
method toBART
to compute out of sample predictions (see #4310).
Maintenance
- Fixed bug whereby partial traces returns after keyboard interrupt during parallel sampling had fewer draws than would've been available #4318
- Make
sample_shape
same across all contexts indraw_values
(see #4305). - The notebook gallery has been moved to https://github.com/pymc-devs/pymc-examples (see #4348).
math.logsumexp
now matchesscipy.special.logsumexp
when arrays contain infinite values (see #4360).- Fixed mathematical formulation in
MvStudentT
random method. (see #4359) - Fix issue in
logp
method ofHyperGeometric
. It now returns-inf
for invalid parameters (see 4367) - Fixed
MatrixNormal
random method to work with parameters as random variables. (see #4368) - Update the
logcdf
method of several continuous distributions to return -inf for invalid parameters and values, and raise an informative error when multiple values cannot be evaluated in a single call. (see 4393 and #4421) - Improve numerical stability in
logp
andlogcdf
methods ofExGaussian
(see #4407) - Issue UserWarning when doing prior or posterior predictive sampling with models containing Potential factors (see #4419)
- Dirichlet distribution's
random
method is now optimized and gives outputs in correct shape (see #4416) - Attempting to sample a named model with SMC will now raise a
NotImplementedError
. (see #4365)
Release manager for 3.11.0: Eelke Spaak (@Spaak)
PyMC3 v3.10.0 (7 December 2020)
This is a major release with many exciting new features. The biggest change is that we now rely on our own fork of Theano-PyMC. This is in line with our big announcement about our commitment to PyMC3 and Theano.
When upgrading, make sure that Theano-PyMC
and not Theano
are installed (the imports remain unchanged, however). If not, you can uninstall Theano
:
conda remove theano
And to install:
conda install -c conda-forge theano-pymc
Or, if you are using pip (not recommended):
pip uninstall theano
And to install:
pip install theano-pymc
This new version of Theano-PyMC
comes with an experimental JAX backend which, when combined with the new and experimental JAX samplers in PyMC3, can greatly speed up sampling in your model. As this is still very new, please do not use it in production yet but do test it out and let us know if anything breaks and what results you are seeing, especially speed-wise.
New features
- New experimental JAX samplers in
pymc3.sample_jax
(see notebook and #4247). Requires JAX and either TFP or numpyro. - Add MLDA, a new stepper for multilevel sampling. MLDA can be used when a hierarchy of approximate posteriors of varying accuracy is available, offering improved sampling efficiency especially in high-dimensional problems and/or where gradients are not available (see #3926)
- Add Bayesian Additive Regression Trees (BARTs) #4183)
- Added
pymc3.gp.cov.Circular
kernel for Gaussian Processes on circular domains, e.g. the unit circle (see #4082). - Added a new
MixtureSameFamily
distribution to handle mixtures of arbitrary dimensions in vectorized form for improved speed (see #4185). sample_posterior_predictive_w
can now feed onxarray.Dataset
- e.g. fromInferenceData.posterior
. (see #4042)- Change SMC metropolis kernel to independent metropolis kernel #4115)
- Add alternative parametrization to NegativeBinomial distribution in terms of n and p (see #4126)
- Added semantically meaningful
str
representations to PyMC3 objects for console, notebook, and GraphViz use (see #4076, #4065, #4159, #4217, #4243, and #4260). - Add Discrete HyperGeometric Distribution (see #4249)
Maintenance
- Switch the dependency of Theano to our own fork, Theano-PyMC.
- Removed non-NDArray (Text, SQLite, HDF5) backends and associated tests.
- Use dill to serialize user defined logp functions in
DensityDist
. The previous serialization code fails if it is used in notebooks on Windows and Mac.dill
is now a required dependency. (see #3844). - Fixed numerical instability in ExGaussian's logp by preventing
logpow
from returning-inf
(see #4050). - Numerically improved stickbreaking transformation - e.g. for the
Dirichlet
distribution. #4129 - Enabled the
Multinomial
distribution to handle batch sizes that have more than 2 dimensions. #4169 - Test model logp before starting any MCMC chains (see #4211)
- Fix bug in
model.check_test_point
that caused thetest_point
argument to be ignored. (see PR #4211) - Refactored MvNormal.random method with better handling of sample, batch and event shapes. #4207
- The
InverseGamma
distribution now implements alogcdf
. #3944 - Make starting jitter methods for nuts sampling more robust by resampling values that lead to non-finite probabilities. A new optional argument
jitter-max-retries
can be passed topm.sample()
andpm.init_nuts()
to control the maximum number of retries per chain. 4298
Documentation
- Added a new notebook demonstrating how to incorporate sampling from a conjugate Dirichlet-multinomial posterior density in conjunction with other step methods (see #4199).
- Mentioned the way to do any random walk with
theano.tensor.cumsum()
inGaussianRandomWalk
docstrings (see #4048).
Release manager for 3.10.0: Eelke Spaak (@Spaak)
PyMC3 v3.9.3 (August 11, 2020)
This release includes several fixes, including (but not limited to) the following:
- Fix keep_size argument in Arviz data structures: #4006
- Pin Theano 1.0.5: #4032
- Comprehensively re-wrote radon modeling notebook using latest Arviz features: #3963
NB: The docs/*
folder is still removed from the tarball due to an upload size limit on PyPi.
PyMC3 v3.9.2 (24 June 2020)
Maintenance
- Warning added in GP module when
input_dim
is lower than the number of columns inX
to compute the covariance function (see #3974). - Pass the
tune
argument fromsample
when usingadvi+adapt_diag_grad
(see issue #3965, fixed by #3979). - Add simple test case for new coords and dims feature in
pm.Model
(see #3977). - Require ArviZ >= 0.9.0 (see #3977).
NB: The docs/*
folder is still removed from the tarball due to an upload size limit on PyPi.
PyMC3 v3.9.1 (16 June, 2020)
The v3.9.0
upload to PyPI didn't include a tarball, which is fixed in this release. Though we had to temporarily remove the docs/*
folder from the tarball due to a PyPI size limit.
PyMC3 v3.9.0 (16 June, 2020)
New features
- Use fastprogress instead of tqdm #3693.
DEMetropolis
can now tune bothlambda
andscaling
parameters, but by default neither of them are tuned. See #3743 for more info.DEMetropolisZ
, an improved variant ofDEMetropolis
brings better parallelization and higher efficiency with fewer chains with a slower initial convergence. This implementation is experimental. See #3784 for more info.- Notebooks that give insight into
DEMetropolis
,DEMetropolisZ
and theDifferentialEquation
interface are now located in the Tutorials/Deep Dive section. - Add
fast_sample_posterior_predictive
, a vectorized alternative tosample_posterior_predictive
. This alternative is substantially faster for large models. - GP covariance functions can now be exponentiated by a scalar. See PR #3852
sample_posterior_predictive
can now feed onxarray.Dataset
- e.g. fromInferenceData.posterior
. (see #3846)SamplerReport
(MultiTrace.report
) now has propertiesn_tune
,n_draws
,t_sampling
for increased convenience (see #3827)pm.sample(..., return_inferencedata=True)
can now directly return the trace asarviz.InferenceData
(see #3911)pm.sample
now has support for adapting dense mass matrix usingQuadPotentialFullAdapt
(see #3596, #3705, #3858, and #3893). Useinit="adapt_full"
orinit="jitter+adapt_full"
to use.Moyal
distribution added (see #3870).pm.LKJCholeskyCov
now automatically computes and returns the unpacked Cholesky decomposition, the correlations and the standard deviations of the covariance matrix (see #3881).pm.Data
container can now be used for index variables, i.e with integer data and not only floats (issue #3813, fixed by #3925).pm.Data
container can now be used as input for other random variables (issue #3842, fixed by #3925).- Allow users to specify coordinates and dimension names instead of numerical shapes when specifying a model. This makes interoperability with ArviZ easier. (see #3551)
- Plots and Stats API sections now link to ArviZ documentation #3927
- Add
SamplerReport
with propertiesn_draws
,t_sampling
andn_tune
to SMC.n_tune
is always 0 #3931. - SMC-ABC: add option to define summary statistics, allow to sample from more complex models, remove redundant distances #3940
Maintenance
- Tuning results no longer leak into sequentially sampled
Metropolis
chains (see #3733 and #3796). - We'll deprecate the
Text
andSQLite
backends and thesave_trace
/load_trace
functions, since this is now done with ArviZ. (see #3902) - ArviZ
v0.8.3
is now the minimum required version - In named models,
pm.Data
objects now get model-relative names (see #3843). -
pm.sample
now takes 1000 draws and 1000 tuning samples by default, instead of 500 previously (see #3855). - Moved argument division out of
NegativeBinomial
random
method. Fixes #3864 in the style of #3509. - The Dirichlet distribution now raises a ValueError when it's initialized with <= 0 values (see #3853).
- Dtype bugfix in
MvNormal
andMvStudentT
(see 3836). - End of sampling report now uses
arviz.InferenceData
internally and avoids storing
pointwise log likelihood (see #3883). - The multiprocessing start method on MacOS is now set to "forkserver", to avoid crashes (see issue #3849, solved by #3919).
- The AR1 logp now uses the precision of the whole AR1 process instead of just the innovation precision (see issue #3892, fixed by #3899).
- Forced the
Beta
distribution'srandom
method to generate samples that are in the open interval$(0, 1)$ , i.e. no value can be equal to zero or equal to one (issue #3898 fixed by #3924). - Fixed an issue that happened on Windows, that was introduced by the clipped beta distribution rvs function (#3924). Windows does not support the
float128
dtype, but we had assumed that it had to be available. The solution was to only supportfloat128
on Linux and Darwin systems (see issue #3929 fixed by #3930).
Deprecations
- Remove
sample_ppc
andsample_ppc_w
that were deprecated in 3.6. - Deprecated
sd
has been replaced bysigma
(already in version 3.7) in continuous, mixed and timeseries distributions and now raisesDeprecationWarning
whensd
is used. (see #3837 and #3688). - We'll deprecate the
Text
andSQLite
backends and thesave_trace
/load_trace
functions, since this is now done with ArviZ. (see #3902) - Dropped some deprecated kwargs and functions (see #3906)
- Dropped the outdated 'nuts' initialization method for
pm.sample
(see #3863).
PyMC3 v3.8 (29 November, 2019)
New features
- Implemented robust u turn check in NUTS (similar to stan-dev/stan#2800). See PR [#3605]
- Add capabilities to do inference on parameters in a differential equation with
DifferentialEquation
. See #3590 and #3634. - Distinguish between
Data
andDeterministic
variables when graphing models with graphviz. PR #3491. - Sequential Monte Carlo - Approximate Bayesian Computation step method is now available. The implementation is in an experimental stage and will be further improved.
- Added
Matern12
covariance function for Gaussian processes. This is the Matern kernel with nu=1/2. - Progressbar reports number of divergences in real time, when available #3547.
- Sampling from variational approximation now allows for alternative trace backends [#3550].
- Infix
@
operator now works with random variables and deterministics #3619. - ArviZ is now a requirement, and handles plotting, diagnostics, and statistical checks.
- Can use GaussianRandomWalk in sample_prior_predictive and sample_prior_predictive #3682
- Now 11 years of S&P returns in data set#3682
Maintenance
- Moved math operations out of
Rice
,TruncatedNormal
,Triangular
andZeroInflatedNegativeBinomial
random
methods. Math operations on values returned bydraw_values
might not broadcast well, and all thesize
aware broadcasting is left togenerate_samples
. Fixes #3481 and #3508 - Parallelization of population steppers (
DEMetropolis
) is now set via thecores
argument. (#3559) - Fixed a bug in
Categorical.logp
. In the case of multidimensionalp
's, the indexing was done wrong leading to incorrectly shaped tensors that consumedO(n**2)
memory instead ofO(n)
. This fixes issue #3535 - Fixed a defect in
OrderedLogistic.__init__
that unnecessarily increased the dimensionality of the underlyingp
. Related to issue issue #3535 but was not the true cause of it. - SMC: stabilize covariance matrix 3573
- SMC: is no longer a step method of
pm.sample
now it should be called usingpm.sample_smc
3579 - SMC: improve computation of the proposal scaling factor 3594 and 3625
- SMC: reduce number of logp evaluations 3600
- SMC: remove
scaling
andtune_scaling
arguments as is a better idea to always allow SMC to automatically compute the scaling factor 3625 - Now uses
multiprocessong
rather thanpsutil
to count CPUs, which results in reliable core counts on Chromebooks. sample_posterior_predictive
now preallocates the memory required for its output to improve memory usage. Addresses problems raised in this discourse thread.- Fixed a bug in
Categorical.logp
. In the case of multidimensionalp
's, the indexing was done wrong leading to incorrectly shaped tensors that consumedO(n**2)
memory instead ofO(n)
. This fixes issue #3535 - Fixed a defect in
OrderedLogistic.__init__
that unnecessarily increased the dimensionality of the underlyingp
. Related to issue issue #3535 but was not the true cause of it. - Wrapped
DensityDist.rand
withgenerate_samples
to make it aware of the distribution's shape. Added control flow attributes to still be able to behave as in earlier versions, and to control how to interpret thesize
parameter in therandom
callable signature. Fixes 3553 - Added
theano.gof.graph.Constant
to type checks done in_draw_value
(fixes issue 3595) HalfNormal
did not used to work properly indraw_values
,sample_prior_predictive
, orsample_posterior_predictive
(fixes issue 3686)- Random variable transforms were inadvertently left out of the API documentation. Added them. (See PR 3690).