From ed7b8bad6e4e3d2c838bfb32f0a460869d1accad Mon Sep 17 00:00:00 2001 From: Rob Zinkov Date: Fri, 19 Jan 2024 09:13:30 +0100 Subject: [PATCH 1/6] Adding example on marginalizing models --- examples/howto/marginalizing-models.ipynb | 1510 +++++++++++++++++++ examples/howto/marginalizing-models.myst.md | 269 ++++ 2 files changed, 1779 insertions(+) create mode 100644 examples/howto/marginalizing-models.ipynb create mode 100644 examples/howto/marginalizing-models.myst.md diff --git a/examples/howto/marginalizing-models.ipynb b/examples/howto/marginalizing-models.ipynb new file mode 100644 index 000000000..b54b9800a --- /dev/null +++ b/examples/howto/marginalizing-models.ipynb @@ -0,0 +1,1510 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "241ec99a-6825-4d61-b90b-5d255a9b1764", + "metadata": {}, + "source": [ + "(marginalizing-models)=\n", + "# Automatic marginalization of discrete variables\n", + "\n", + ":::{post} Jan 20, 2024\n", + ":tags: mixture model\n", + ":category: intermediate, how-to\n", + ":author: Rob Zinkov\n", + ":::\n", + "\n", + "PyMC is very amendable to sampling models with discrete latent variables. But if you insist on using the NUTS sampler exclusively, you will need to get rid of your discrete variables somehow. The best way to do this is by marginalizing them out, as then you benefit from Rao-Blackwell's theorem and get a lower variance estimate of your parameters.\n", + "\n", + "Formally the argument goes like this, samplers can be understood as approximating the expectation $\\mathbb{E}_{p(x, z)}[f(x, z)]$ for some function $f$ with respect to a distribution $p(x, z)$. By [law of total expectation](https://en.wikipedia.org/wiki/Law_of_total_expectation) we know that\n", + "\n", + "$$ \\mathbb{E}_{p(x, z)}[f(x, z)] = \\mathbb{E}_{p(z)}\\left[\\mathbb{E}_{p(x \\mid z)}\\left[f(x, z)\\right]\\right] $$\n", + "\n", + "Letting $g(z) = \\mathbb{E}_{p(x \\mid z)}\\left[f(x, z)\\right]$, we know by [law of total variance](https://en.wikipedia.org/wiki/Law_of_total_variance) that\n", + "\n", + "$$ \\mathbb{V}_{p(x, z)}[f(x, z)] = \\mathbb{V}_{p(z)}[g(z)] + \\mathbb{E}_{p(z)}\\left[\\mathbb{V}_{p(x \\mid z)}\\left[f(x, z)\\right]\\right] $$\n", + "\n", + "Because the expectation is over a variance it must always be positive, and thus we know\n", + "\n", + "$$ \\mathbb{V}_{p(x, z)}[f(x, z)] \\geq \\mathbb{V}_{p(z)}[g(z)] $$\n", + "\n", + "Intuitively, marginalizing variables in your model lets you use $g$ instead of $f$. This lower variance manifests most directly in lower Monte-Carlo standard error (mcse), and indirectly in a generally higher effective sample size (ESS).\n", + "\n", + "Unfortunately, the computation to do this is often tedious and unintuitive. Luckily, `pymc-experimental` now supports a way to do this work automatically!" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e40e8a9d-7516-4ad2-af1e-09fb85f77639", + "metadata": {}, + "outputs": [], + "source": [ + "import arviz as az\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import pymc as pm\n", + "import pytensor.tensor as pt" + ] + }, + { + "cell_type": "markdown", + "id": "495efc5b-a0c0-45f0-a723-3278495e1ace", + "metadata": {}, + "source": [ + ":::{include} ../extra_installs.md\n", + ":::" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8d802429-a250-4c22-9ecd-0dcb6778d876", + "metadata": {}, + "outputs": [], + "source": [ + "import pymc_experimental as pmx" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "d686f41b-d55c-417d-8ef4-772c421a47cf", + "metadata": {}, + "outputs": [], + "source": [ + "%config InlineBackend.figure_format = 'retina' # high resolution figures\n", + "az.style.use(\"arviz-darkgrid\")\n", + "rng = np.random.default_rng(32)" + ] + }, + { + "cell_type": "markdown", + "id": "f646c49f-41af-4004-a2c4-63d6ead8e007", + "metadata": {}, + "source": [ + "As a motivating example, consider a gaussian mixture model" + ] + }, + { + "cell_type": "markdown", + "id": "314c7fb7-3339-4e82-abe2-1d0aebf85242", + "metadata": {}, + "source": [ + "## Gaussian Mixture model" + ] + }, + { + "cell_type": "markdown", + "id": "0eecdf9b-4527-45fe-84d5-8a776086cb0c", + "metadata": {}, + "source": [ + "There are two ways to specify the same model. One where the choice of mixture is explicit." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2e7b84e4-1323-4508-93e6-1f00fe21f90d", + "metadata": {}, + "outputs": [], + "source": [ + "mu = pt.as_tensor([-2.0, 2.0])\n", + "\n", + "with pmx.MarginalModel() as explicit_mixture:\n", + " idx = pm.Bernoulli(\"idx\", 0.7)\n", + " y = pm.Normal(\"y\", mu=mu[idx], sigma=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "63c63f01-8a34-4ef1-a316-384c721a3966", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAB1gElEQVR4nOzde5zWdZ03/vc1DAwgCGI4yEFaFVDECc/abUFiitmqmLaarZFip4etStlaP7ceeWtpim7W6t5rmUlbdrhRSSsVFVgTFzwkLsSg4Al0EOSgchyY6/fH3l7LNcdrhpm5rs/M8/kX7+98Du8L+MzFvObLdzLZbDYbAAAAAACQkLJiNwAAAAAAAK0l3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJJTXuwGaN6GDRuK3UKbZTKZGDhwYEREbNy4MbLZbHEbgi7OmYPO5cxB53LmoHM5c9C5nDm6i3322add13PnNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkpL3YDAAAAQPs7cWLdHq7wdrv0sbsn5rrHDoD2410FAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOSUd/aGGzdujOXLl8err74aGzdujGw2GwMGDIihQ4fG+PHjo3///u2yz2uvvRZLly6NmpqaqKuri8rKyhg1alSMHj26XdaPiFi8eHG88sorsWbNmujTp09UVlZGVVVVVFZWttseAAAAAAA01OHhdl1dXTz99NPxyCOPxFNPPRXLly9vcmwmk4kTTjghpk6dGhMmTGjTfvPmzYvbb789nnvuuUY/PmbMmJg2bVqcccYZbVq/rq4uZs6cGTNnzozXX3+9wcfLysrihBNOiMsvvzyqqqratAcAAAAAAM3LZLPZbEducMopp8Srr77a6nmnn356XHPNNdGvX7+Cxmez2fje974Xd999d8HrX3/99dGrV6+Ce9qwYUNcfvnl8dRTT7U4tmfPnjF9+vS46KKLCl6/qT1TlclkYuDAgRERubv0gY7jzEHncuagczlz0HonTqwrdgsNPDHX01GhMd7n6C722Wefdl2vw+/cXr9+fYNrH/zgB6Oqqio+8IEPREVFRdTU1MSCBQuipqYmN+bBBx+Mt956K376059GRUVFi/vMmDGjQbB95JFHxuGHHx49evSI6urqePLJJ3OfHB588MHo0aNH3HjjjQW9jtra2vjqV78aixYtyl0rLy+PCRMmxEEHHRSbN2+Op59+Oqqrq3Pjb7jhhujfv3+ce+65Be0BAAAAAEBhOu2Z28OGDYtzzz03pkyZEkOGDGnw8V27dsVvfvOb+P73vx/bt2+PiIhFixbFP//zP8c//uM/Nrv2448/HnfccUeu3nvvvePWW2+NE044IW/c0qVL48tf/nIuRJ89e3YcddRRcd5557XY/80335wXbI8ePTpuv/32GD58eN642bNnx7e+9a2ora2NiIjvfve7UVVVFWPGjGlxDwAAAAAACtPh/x9o6NCh8b3vfS8eeeSR+PKXv9xosB0R0aNHjzj//PPjRz/6UZSV/U9bM2fOjDVr1jS5fjabjZtvvjlXZzKZuO222xoE2xERY8eOjbvuuivvTvAf//jHsW3btmZfQ01NTfziF7/I1fvuu2/cfffdDYLtiIgzzjgjrr322lxdW1sbP/zhD5tdHwAAAACA1unwcHvWrFnxqU99Knr06FHQ+AkTJsTpp5+eq2tra+PRRx9tcvycOXPyfkjlmWeeGcccc0yT4//mb/4mLr744ly9du3a+O1vf9tsTz/5yU9ix44dufprX/tas8+HOeuss/J6ePTRR2PZsmXN7gEAAAAAQOE6PNwuL2/9k092D7cjIl544YUmx/7pT3/Kqy+44IIW1z/vvPPywvb6a+wum83Gww8/nKsHDBgQn/zkJ1vc4/zzz8+rH3rooRbnAAAAAABQmJL8McUHHHBAXr1u3bpGx+3cuTPmz5+fq/fff/+oqqpqcf3KysoYP358rn7uueca/cGXERH/9V//lfdYlIkTJxb0Ay4nTZoUPXv2zNXN3X0OAAAAAEDrlGS4vXnz5ry6qbu/ly9fHu+8806uPuKIIwreY/exu3btimeffbbRcc8880yT85rTu3fvOPTQQ3N1dXV1Xq8AAAAAALRdSYbb1dXVeXVTP4RyxYoVefXuYXJLxo4dm1evXLmyoD3qz2tO/X6a2gMAAAAAgNYpyXB79uzZefXxxx/f6Lj6YfHQoUML3mP//fdvdq2mrtef15z6/Qi3AQAAAADaR8mF2wsXLoyFCxfm6v79+8eJJ57Y6Njdn4Ud0fQd3o2pP7ampqbFPcrLy2Pw4MHtvgcAAAAAAK3T+MOsi2Tr1q3xT//0T3nXPv/5z8dee+3V6PgtW7bk1U2Na0z9sfXXaux6nz59IpPJtPsezWnNfqVm995Tfh2QCmcOOpczB53LmYOuwfmFxnmfg7YpqXD7u9/9brzyyiu5+sADD4xp06Y1Ob5+WNyrV6+C96qoqGh2rcau15/Tkvr9tCXcHjhwYKvnlKIBAwYUuwXoVpw56FzOHHQuZw4K9XaxG2igq3yNCx3J+xwUrmQeS/Lzn/887r333lzdq1evuPHGG5sNlLdv355Xtybcrj9227ZtLe7Rs2fPgtdvzR4AAAAAALROSdy5/ac//Smuv/76vGvXXHNNjBs3rtl59YPvHTt2FLxn/bG9e/duco+tW7dGRERtbW3B67dmj+Zs3Lix1XNKRSaTyX23cdOmTZHNZovcEXRtzhx0LmcOOpczB11Dyl/jQkfyPkd30d7/g6fo4faCBQviyiuvjLq6uty1r33tazFlypQW5/bt2zevbk24Xf+u7/pr7X79/XC7/pyW1O+nqT2a01U+mWWz2S7zWiAFzhx0LmcOOpczB+lydqFl3uegcEV9LMnixYvjK1/5Sl4IfPHFF8cXvvCFgubXD4s3b95c8N71xzYXbr9v69ateSF8e+0BAAAAAEDrFC3cXr58eVxyySV5P2Tx3HPPjW984xsFr1FZWZlX19TUFDz3zTffzKuHDBnS4h47d+6MdevWtfseAAAAAAC0TlHC7ddeey0uuuiivGdtTZ48Oa655ppWrXPQQQfl1W+88UbBc+sH4QceeGC771E/3K6/FgAAAAAAbdPp4faaNWti6tSpsXbt2ty1CRMmxE033RRlZa1rp35YvHTp0oLnLlmyJK9uKtyuf701e9Qf29QeAAAAAAC0TqeG2+vXr4+pU6fG6tWrc9eOPfbYuPXWW6Nnz56tXm/UqFGx99575+q//OUvBc997rnncr/u0aNHHHnkkY2OO+qoo5qc15xt27bFsmXLcvWYMWOif//+BfcHAAAAAEDTOi3cfu+992LatGmxcuXK3LWqqqq4/fbbo3fv3m1as7y8PD760Y/m6jfffDOef/75FuetWbMmb9wRRxwRgwYNanTsuHHj8p67PXfu3Ni+fXuLe8yZMydqa2tz9aRJk1qcAwAAAABAYTol3N62bVt86UtfynsUyOjRo+MnP/lJ9OvXb4/WPu200/LqX/7yly3Oueeee2LXrl25evLkyU2OzWQyceqpp+bqd955Jx544IGC9tjd7msAAAAAALBnOjzc3rlzZ1x22WWxaNGi3LUPfvCD8bOf/SwGDBiwx+tPmjQpRo8enavvv//+vL3qe/nll+OnP/1prh48eHCce+65ze5x8cUXR69evXL1jBkzYsOGDU2Ov++++/J6mDRpUhxyyCHN7gEAAAAAQOE6NNzOZrNx1VVXxdy5c3PXhg0bFnfddVd84AMfaJc9MplMTJ8+PW/Pr3zlK7FgwYIGY5cuXRpTp07Ne6zIpZde2uJjUYYMGRKf/exnc/Xbb78dF154YaxatarB2NmzZ8fVV1+dq3v27BmXXXZZq14TAAAAAADNy2Sz2WxHLb569eo46aST8jfMZKKsrHWZ+rBhw+KRRx5pdsxNN90Ud9xxR961I488MqqqqqKsrCyqq6vjySefjN1f7hlnnBE33nhjQT3s2LEjPv/5z8fTTz+du9azZ8+YMGFCHHjggbFly5ZYtGhRVFdX58279tprW7wzvDnN3SFe6jKZTAwcODAiIjZu3Bgd+FcNCGcOOpszB53LmYPWO3FiXbFbaOCJuZ32o78gKd7n6C722Wefdl2vvF1Xq6exg5jNZvOed12IQsZPnz49tm3bFjNnzsxde/bZZ+PZZ59tdPwnPvGJuPbaawvuoVevXvGjH/0oLrvssli4cGFERNTW1sacOXMaHV9eXh5XXHHFHgXbAAAAAAA0rst8y7SsrCyuvvrq+Ld/+7cYP358k+NGjx4dP/jBD+KWW26JioqKVu0xaNCg+PnPfx7f/OY3Y8SIEU328eEPfzh+9atfxbRp01q1PgAAAAAAhenQx5IU06uvvhpLliyJt956K3bt2hWVlZUxatSoGDNmTLusn81m44UXXoiXX3453nrrrejdu3dUVlbGhz70oaisrGyXPSI8lgQonDMHncuZg87lzEHreSwJpMP7HN1FUo8lKaaRI0fGyJEjO2z9TCYTVVVVUVVV1WF7AAAAAADQON8yBQAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSU95ZG23evDmWLl0aixcvjsWLF8cLL7wQq1evzn182LBh8dhjj7VqzTFjxrRLb3fffXccd9xxjX5s1qxZ8c1vfrNN6/7t3/5t3HTTTXvSGgAAACXoxIl1xW6hgSfmun8NgO6lw8Ptn/3sZzFr1qx46aWXoq6u9N78IyL69u1b7BYAAAAAAGiFDg+3Fy1aFMuXL++QtXv06NHqOdlsNi9kHzZsWIwbN65D9mxLfwAAAAAAtKzTHkuyu759+8Zhhx0WS5YsiS1btrR5naVLl7Z6zrXXXhszZ87M1WeddVZkMpmC5z/88MMxfPjwVu8LAAAAAED76fBwu6KiIqqqquLwww+PcePGxeGHHx4HHXRQlJWVxUknnbRH4XZr1dbWxgMPPJCrM5lMTJkypdP2BwAAAACgfXR4uH3LLbd09BYFmzdvXmzYsCFXH3300TFixIgidgQAAAAAQFt0qx+lfO+99+bV7toGAAAAAEhTtwm3169fH/PmzcvVffr0icmTJxexIwAAAAAA2qrbhNsPPPBA1NbW5upTTjkl9tprryJ2BAAAAABAW3WbcPu+++7Lqz2SBAAAAAAgXR3+AyVLwfLly2PJkiW5etiwYXH88ce3aa3bb789VqxYEatWrYp33303+vfvH/vss0+MGzcujjvuuJg8eXL07t27vVoHAAAAAKAR3SLcrv+DJM8888zIZDJtWut3v/tdXr1t27ZYu3ZtLF++PGbNmhU/+MEP4otf/GJceOGFbd5jd+2xRrHs3nvKrwNS4cxB53LmoHM5c9CyFM5GCj1CMXifg7bp8uH2rl274ve//33etY58JMnbb78d3/ve92LBggVxyy23RJ8+ffZovYEDB7ZPY0U2YMCAYrcA3YozB53LmYPO5cxRGt4udgMNNPz6MYUegfq8z0Hhuny4/R//8R+xdu3aXH300UfHAQcc0Ko1ysrK4vjjj4+JEydGVVVVjBw5Mvr37x/bt2+PmpqaWLhwYfzqV7+K5cuX5+Y8/vjj8Y1vfCNuvfVW33EDAAAAAGhnXT7crv9IktbetT1+/Ph45JFHYvjw4Q0+1rNnzzj44IPj4IMPjvPPPz/uuOOOuPnmmyObzUZExMMPPxy//e1v49Of/nSb+9+4cWOb5xZbJpPJfbdx06ZNud8XoGM4c9C5nDnoXM4ctCyFrx9T6BGKwfsc3UV7/w+eLh1uv/POO/HYY4/l6j59+sTkyZNbtcaBBx5Y0LhMJhNf+MIXIiJixowZuev/8i//EmeddVb06tWrVfu+r6t8Mstms13mtUAKnDnoXM4cdC5nDhqXwrlIoUcoNu9zULiyYjfQkR544IHYsWNHrj7llFOiX79+HbrntGnT4uCDD87VNTU18cwzz3TongAAAAAA3U2XDrfvu+++vLojf5Dk+8rKyhrs89RTT3X4vgAAAAAA3UmXDbdXrlwZzz//fK4eOnRoHH/88Z2y9/jx4/Pq1atXd8q+AAAAAADdRZcNt+v/IMkzzzwzMplMp+y977775tUbNmzolH0BAAAAALqLLhlu19XVxezZs/OudcYjSd63bdu2vLqioqLT9gYAAAAA6A66ZLi9YMGCqKmpydVHHXVUjBw5stP2f/311/Pq+ndyAwAAAACwZ7pkuD1r1qy8ujPv2o6ImDdvXl59yCGHdOr+AAAAAABdXZcLt997772YM2dOru7Tp0+cdtppnbb/66+/3uCRKB/5yEc6bX8AAAAAgO6gy4Xbf/zjH/Oeef3xj388+vXr16a1VqxYEbW1tQWP37RpU1x66aWxY8eO3LWPfexjccABB7RpfwAAAAAAGtflwu177703rz777LPbvNY999wTp556atx55515z/CuL5vNxmOPPRZTpkyJZcuW5a736dMnvv71r7d5fwAAAAAAGlfe0RusXr06Pv7xjzf6sV27duWNGzt2bKPj7rrrrjj22GNb3Ov111+PZ555JlcPHTo0jj/++FZ2nG/16tVxww03xA9+8IMYOXJkHHroobHffvtFv379YseOHfHmm2/GM888E2+++WbevB49esTNN98cBx988B7tDwAAAABAQx0ebmez2bwQuzlNjctmswXNr3/X9plnnhmZTKaguS3JZrPxyiuvxCuvvNLi2KFDh8aNN94YRx99dLvsDQAAAABAvg4PtztLNpuN+++/P+/alClT9mjNk08+OdavXx9PP/10s48led/o0aPj7/7u72LKlCmx11577dHeAAAAAAA0rcPD7eHDh0d1dXVHbxOZTCYeffTRdl3zuOOOi+OOOy4iItavXx8vvfRSvPHGG7Fhw4bYunVr9OzZMwYMGBD77bdfVFVVxaBBg9p1fwAAAAAAGtdl7tzuaIMGDSroud8AAAAAAHS8smI3AAAAAAAArSXcBgAAAAAgOR5LAgAAQMk5cWJdsVvI88Rc94YBQKnx7gwAAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHLKi91AqhYvXhyvvPJKrFmzJvr06ROVlZVRVVUVlZWVxW4NAAAAAKDL67Rwe/PmzbF06dJYvHhxLF68OF544YVYvXp17uPDhg2Lxx57rFVrrlq1KiZNmtSmfiorK2P+/PmtmlNXVxczZ86MmTNnxuuvv97g42VlZXHCCSfE5ZdfHlVVVW3qCwAAAACAlnV4uP2zn/0sZs2aFS+99FLU1dV19HYdZsOGDXH55ZfHU0891eSYurq6+POf/xwLFy6M6dOnx0UXXdSJHQIAAAAAdB8dHm4vWrQoli9f3tHbRMR/3zmdyWQKGlteXvhLr62tja9+9auxaNGivPkTJkyIgw46KDZv3hxPP/10VFdX58bfcMMN0b9//zj33HNb9yIAAAAAAGhRUZ653bdv3zjssMNiyZIlsWXLlnZb97rrrouzzz673dZ7380335wXbI8ePTpuv/32GD58eN642bNnx7e+9a2ora2NiIjvfve7UVVVFWPGjGn3ngAAAAAAurMOD7crKiqiqqoqDj/88Bg3blwcfvjhcdBBB0VZWVmcdNJJ7Rpud4Sampr4xS9+kav33XffuPvuu2OfffZpMPaMM86Iurq6+Md//MeI+O87uH/4wx/Gbbfd1mn9AgAAAAB0Bx0ebt9yyy0dvUWH+slPfhI7duzI1V/72tcaDbbfd9ZZZ8Xvfve73J3ejz76aCxbtiwOOeSQDu8VAAAAAKC7KMpjSVKRzWbj4YcfztUDBgyIT37yky3OO//88/MeY/LQQw8JtwEAAKCeEyfWFbuFPE/MLSt2CwC0gs/azfiv//qvWLNmTa6eOHFiVFRUtDhv0qRJ0bNnz1z96KOPdkh/AAAAAADdlXC7Gc8880xefcQRRxQ0r3fv3nHooYfm6urq6njnnXfatTcAAAAAgO5MuN2MFStW5NVjx44teO7u4XZExMqVK9ulJwAAAAAAutgztx966KH4wx/+ECtWrIgNGzZERUVFDBw4MEaNGhXHHHNMnHbaabHffvsVvF79QHr//fcveO7QoUMbrDV+/PiC5wMAAAAA0LQuFW7PnTs3r966dWts3LgxXnnllXjkkUfipptuinPOOSe+/vWvx1577dXiers/b7u8vDwGDx5ccC9DhgzJq2tqagqeCwAAAABA87pUuN2SHTt2xC9/+ct46qmn4l//9V9j5MiRzY7fsmVL7td9+vSJTCZT8F71w/Pd12qN1uxZanbvPeXXAalw5qBzOXPQuZw5ii2Fv3d63HOl3h9dl/c5aJsuEW6PGTMmTj755DjqqKPi4IMPjoEDB0Y2m41169bF888/H/fdd1/Mnz8/N37lypVxySWXxK9//evYZ599mlx390C6oqKiVT316tWrybVaY+DAgW2aV2oGDBhQ7BagW3HmoHM5c9C5nLnu4u1iN5Cn4ddmpdVfhB7bQ1f5Gpy0eZ+DwiUdbg8cODDuueeeOOKIIxr9+PDhw2P48OFx+umnx7x58+LKK6+MTZs2RUTEq6++Gtdee23MmDGjyfW3b9+e+3XPnj1b1Vv9cHvbtm2tmg8AAAAAQNOSDrf79evXZLBd34QJE+K2226Lz33uc7Fz586IiHjwwQfji1/8YowePbrRORUVFbF169aIiKitrW1Vbzt27Mire/fu3ar579u4cWOb5pWCTCaT+27jpk2bIpvNFrkj6NqcOehczhx0LmeOYkvhazM97rlS74+uy/sc3UV7/w+ZpMPt1jr66KPjU5/6VPz617+OiIhsNht//OMfmwy3+/btmwu3d7+LuxD1w+2+ffu2oePoMp/Mstlsl3ktkAJnDjqXMwedy5mjGFL4O6fHPVfq/dE9eJ+DwpUVu4HOds455+TVCxYsaHLs7oH01q1bo66uruB9Nm/e3ORaAAAAAADsmW4Xbo8bNy7v+dlvvPFGk2MrKytzv965c2esW7eu4H3efPPNvHrIkCGt6BIAAAAAgOZ0u3C7rKws79kuGzZsaHLsQQcdlFc3F4TXVz/crr8WAAAAAABt1+3C7YiIbdu25X5dUVHR5LgDDzwwr166dGnBe9QfW38tAAAAAADartuF2xs2bIh33303V++7775Njj3qqKPy6ueee66gPbZt2xbLli3L1WPGjIn+/fu3slMAAAAAAJrS7cLt+fPn59WHHHJIk2PHjRuX99ztuXPnxvbt21vcY86cOVFbW5urJ02a1IZOAQAAAABoSrcKt2tra+OOO+7Iu3biiSc2OT6TycSpp56aq99555144IEHWtznnnvuyat3XwMAAAAAgD2XbLi9Zs2a2LhxY8Hj6+rq4tvf/na8+OKLuWuDBw+O008/vdl5F198cfTq1StXz5gxo9kfQnnffffFokWLcvWkSZOavTscAAAAAIDWSzbcfuGFF+Kkk06KG264ocUf9Lhs2bKYOnVqzJo1K+/69OnTo2/fvs3OHTJkSHz2s5/N1W+//XZceOGFsWrVqgZjZ8+eHVdffXWu7tmzZ1x22WWFvBwAAAAAAFqhvKM3WL16dXz84x9v9GO7du3KGzd27NhGx911111x7LHHNri+efPmuPPOO+POO++MwYMHx9ixY2PEiBHRv3//yGazsX79+nj++eejurq6wdyLL744zj777IJewxVXXBGLFy+Op59+OiIili9fHpMnT44JEybEgQceGFu2bIlFixY12Oc73/lOjBkzpqA9AAAAAAAoXIeH29lsNi/Ebk5T47LZbItz165dG/PmzWtxXO/eveOqq66K888/v6CeIiJ69eoVP/rRj+Kyyy6LhQsXRsR/P797zpw5jY4vLy+PK664Is4999yC9wAAAAAAoHDJPpZkzJgx8ZnPfCYOPvjgKCtr+WUMHjw4vvCFL8RDDz3UqmD7fYMGDYqf//zn8c1vfjNGjBjR6JiysrL48Ic/HL/61a9i2rRprd4DAAAAAIDCdPid28OHD2/0sSB7asSIEfGd73wnIiK2bNkSL730UqxatSrWrVsXW7ZsiUwmE/37949BgwbFYYcd1mQg3RplZWUxderU+NznPhcvvPBCvPzyy/HWW29F7969o7KyMj70oQ9FZWXlHu8DAAAAAEDzOjzc7gx9+/aNqqqqqKqq6pT9MplMp+4HAAAAAEC+ZB9LAgAAAABA9yXcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJJTXuwGAAAAAErRiRPrit1CA0/MdZ8iwPt8RgQAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJJTXuwG2tMbb7wRL774YqxatSree++9KC8vjwEDBsRBBx0Uhx12WPTq1avYLQIAAAAA0A46LdzevHlzLF26NBYvXhyLFy+OF154IVavXp37+LBhw+Kxxx5r1Zpbt26NefPmxeOPPx4LFiyINWvWNDm2oqIiPvGJT8RFF10Uo0ePLniPWbNmxTe/+c1W9fW+v/3bv42bbrqpTXMBAAAAAGhah4fbP/vZz2LWrFnx0ksvRV1dXbut+/LLL8fZZ58dW7ZsKWj89u3b4957740HHnggLr300vjSl77Ubr0AAAAAANC5OjzcXrRoUSxfvrzd1922bVuDYLtHjx4xduzYGDNmTHzgAx+IXbt2xauvvhpPPvlkvPfeexERUVtbG7fccku8++67ceWVV7Z63x49enTIWAAAAAAACleUZ2737ds3DjvssFiyZEnBd143Z/z48fHpT386Tj311OjXr1+Dj7/77rtxyy23xL//+7/nrv3kJz+Jo48+Oj72sY+1aq+HH344hg8fvsc9AwAAAADQdh0ebldUVERVVVUcfvjhMW7cuDj88MPjoIMOirKysjjppJP2KNw+4ogj4mtf+1occ8wxzY7r379/fPvb34699tor/u3f/i13/aabbmp1uA0AAAAAQPF1eLh9yy23dMi6o0aNinvuuadVc/7hH/4h/vCHP8SqVasiIuKll16KFStWxEEHHdQRLQIAAAAA0EHKit1AW5WXtz6X79mzZ5xyyil51xYvXtxeLQEAAAAA0EmSDbfb6oADDsir161bV6ROAAAAAABoq24Xbm/evDmv7tmzZ5E6AQAAAACgrbpduF1dXZ1XV1ZWFqkTAAAAAADaqsN/oGQp2bJlS8yZMydXl5WVxXHHHdeqNW6//fZYsWJFrFq1Kt59993o379/7LPPPjFu3Lg47rjjYvLkydG7d+/2bh0AAAAAgN10q3D7zjvvjC1btuTqY489NgYNGtSqNX73u9/l1du2bYu1a9fG8uXLY9asWfGDH/wgvvjFL8aFF14YmUymXfoGAAAAACBftwm3X3zxxfg//+f/5F279NJL232ft99+O773ve/FggUL4pZbbok+ffrs0XopB+S7957y64BUOHPQuZw56FzOHMWWwt87Pe65Uu8vIo0eaT3vc9A23SLc3rJlS1xxxRWxY8eO3LUpU6bEMcccU9D8srKyOP7442PixIlRVVUVI0eOjP79+8f27dujpqYmFi5cGL/61a9i+fLluTmPP/54fOMb34hbb711jz4pDRw4sM1zS8mAAQOK3QJ0K84cdC5nDjqXM9ddvF3sBvI0/NqstPqL0GN7KPX+IrpOTkDTvM9B4bp8uJ3NZuOqq66KF198MXftgAMOiP/v//v/Cpo/fvz4eOSRR2L48OENPtazZ884+OCD4+CDD47zzz8/7rjjjrj55psjm81GRMTDDz8cv/3tb+PTn/50+7wYAAAAAAAiohuE29ddd1089NBDubp///7x4x//OPr371/Q/AMPPLCgcZlMJr7whS9ERMSMGTNy1//lX/4lzjrrrOjVq1cruv4fGzdubNO8UpDJZHLfbdy0aVMu9Ac6hjMHncuZg87lzFFsKXxtpsc9V+r9RaTRI63nfY7uor3/90mXDrdvu+22mDlzZq6uqKiI2267LcaMGdNhe06bNi3uv//+eOmllyIioqamJp555pk44YQT2rReV/lkls1mu8xrgRQ4c9C5nDnoXM4cxZDC3zk97rlS7y8ijR7ZM97noHBlxW6go/z7v/97/PCHP8zV5eXlccstt8Sxxx7bofuWlZXFlClT8q499dRTHbonAAAAAEB30yXD7fvvvz/+9//+37k6k8nEddddF5MmTeqU/cePH59Xr169ulP2BQAAAADoLrpcuP3oo4/Gt771rbz/vnH11VfHWWed1Wk97Lvvvnn1hg0bOm1vAAAAAIDuoEuF2wsWLIjLL788du7cmbt2+eWXx2c/+9lO7WPbtm15dUVFRafuDwAAAADQ1XWZcPv555+Pr3zlK7Fjx47ctWnTpsWXv/zlTu/l9ddfz6vr38kNAAAAAMCe6RLh9vLly+OSSy6JLVu25K6df/75ceWVVxaln3nz5uXVhxxySFH6AAAAAADoqpIPt1977bW46KKLYtOmTblrZ555ZnznO98pSj+vv/56zJ49O+/aRz7ykaL0AgAAAADQVSUdbq9ZsyY+//nPx9q1a3PXTjnllPj+978fmUxmj9dfsWJF1NbWFjx+06ZNcemll+Y9GuVjH/tYHHDAAXvcCwAAAAAA/yPZcHvTpk0xbdq0WLVqVe7aRz7ykZgxY0b06NGjXfa455574tRTT40777wzampqmhyXzWbjscceiylTpsSyZcty1/v06RNf//rX26UXAAAAAAD+R3lHb7B69er4+Mc/3ujHdu3alTdu7NixjY6766674thjj8279thjj8Xy5cvzrv35z3+O8ePHt6q/s846K773ve81+fHVq1fHDTfcED/4wQ9i5MiRceihh8Z+++0X/fr1ix07dsSbb74ZzzzzTLz55pt583r06BE333xzHHzwwa3qBwAAAACAlnV4uJ3NZvNC7OY0NS6bzRZ0ra6urnXNtWJONpuNV155JV555ZUWxw4dOjRuvPHGOProo1vdDwAAAAAALevwcDtlJ598cqxfvz6efvrpZh9L8r7Ro0fH3/3d38WUKVNir7326oQOAQAAAAC6pw4Pt4cPHx7V1dXtvu7ZZ58dZ599druvu7vjjjsujjvuuIiIWL9+fbz00kvxxhtvxIYNG2Lr1q3Rs2fPGDBgQOy3335RVVUVgwYN6tB+AAAAAAD4b+7cLtCgQYMaPPcbAAAAAIDiKCt2AwAAAAAA0FrCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAklNe7AYAAAAAaJsTJ9YVu4UGnpjrXkqgc/hsAwAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcsqL3QAAAACd68SJdcVuoYEn5rr3CgBoHf96AAAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAklNe7AY6wmuvvRZLly6NmpqaqKuri8rKyhg1alSMHj263fZYvHhxvPLKK7FmzZro06dPVFZWRlVVVVRWVrbbHgAAAAAANK7Twu3NmzfH0qVLY/HixbF48eJ44YUXYvXq1bmPDxs2LB577LE92mPevHlx++23x3PPPdfox8eMGRPTpk2LM844o03r19XVxcyZM2PmzJnx+uuvN/h4WVlZnHDCCXH55ZdHVVVVm/YAAAAAAKBlHR5u/+xnP4tZs2bFSy+9FHV1dR2yRzabje9973tx9913Nzuuuro6rrzyypg7d25cf/310atXr4L32LBhQ1x++eXx1FNPNTmmrq4u/vznP8fChQtj+vTpcdFFFxW8PgAAAAAAhevwcHvRokWxfPnyDt1jxowZDYLtI488Mg4//PDo0aNHVFdXx5NPPhnZbDYiIh588MHo0aNH3HjjjQWtX1tbG1/96ldj0aJFuWvl5eUxYcKEOOigg2Lz5s3x9NNPR3V1dW78DTfcEP37949zzz23nV4lAAAAAADvK8ozt/v27RuHHXZYLFmyJLZs2bJHaz3++ONxxx135Oq99947br311jjhhBPyxi1dujS+/OUvR01NTUREzJ49O4466qg477zzWtzj5ptvzgu2R48eHbfffnsMHz48b9zs2bPjW9/6VtTW1kZExHe/+92oqqqKMWPGtPn1AQAAAADQUFlHb1BRURFVVVVxwQUXxPe///144IEH4plnnolf/OIXsc8+++zR2tlsNm6++eZcnclk4rbbbmsQbEdEjB07Nu66666oqKjIXfvxj38c27Zta3aPmpqa+MUvfpGr991337j77rsbBNsREWeccUZce+21ubq2tjZ++MMftuo1AQAAAADQsg6/c/uWW27psLXnzJmT98iTM888M4455pgmx//N3/xNXHzxxXHbbbdFRMTatWvjt7/9bfz93/99k3N+8pOfxI4dO3L11772tWZD+bPOOit+97vf5e70fvTRR2PZsmVxyCGHFPy6AAAAAABoXoffud2R/vSnP+XVF1xwQYtzzjvvvOjRo0eTa+wum83Gww8/nKsHDBgQn/zkJ1vc4/zzz8+rH3rooRbnAAAAAABQuGTD7Z07d8b8+fNz9f777x9VVVUtzqusrIzx48fn6ueeey7Wr1/f6Nj/+q//ijVr1uTqiRMn5j3WpCmTJk2Knj175upHH320xTkAAAAAABQu2XB7+fLl8c477+TqI444ouC5u4/dtWtXPPvss42Oe+aZZ5qc15zevXvHoYcemqurq6vzegUAAAAAYM8kG26vWLEir949TG7J2LFj8+qVK1cWtEf9ec2p309TewAAAAAA0HrJhtv1w+KhQ4cWPHf//fdvdq2mrtef15z6/Qi3AQAAAADaT7Lh9u7Pwo6IGDJkSMFz64+tqalpcY/y8vIYPHhwu+8BAAAAAEDrlRe7gbbasmVLXr3XXnsVPLf+2PprNXa9T58+kclk2n2PlrRmz1Kze+8pvw5IhTMHncuZg87lzHV9pf7nWur9ReixPZR6fxF67Kq8z0HbdJlwu1evXgXPraioaHatxq7Xn9OS+v20NdweOHBgm+aVmgEDBhS7BehWnDnoXM4cdC5nrj28XewGGmj4tU9p9Vjq/UXosT2Uen8RqfZIa3ifg8Il+1iS7du359WtCbfrj922bVuLe/Ts2bMV3RW+BwAAAAAArZfsndv176TesWNHwXPrj+3du3eTe2zdujUiImpra1vVX6F7tGTjxo1tmlcKMplM7ruNmzZtimw2W+SOoGtz5qBzOXPQuZy5rq/Uv/Yp9f4i9NgeSr2/CD12Vd7n6C7a+392JBtu9+3bN69uTbhd/67v+mvtfv39cLv+nJbU76epPVrSVT6ZZbPZLvNaIAXOHHQuZw46lzPXNZX6n2mp9xehx/ZQ6v1F6LE78D4HhUv2sST1w+LNmzcXPLf+2ObC7fdt3bo16urq2n0PAAAAAABaL9lwu7KyMq+uqakpeO6bb76ZVw8ZMqTFPXbu3Bnr1q1r9z0AAAAAAGi9ZMPtgw46KK9+4403Cp5bPwg/8MAD232P+uF2/bUAAAAAAGi7LhNuL126tOC5S5YsyaubCrfrX2/NHvXHNrUHAAAAAACtl2y4PWrUqNh7771z9V/+8peC5z733HO5X/fo0SOOPPLIRscdddRRTc5rzrZt22LZsmW5esyYMdG/f/+C+wMAAAAAoHnJhtvl5eXx0Y9+NFe/+eab8fzzz7c4b82aNXnjjjjiiBg0aFCjY8eNG5f33O25c+fG9u3bW9xjzpw5UVtbm6snTZrU4hwAAAAAAAqXbLgdEXHaaafl1b/85S9bnHPPPffErl27cvXkyZObHJvJZOLUU0/N1e+880488MADBe2xu93XAAAAAABgzyUdbk+aNClGjx6dq++///5YtGhRk+Nffvnl+OlPf5qrBw8eHOeee26ze1x88cXRq1evXD1jxozYsGFDk+Pvu+++vB4mTZoUhxxySLN7AAAAAADQOkmH25lMJqZPn56rs9lsfOUrX4kFCxY0GLt06dKYOnVq3mNFLr300ujdu3ezewwZMiQ++9nP5uq33347Lrzwwli1alWDsbNnz46rr746V/fs2TMuu+yyVr0mAAAAAABaVt7RG6xevTo+/vGPN/qx3R8Psnr16hg7dmyj4+6666449thjG/3Yxz72sbjkkkvijjvuiIj/fnTI1KlT48gjj4yqqqooKyuL6urqePLJJyObzebmnXHGGXHeeecV9BquuOKKWLx4cTz99NMREbF8+fKYPHlyTJgwIQ488MDYsmVLLFq0KKqrq/Pmfec734kxY8YUtAcAAAAAAIXr8HA7m83mhdjNaWrc7qF0Y6ZPnx7btm2LmTNn5q49++yz8eyzzzY6/hOf+ERce+21BfUUEdGrV6/40Y9+FJdddlksXLgwIiJqa2tjzpw5jY4vLy+PK664osVHngAAAAAA0DZJP5bkfWVlZXH11VfHv/3bv8X48eObHDd69Oj4wQ9+ELfccktUVFS0ao9BgwbFz3/+8/jmN78ZI0aMaLKPD3/4w/GrX/0qpk2b1qr1AQAAAAAoXIffuT18+PAGj+voKBMmTIgJEybEq6++GkuWLIm33nordu3aFZWVlTFq1Kg9fkRIWVlZTJ06NT73uc/FCy+8EC+//HK89dZb0bt376isrIwPfehDUVlZ2U6vBgAAAACApnR4uF0MI0eOjJEjR3bY+plMJqqqqqKqqqrD9gAAAAAAoGld4rEkAAAAAAB0L8JtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSU17sBgAAiDhxYl2xW8jzxFz3QAAAAKXNVy0AAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByyovdAAAAaThxYl2xW8jzxFz3aQAAQHfmKwIAAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA55cVuAAAAoCs5cWJdsVto4Im57msCALoe/8IBAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA55cVuAAAAAICu68SJdcVuoYEn5rrfE7oCJxkAAAAAgOQItwEAAAAASI5wGwAAAACA5HjmNgCwRzxDEQAAgGLwlR8AAAAAAMkRbgMAAAAAkBzhNgAAAAAAyUn+mdt///d/HwsXLtzjdS699NL46le/2uD6qlWrYtKkSW1as7KyMubPn7+nrQEAe6jjngv+dptnei44AADAnvFV1f/Tt2/fYrcAAAAAAECBkr9zu6ysLHr06NHqebt27cr9OpPJxCmnnFLwfplMpqCx5eXJ//YCAAAAAJSk5NPXn//8562e88gjj8Sll16aq48++ugYMWJEQXOvu+66OPvss1u9JwAAAAAA7adbPpZk1qxZefWUKVOK1AkAAAAAAG3R7cLt9evXx3/8x3/k6r59+8bkyZOL2BEAAAAAAK3V7cLt3//+91FbW5urTznllNhrr72K2BEAAAAAAK3V7cLte++9N6/2SBIAAAAAgPR0q3C7uro6/vrXv+bqYcOGxXHHHVfEjgAAAAAAaItuFW7Xv2v7zDPPjEwmU6RuAAAAAABoq/JiN9BZdu7cGb///e/zrrXlkSQPPfRQ/OEPf4gVK1bEhg0boqKiIgYOHBijRo2KY445Jk477bTYb7/92qttAAAAAAAa0W3C7f/4j/+IdevW5eqjjz46DjjggFavM3fu3Lx669atsXHjxnjllVfikUceiZtuuinOOeec+PrXv94uP6gy5TvLd+895dcBqXDm4H+kcAZKvcdS7y8ijR5pP97n9kwKv2el3mOp9xehx/ZQ6v1F6LG9lFqP3uegbbpNuN1ZP0hyx44d8ctf/jKeeuqp+Nd//dcYOXLkHq03cODA9mmsyAYMGFDsFqBbceboXG8Xu4EGGr5/6rG1Gv83SAo90h2U/vtcaZ2ViNL/nBNR+j2Wen8RemwPpd5fhB7bSyn/O6L03+egdHSLcHvTpk3x+OOP5+o+ffrE5MmTW7XGmDFj4uSTT46jjjoqDj744Bg4cGBks9lYt25dPP/883HffffF/Pnzc+NXrlwZl1xySfz617+OffbZp91eCwAAAAAA3STcfuCBB2LHjh25+pRTTol+/foVNHfgwIFxzz33xBFHHNHox4cPHx7Dhw+P008/PebNmxdXXnllbNq0KSIiXn311bj22mtjxowZbe5948aNbZ5bbJlMJvfdxk2bNkU2my1yR9C1OXPwP1J4/yz1Hku9v4g0eqT9eJ/bMymcl1LvsdT7i9Bjeyj1/iL02F5KrUfvc3QX7f2/JrpFuH3ffffl1a15JEm/fv2aDLbrmzBhQtx2223xuc99Lnbu3BkREQ8++GB88YtfjNGjRxe85+66yiezbDbbZV4LpMCZo7tL4e9/qfdY6v1FpNEjHcP7XOul8PtV6j2Wen8RemwPpd5fhB7bSyn36H0OCldW7AY62ooVK2Lx4sW5etiwYXH88cd32H5HH310fOpTn8rV2Ww2/vjHP3bYfgAAAAAA3VGXD7fr/yDJM888s8N/6uw555yTVy9YsKBD9wMAAAAA6G66dLhdV1cXs2fPzrvWmkeStNW4ceOiZ8+eufqNN97o8D0BAAAAALqTLh1u//nPf441a9bk6qOOOioOOOCADt+3rKws7+HoGzZs6PA9AQAAAAC6ky4dbu/JD5LcU9u2bcv9uqKiotP2BQAAAADoDrpsuP3ee+/FnDlzcnWfPn3itNNO65S9N2zYEO+++26u3nfffTtlXwAAAACA7qLLhtt/+MMf8u6e/vjHPx79+vXrlL3nz5+fVx9yyCGdsi8AAAAAQHfRZcPte++9N68+++yzO2Xf2trauOOOO/KunXjiiZ2yNwAAAABAd9Elw+3XXnstnn322Vw9dOjQOP7441u9zpo1a2Ljxo0Fj6+rq4tvf/vb8eKLL+auDR48OE4//fRW7w0AAAAAQNO6ZLg9a9asvPrMM8+MTCbT6nVeeOGFOOmkk+KGG26IpUuXNjt22bJlMXXq1AZ7T58+Pfr27dvqvQEAAAAAaFp5sRtob9lsNmbPnp13bcqUKW1eb/PmzXHnnXfGnXfeGYMHD46xY8fGiBEjon///pHNZmP9+vXx/PPPR3V1dYO5F198cac9DgUAAAAAoDvpcuH2f/7nf8bq1atz9VFHHRUjR45sl7XXrl0b8+bNa3Fc796946qrrorzzz+/XfYFAAAAACBflwu377vvvrx6T+7aHjNmTHzmM5+JhQsXxsqVK6Ourq7Z8YMHD44pU6bEBRdcEEOGDGnzvgAAAAAANK/LhdvXX399XH/99e2y1ogRI+I73/lORERs2bIlXnrppVi1alWsW7cutmzZEplMJvr37x+DBg2Kww47LEaMGNEu+wIAAAAA0LwuF253lL59+0ZVVVVUVVUVuxUAAAAAgG6vrNgNAAAAAABAawm3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhOebEbAAAAKNRhH3q72C008MRc9wwBABSDf4UBAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQnPJiN5Cy1157LZYuXRo1NTVRV1cXlZWVMWrUqBg9enSxWwMAAAAA6NK6TLh90kknxerVq9s09+GHH46RI0cWPH7evHlx++23x3PPPdfox8eMGRPTpk2LM844o039AAAAAADQPI8laYVsNhvXXXddfOELX2gy2I6IqK6ujiuvvDKmT58eO3bs6MQOAQAAAAC6hy5z5/buMplMlJUVnttnMpmCxs2YMSPuvvvuvGtHHnlkHH744dGjR4+orq6OJ598MrLZbEREPPjgg9GjR4+48cYbC28eAIA2OXFiXbFbaOCJue4lAQCAjtIlw+2zzjorrr/++nZd8/HHH4877rgjV++9995x6623xgknnJA3bunSpfHlL385ampqIiJi9uzZcdRRR8V5553Xrv0AAAAAAHRnbiUpQDabjZtvvjlXZzKZuO222xoE2xERY8eOjbvuuisqKipy13784x/Htm3bOqVXAAAAAIDuQLhdgDlz5sTy5ctz9ZlnnhnHHHNMk+P/5m/+Ji6++OJcvXbt2vjtb3/boT0CAAAAAHQnwu0C/OlPf8qrL7jgghbnnHfeedGjR48m1wAAAAAAoO2E2y3YuXNnzJ8/P1fvv//+UVVV1eK8ysrKGD9+fK5+7rnnYv369R3RIgAAAABAtyPcbsHy5cvjnXfeydVHHHFEwXN3H7tr16549tln27U3AAAAAIDuSrjdghUrVuTVhx56aMFzx44dm1evXLmyXXoCAAAAAOjuyovdQEdYtmxZXHHFFbF06dJYt25dREQMHDgwhg8fHsccc0ycfPLJccghhxS0Vv1AeujQoQX3sf/++ze7FgAAAAAAbdMlw+2//vWv8de//jXv2nvvvRerVq2Kp556Kn70ox/FRz/60bj66qtj5MiRza61Zs2avHrIkCEF91F/bE1NTcFzAQAAAABoWpcMtwsxf/78+NSnPhU33XRTTJw4sclxW7Zsyav32muvgveoP7b+WoXIZDKtnlMqdu895dcBqXDm4H+kcAZKvcdS7y9Cj91NKf9elnJv79Pjniv1/iL02B5Kvb8IPbaXUuvR13PQNl0q3K6srIxJkybFhz/84RgzZkzsu+++0atXr9i4cWP89a9/jTlz5sS9994bO3bsiIiId999N/7hH/4hZs6cGR/60IcaXbN+IN2rV6+C+6moqGh2rUIMHDiw1XNK0YABA4rdAnQrzhyd6+1iN9BAw/dPPbZW4/8GKfUeS6u/iK7zbzmal+bfRT22Vqn3F6HH9lDq/UXosb2U8nu0r+egcF0m3L7uuuvimGOOifLyhi9p8ODBMXjw4PjoRz8aF198cVx66aWxfPnyiIjYvn17XHHFFfGnP/2p0eB6+/bteXVrwu36Y7dt21bwXAB432EfKq0vBpY8v2+xWwAAAICuE26fcMIJBY0bOXJk3HXXXXHOOefEG2+8ERERq1evjt/+9rdxwQUXNBhf/+7r9+/6LkT9sb179y547vs2btzY6jmlIpPJ5L7buGnTpshms0XuCLo2Z47OksJ7kx73XKn3F6HH7mb397lSk8Kfsx73XKn3F6HH9lDq/UXosb2UWo++nqO7aO//NdFlwu3W2HfffePrX/96TJ8+PXftD3/4Q6Phdt++ffPq1oTb9e/6rr9WIbrKJ7NsNttlXgukwJmjI6Xwd0uPe67U+4vQI6UjhT9nPe65Uu8vQo/todT7i9BjeynlHn09B4UrK3YDxXLqqadGv379cvVf/vKX2Lp1a4Nx9QPpzZs3F7xH/bFtCbcBAAAAAGio24bb5eXlcfjhh+fqnTt3xltvvdVgXGVlZV5dU1NT8B5vvvlmXj1kyJBWdgkAAAAAQGO6bbgd8d+PJ9ndhg0bGow56KCD8ur3n9NdiPpB+IEHHtiK7gAAAAAAaEq3DrfrP4ak/g+PjGgYbi9durTg9ZcsWZJXC7cBAAAAANpHtw63X3/99bx60KBBDcaMGjUq9t5771z9l7/8peD1n3vuudyve/ToEUceeWTrmwQAAAAAoIFuG26/+eab8eKLL+bqfffdN/bbb78G48rLy+OjH/1o3rznn3++xfXXrFmTN+6II45oNDwHAAAAAKD1um24fdttt0U2m83V/+t//a/IZDKNjj3ttNPy6l/+8pctrn/PPffErl27cvXkyZPb2CkAAAAAAPUlH27v2LEjVq5c2ao5//f//t/4zW9+k6szmUxceOGFTY6fNGlSjB49Olfff//9sWjRoibHv/zyy/HTn/40Vw8ePDjOPffcVvUIAAAAAEDTkg+3t23bFp/85Cdj+vTp8cQTT8TOnTubHLt27dr47ne/G9/61rfyrp911llx+OGHNzkvk8nE9OnTc3U2m42vfOUrsWDBggZjly5dGlOnTo3t27fnrl166aXRu3fv1rwsAAAAAACaUV7sBtrDrl274sEHH4wHH3ww+vXrF4ceemgceOCBMWDAgOjZs2e88847sWzZsvjLX/4StbW1eXOPPvrouOaaa1rc42Mf+1hccsklcccdd0RExDvvvBNTp06NI488MqqqqqKsrCyqq6vjySefzHvcyRlnnBHnnXde+75gAAAAAIBurkuE27t77733YtGiRc0+NuR9559/flx11VXRq1evgtaePn16bNu2LWbOnJm79uyzz8azzz7b6PhPfOITce211xbWOAAAAAAABUs+3O7du3d86Utfiv/8z/+MJUuWxI4dO5od37dv3zj55JPjwgsvbPZRJI0pKyuLq6++Oj7ykY/EbbfdFn/5y18aHTd69OiYNm1anHnmma1aHwAAAACAwiQfbvfq1SuuuOKKiIjYuXNnvPzyy/Haa69FTU1NbN68OXbu3Bn9+/ePvffeO0aNGhVjxoyJHj167NGeEyZMiAkTJsSrr74aS5Ysibfeeit27doVlZWVuT0AAAAAAOg4yYfbuysvL49Ro0bFqFGjOmW/kSNHxsiRIztlLwAAAAAA/kdZsRsAAAAAAIDWEm4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkJwu9QMlAaC1TpxYV+wWGnhiru89AwAAQEt89QwAAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkp7zYDQAAQHdx4sS6YrfQwBNz3e8CAECa/EsWAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOSUF7sBAAAAACimEyfWFbuFiHg796sn5rofFQrhpAAAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkpL3YDAHRdJ06sK3YLDTwx1/d1AQAAoCvwFT4AAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAySkvdgMdYePGjbF8+fJ49dVXY+PGjZHNZmPAgAExdOjQGD9+fPTv37/YLQIAAAAAsAe6RLhdV1cXTz/9dDzyyCPx1FNPxfLly5scm8lk4oQTToipU6fGhAkTClp/1apVMWnSpDb1VllZGfPnz2/TXAAAAAAAGtclwu3JkyfHq6++WtDYbDYbTz75ZDz55JNx+umnxzXXXBP9+vXr4A4BAAAAAGhPXSLcXr9+fYNrH/zgB6Oqqio+8IEPREVFRdTU1MSCBQuipqYmN+bBBx+Mt956K376059GRUVFwfuVlZVFJpMpaGx5eZf4LQYAAAAAKCldKnkdNmxYnHvuuTFlypQYMmRIg4/v2rUrfvOb38T3v//92L59e0RELFq0KP75n/85/vEf/7Hgfa677ro4++yz261vAAAAAABap0uE20OHDo3Pfe5zcdZZZ0WPHj2aHNejR484//zzY+jQofGlL30p6urqIiJi5syZMXXq1KisrOyslgEAAAAA2ANdItyeNWtWqx7/MWHChDj99NPj97//fURE1NbWxqOPPhqf+cxnOqpFAABIwokT64rdQp4n5pYVuwUAKLpSe3+O8B5NaegSfwvb8lzr008/Pa9+4YUX2qsdAAAAAAA6WJcIt9vigAMOyKvXrVtXpE4AAAAAAGitbhtub968Oa9uy93fAAAAAAAUR7cNt6urq/PqIUOGFKkTAAAAAABaq9verjx79uy8+vjjjy947kMPPRR/+MMfYsWKFbFhw4aoqKiIgQMHxqhRo+KYY46J0047Lfbbb7/2bhkAAAAAgP+nW4bbCxcujIULF+bq/v37x4knnljw/Llz5+bVW7dujY0bN8Yrr7wSjzzySNx0001xzjnnxNe//vXYa6+92qttAAAAAAD+n24Xbm/dujX+6Z/+Ke/a5z//+XYNoXfs2BG//OUv46mnnop//dd/jZEjR7Z5rUwm0259dbbde0/5dUAqnLnCpPB7U+o9lnp/EXpsD6XeX4Qe20up9/h+f6XcZyn39j497rlS7y9Cj+2h1PuL0GN7KfUeS72/iDR6pOvrduH2d7/73XjllVdy9YEHHhjTpk0raO6YMWPi5JNPjqOOOioOPvjgGDhwYGSz2Vi3bl08//zzcd9998X8+fNz41euXBmXXHJJ/PrXv4599tmnTf0OHDiwTfNKzYABA4rdAnQrpXPm3i52Aw00/Lyqx9Yq9f4i9NgeGv83SKn3WFr9ReixPaTw7+FS/z2M0GN7KPX+IvTYHkq9vwg9tpdS77HU+4tI4z2arq9bhds///nP4957783VvXr1ihtvvDEqKiqanTdw4MC455574ogjjmj048OHD4/hw4fH6aefHvPmzYsrr7wyNm3aFBERr776alx77bUxY8aM9nshAAAAAADdXLcJt//0pz/F9ddfn3ftmmuuiXHjxrU4t1+/fk0G2/VNmDAhbrvttvjc5z4XO3fujIiIBx98ML74xS/G6NGjW933xo0bWz2nVGQymdzdo5s2bYpsNlvkjqBrc+YKk8Ln1VLvsdT7i9Bjeyj1/iL02F5Kvcf3+9v9fa7UlPrvYYQe20Op9xehx/ZQ6v1F6LG9lHqPpd5fRBo9Unra+47/bhFuL1iwIK688sqoq6vLXfva174WU6ZM6ZD9jj766PjUpz4Vv/71ryMiIpvNxh//+Mc2hdtdJZzKZrNd5rVACpy5pqXw+1LqPZZ6fxF6bA+l3l+EHttLqfdY6v1F6LG9lHqPpd5fhB7bQ6n3F6HH9lLqPZZ6fxFp9EjXV1bsBjra4sWL4ytf+Urs2LEjd+3iiy+OL3zhCx267znnnJNXL1iwoEP3AwAAAADoTrp0uL18+fK45JJLYsuWLblr5557bnzjG9/o8L3HjRsXPXv2zNVvvPFGh+8JAAAAANBddNlw+7XXXouLLroo7/k/kydPjmuuuaZT9i8rK8t7hsyGDRs6ZV8AAAAAgO6gS4bba9asialTp8batWtz1yZMmBA33XRTlJV13kvetm1b7tcVFRWdti8AAAAAQFfX5cLt9evXx9SpU2P16tW5a8cee2zceuuteY8J6WgbNmyId999N1fvu+++nbY3AAAAAEBX16XC7ffeey+mTZsWK1euzF2rqqqK22+/PXr37t2pvcyfPz+vPuSQQzp1fwAAAACArqzLhNvbtm2LL33pS7FkyZLctdGjR8dPfvKT6NevX6f2UltbG3fccUfetRNPPLFTewAAAAAA6Mq6RLi9c+fOuOyyy2LRokW5ax/84AfjZz/7WQwYMGCP1l6zZk3eD6VsSV1dXXz729+OF198MXdt8ODBcfrpp+9RHwAAAAAA/I/kw+1sNhtXXXVVzJ07N3dt2LBhcdddd8UHPvCBPV7/hRdeiJNOOiluuOGGWLp0abNjly1bFlOnTo1Zs2blXZ8+fXr07dt3j3sBAAAAAOC/lRe7gT31xhtvxO9///sG1yZNmtSqdYYNGxaPPPJIox/bvHlz3HnnnXHnnXfG4MGDY+zYsTFixIjo379/ZLPZWL9+fTz//PNRXV3dYO7FF18cZ599dqt6AQAAAACgecmH29lsttFru3btatU6hY5fu3ZtzJs3r8VxvXv3jquuuirOP//8VvUBAAAAAEDLkg+3O9qYMWPiM5/5TCxcuDBWrlwZdXV1zY4fPHhwTJkyJS644IIYMmRIJ3UJAAAAANC9JB9uDx8+vNHHgbSXESNGxHe+852IiNiyZUu89NJLsWrVqli3bl1s2bIlMplM9O/fPwYNGhSHHXZYjBgxosN6AQAAAADgvyUfbnemvn37RlVVVVRVVRW7FQAAAACAbq2s2A0AAAAAAEBrCbcBAAAAAEiOcBsAAAAAgOR45jZAok6cWNfI1bc7vY/dPTHX90wBAACAziGFAAAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnlxW4AoFSdOLGu2C3keWKu70cCAAAAvE9SAgAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHLKi90A0D2dOLGu2C008MRc3+8DAACAtvB1PsXgTxgAAAAAgOQItwEAAAAASI5wGwAAAACA5HjmNgAAAADQ5ZXac8E9E3zP+R0EAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnlxW4gZRs3boxnn302ampq4r333ov99tsvhg8fHkcccUT06NGj2O0BAAAAAHRZwu02ePnll2PGjBkxd+7cqK2tbfDxwYMHx9/93d/FF7/4xejVq1cROgQAAAAA6No8lqSV7r///jj77P+/vTuPiuq8/zj+GRWwCIqIYtxCwXqiTbVuUYwnGI2NcYnSRGziScRUxSXRekiV+hPEJdFatUnU2ho9ZmlSDce16tG60lODK0ltglXBhaMWEBEXEFCY3x8eb72IMmMH7gy8X3/N93Kf8RMTMvd+57nP83Pt2rWrwsa2JF2+fFnLli3TiBEjdOHChWpOCAAAAAAAAAA1HzO3nZCcnKy4uDiVlZUZx0JCQtSjRw8FBAQoMzNT+/btU1FRkSQpLS1NMTExWrdunfz8/KyKDQAAAAAAAAA1Ds1tB+Xk5Gjq1KlGY9tms2n69OkaNWqU6tT57wT4vLw8TZkyRYcPH5YkpaenKyEhQUuWLLEkNwAAAAAAAADURCxL4qAVK1aooKDAqN955x2NHj3a1NiWpMDAQK1atUphYWHGse3btystLa3asgIAAAAAAABATUdz2wG5ublKSkoy6jZt2mjcuHEPPd/Hx0fx8fFGbbfbtWLFiirNCAAAAAAAAAC1Cc1tB+zZs8e0eWRUVJS8vLweOSY8PFyhoaFGnZycrMLCwirLCAAAAAAAAAC1Cc1tB+zdu9dUDxgwwKFxL774ovG6uLhYBw4ccGkuAAAAAAAAAKitaG474NixY8broKAgtW7d2qFxnTt3NtVHjhxxaS4AAAAAAAAAqK1oblciOztbN27cMOr27ds7PLZDhw6mOiMjw2W5AAAAAAAAAKA2q2d1AHd35swZU92iRQuHxwYFBcnLy8tYr/vs2bMuzVZT9e5TZnWEB/xjv/l7IHfLWD4fAAAAAAAAUNPREatEdna2qW7evLnDY202m4KDgx/6XgAAAAAAAACAx8PM7UoUFhaaal9fX6fGN2jQwHh9584dFRcXy8fHx+HxNpvNqT/Pndyf3ZP/OST3z+/u+TyFu/89uns+iYyu4u4Z3T2fREZXcPd8Ehldxd0z3svnzjndOds9ZPzfuXs+iYyu4O75JDK6irtndPd8Ehldwd3zeQKa25Uo39x2pjFd0fkFBQVOvUdAQIBTf567atSokRNnX6myHI/rwX8P7pXRM/87ca+/Q8kT/z27Vz6JjK7i7hndPZ9ERleo+LPF3TO6Vz6JjK7gCdc57v53KJHRFdw9n0RGV3D3fBIZXcXdM7p7PomMruAJ1znuzma32+1Wh3Bny5cv10cffWTU7733nl599VWHx48cOVJHjx416v379+uJJ55waUYAAAAAAAAAqG1Yc7sS5WdZ39sc0lElJSWPfD8AAAAAAAAAgPNoblei/BrbxcXFTo0vf/79a3ADAAAAAAAAAB4Pze1KlG9uFxQUODX+/vPr1avHzG0AAAAAAAAAcAGa25UIDg421dnZ2Q6PtdvtpvPLvxcAAAAAAAAA4PHQ3K5EWFiYqb548aLDY3Nzc01rdIeGhrosFwAAAAAAAADUZjS3K9GsWTP5+/sb9YkTJxwem5aWZqppbgMAAAAAAACAa9DcdkDXrl2N11euXFFmZqZD41JTU0119+7dXZoLAAAAAAAAAGormtsO6Nevn6nesWOHQ+N27txpvPbx8dGzzz7r0lwAAAAAAAAAUFvR3HZA37595eXlZdRJSUmmtbQrkpKSorNnzxp1RESEfH19qywjAAAAAAAAANQm9awO4AmCgoIUFRWlL774QpKUmZmplStXatKkSRWeX1xcrHnz5hm1zWbThAkTqiVrTVJaWqq0tDSdPn1aubm5Ki0tVYMGDdSiRQv96Ec/0pNPPml1RAAAHGa325WZmanTp08rKytLN2/elI+PjwICAtSuXTs99dRTqlu3rtUxAbeUn5+v1NRU43enWbNmatWqlTp37szvDeBi+fn5OnXqlM6fP6/8/HzZ7XY1atRILVq00E9/+lPTnlQAAFiN5raDYmJitGnTJhUUFEiSli5dKl9fX40aNUp16vx3AnxeXp6mTJmi9PR049jAgQPVoUOHas/sqfLy8vTxxx9rw4YNys/Pf+h5jRs3Vu/evTVz5kwFBARUWz6gprt586YGDRqkrKws0/HPPvtMPXr0sCgV4Jlu3Lih3bt3a//+/Tp06JCuXr360HP9/PwUGRmp6OhotWrVqhpTAu7r7NmzWrx4sfbv31/hk5NNmzbViBEjFBMTI29vbwsSAp6vrKxMR48e1a5du3Tw4EGdOnXqoefabDaFh4crOjpaERER1ZgSqH3mzZunzz//3HQsMjJSCxYssCgR4J5sdrvdbnUIT7F//35NmDBBZWVlxrGQkBD17NlTAQEBOn/+vPbt26eioiLj523bttW6devk5+dnRWSPs337diUkJOjGjRtOjQkLC6vCVEDtkpiYqL/85S8PHKe5DTjn4MGDGjNmTKVLmZXn6+urmTNn6pVXXqmiZIBn2Lx5sxITE1VYWFjpuR06dNDSpUv5Ygh4DD/72c90/vx5p8cNGjRIc+bM4V4XqALffvutXnvtNVP/SaK5DVSEmdtO6NOnj+bPn6/ExETdunVLknTu3DmdO3euwvPbt2+vZcuW8WHvoNWrV2vhwoWmY76+vgoPD1fLli3l7++v69evKyMjQ8ePH9fNmzctSgrUXKmpqVq7dq3VMYAa4ebNmw80tr29vdWpUyeFhoYqMDBQJSUlOn36tA4dOqTi4mJJUmFhoWbMmKGioiKNHDnSiuiA5ZKTkxUXF/fApJIePXooICBAmZmZpkklaWlpiomJYVIJ8Bjy8vIeOBYSEqKOHTsqKChIPj4+ysrKUkpKiunJvm3btiknJ0erV6+Wj49PdUYGarTbt28rPj7+gcY2gIrR3HbSsGHD1LFjRy1evFjJyckPfTwyKipK48eP5/FIB23dutXU2Pb19dXkyZP1+uuvV3ihVFJSogMHDujPf/6zbDZbdUYFaqySkhLFx8fr3gM9TZs21eXLly1OBXi+e49wjxgxQs8//3yFn2uXL1/W3LlztXPnTuPYvHnz1LVrVz311FPVGRewXE5OjqZOnWrc1NtsNk2fPv2hywEePnxYkpSenq6EhAQtWbLEktyAp2vZsqWGDx+uyMhINW/e/IGfl5aW6quvvtL8+fONL2SPHDmiDz74QNOnT6/uuECNtXLlSmN5IO7JgMqxLMn/4OrVq8bGNgUFBQoKClLr1q3VpUsXNrZxwpUrV/TSSy/p2rVrku6uOfrpp5/q6aeftjgZULssXbpUy5YtkyQ999xzatKkiTZu3Gj8nGVJAOfs3r1b69atU2xsrMMN6tjYWG3dutWoIyIitHLlyqqKCLil2bNn68svvzTqyZMnP3Ij98jISGVkZEi62wjfsGED+90ATnj55Zc1atQoDRs2zKH72OTkZI0fP974AsrLy0t79uxRcHBwVUcFarwzZ85o6NChKikp0Q9+8AMlJCToN7/5jfFzliUBHlSn8lPwMI0bN1a/fv00cuRIjRs3Tj//+c/VvXt3GttOmj9/vtHYlqQFCxbQ2AaqWXp6uv70pz9JkurXr6+EhASLEwGer0+fPvr444+dmnkdHx+vBg0aGPXXX3/t1D4UgKfLzc1VUlKSUbdp00bjxo176Pk+Pj6Kj483arvdrhUrVlRpRqCm2bBhg1555RWH72MjIiI0aNAgo759+7b27NlTVfGAWsNutys+Pl4lJSWSpIkTJ6ply5YWpwLcH81tWOrSpUvatm2bUffq1Uv9+/e3MBFQ+9jtds2cOdNYZmnSpElq3bq1xakAz1evnvOrvwUEBKh3795Gffv2bZ04ccKVsQC3tmfPHtOyf1FRUfLy8nrkmPDwcIWGhhp1cnKyQ5tQArjrcT6v7m9uS9K//vUvV8UBaq21a9fq6NGjkqR27dpp9OjRFicCPAPNbVhq/fr1pk0S2DgLqH5ffvmlvvnmG0lcRAHuoE2bNqY6NzfXoiRA9du7d6+pHjBggEPjXnzxReN1cXGxDhw44NJcAMz4rAJcKzs7W4sXL5Z0d4mt2bNnV/rlLoC7aG7DUvevK+rv76/nnnvOwjRA7ZOVlWW6iEpMTOQiCrBYQUGBqeZ3ErXJsWPHjNf39rNxROfOnU31kSNHXJoLgFn5z6rHmf0N4L/mzp1rLEUXFRWlLl26WJwI8Bw0t2GZa9eu6dy5c0bdqVMneXt7WxcIqIUSExONm5Phw4era9euFicCcPLkSVPNBl2oLbKzs01rzLdv397hseU3kLy3wSSAqlH+s6p58+YWJQE839/+9jft2rVLktSkSRPFxsZanAjwLHy9Cst89913pvreJpJ2u11///vftWXLFqWlpSkrK0ve3t5q0qSJOnXqpD59+qh///6qU4fvZoD/xfbt27Vv3z5JUmBgoN59912LEwG4cOGCUlNTjbphw4YPNO2AmurMmTOmukWLFg6PDQoKkpeXl7Fe99mzZ12aDYDZli1bTHXPnj0tSgJ4ths3bmju3LlGHRcXp0aNGlmYCPA8NLdhmfT0dFPdunVrXbx4UXFxcTp8+LDpZ4WFhcrPz1dGRoY2bNigsLAwzZkzR926davOyECNce3aNb333ntGzUUU4B6WL18uu91u1P379+dRb9Qa2dnZptqZmaA2m03BwcG6cOFChe8FwHUOHz5sul/z9/c3bYYMwHELFy5UTk6OJKlXr156+eWXLU4EeB6mvsIy165dM9V37tzRL37xiwca2xXJyMhQdHS0tm3bVlXxgBrtt7/9rbHxT3h4uIYOHWpxIgBff/21Nm7caNReXl6KiYmxMBFQvQoLC021r6+vU+MbNGhgvL5z546Ki4tdkgvAf926dUvx8fGmY6NHjzb9/gFwzJEjR5SUlCRJ8vb21qxZsyxOBHgmpgLBMtevXzfVixYtMtZZDA0N1fjx49WzZ081btxY+fn5OnTokP74xz8aM75v376tuLg4hYSE6Mc//nG15wc81cGDB7V+/XpJdy+iEhMTrQ0EQDk5OZo2bZpp1nZMTIyefPJJC1MB1at8c9vHx8ep8eXPLygocPo9ADza7NmzTfsmhYaGasyYMdYFAjxUSUmJ4uPjjWu/8ePHKyQkxNpQgIdi5jYsU/4G5l5jOyIiQps3b9bQoUMVHBwsb29vNWvWTEOGDNHGjRv1/PPPG2PufSAAcExxcbESEhKMOiYmhosowGLFxcWaPHmyLl++bBzr3Lmzxo8fb2EqoPqVn2nt5eXl1PjyG5MzcxtwrU8//dT0hJG3t7d+97vf8SUS8BiWL19u7A/xwx/+UGPHjrU4EeC5mLkN9e3bVxcvXqyy94+NjdW4ceMeOF7RRVBwcLAWL178wM3JPd7e3lq0aJEGDx6s//znP5Kk77//XikpKQoPD3dtcKCKWPU7J0lLly7V+fPnJd29iHrYeUBNYuXvXGVKS0sVGxurb775xjj2xBNP6MMPP3S6sQd4uvLXhvc2h3RUSUnJI98PwOPbsWOHFixYYDo2Z84cPf300xYlAjzXyZMntXr1aqOePXv2Q3sgACrHzG1YpqJ1FN944w35+/s/cpyfn5+io6NNx/bu3evKaECN9O9//1tr1qwx6sTERC6iAIvNmjVLu3btMuqAgACtWrVKwcHBFqYCrFH+2tDZmdflz2cNYMA1UlJS9Otf/1plZWXGsdjYWEVGRlqYCvBMZWVlio+PN77AjYyMVI8ePSxOBXg2mtuwTEU3HH379nVobPnzjh075pJMQE1VWlqq//u//9OdO3ck3b2I6tmzp8WpgNpt4cKFxiZC0t3G3sqVK9W2bVsLUwHWKd/cLigocGr8/efXq1ePmduACxw/flwTJ040PRnxy1/+kqf/gMf0+eef65///Keku5Mapk2bZnEiwPOxLAn04YcfVumahK1atarwePPmzU11vXr1FBoa6tB7tmnTRvXr11dRUZGkuxtxAZ7Cit+5rVu36rvvvpPERRRqH6s+5x5lxYoVpsdRvb29tXz5cnXq1MmV0QCPUv6JhezsbIfH2u120/k8/QD8706dOqWxY8ea9koaPnw415HAYyoqKtIHH3xg1NOmTVNgYKB1gYAaguY29JOf/MSSP7f8zDQ/Pz/ZbDaHxzds2NBobufn57syGlClrPidu3r1qvH62rVr6t27d6Vj7n/0VJKio6NNv6OffPKJnnnmGdeFBKqIVZ9zD/PFF1+Ybmzq1q2r3//+9+rVq5d1oQA3EBYWZqqdWSs/NzfXtEa3oxMmAFQsMzNTb731luk+a8CAAZozZ451oQAPV1JSYvqyKD4+XvHx8Y8cY7fbTfWmTZu0ZcsWox42bJjef/991wYFPAzNbVgmLCxMNpvN+J91+U2AKnP/+Tx2CjjObrertLTU6XHlm93lL7QAVG7z5s2aO3euUdtsNr3//vt64YUXLEwFuIdmzZrJ399fN27ckCSdOHHC4bFpaWmmmuY28Piys7MVHR2ty5cvG8ciIiK0aNEi1anDyqaAqzzOPVn5e7ny92hAbcQnEyzToEEDdejQwagLCwuNm5nK3Lp1S9evXzdqHuUBALi73bt3a8aMGaYvhhISEjRs2DDrQgFupmvXrsbrK1euKDMz06Fxqampprp79+4uzQXUFnl5eYqOjjY9OfHMM8/oo48+kpeXl4XJAACoGDO3Yan+/fvr+++/N+rU1FRFRERUOu7bb781fUPZvn37KskH1BTR0dGKjo52akxcXJw2btxo1J999hk7eQOPKSUlRVOnTjU2dZWk2NhYvf766xamAtxPv379tH//fqPesWOHQxvX7dy503jt4+OjZ599tiriATXazZs3NWbMGJ05c8Y41rFjR61YsUL169e3MBlQMzRs2FAnT550asyhQ4f05ptvGnVkZKQWLFjg6miAR2PmNiz10ksvmR5tW79+vUPjkpKSTDU3MAAAd3X8+HFNnDjRtJzWhAkTHGrYAbVN3759TbNDk5KSTGtpVyQlJUVnz5416oiICPn6+lZZRqAmKioq0vjx400Tj9q1a6dVq1bJz8/PwmQAADwazW1YKiQkREOGDDHqnTt3Kjk5+ZFj/vGPf2j79u1GHRAQoMGDB1dZRgAAHtfp06c1duxY0+ZBb775pn71q19ZFwpwY0FBQYqKijLqzMxMrVy58qHnFxcXa968eUZts9k0YcKEKs0I1DR37tzRlClTdOTIEeNYSEiI1qxZo0aNGlmYDACAytHchuUmT55sml0zZcoU/fWvf63w3O3bt+udd94xrVf69ttvq0GDBlWeEwAAZ1y4cEFvvfWW8vPzjWOvvvqqZsyYYV0owAPExMSYru2WLl2qNWvWPLBpVl5ensaMGaP09HTj2MCBA017ugB4NLvdrri4ONNyQC1bttQnn3yioKAg64IBAOAg1tyG5Vq1aqXFixdr0qRJKisr061bt/Tuu+/qD3/4g3r06KHAwEDl5+fr4MGDysjIMI0dOHCg3njjDYuSAwDwcJs2bVJOTo7p2MaNG01r2Tti4sSJevvtt10ZDXBrwcHBWrJkiSZMmKCysjLZ7XYtWLBAa9euVc+ePRUQEKDz589r3759KioqMsa1bdtWc+bMsTA54HkuXbr0wMSiS5cuqV+/fk69T8uWLbVr1y5XRgMAwCE0t+EW+vbtq4ULF2rWrFkqKCiQJJ05c8a0mUl5r732mmbOnFldEQEAcMr9TxndU1pa6pL3AWq6Pn36aP78+UpMTNStW7ckSefOndO5c+cqPL99+/ZatmwZawMDTqroM8Zutzv9efU4n28AALgCy5LAbQwZMkSbN2/W4MGDH7obt81mU7du3bRmzRolJiaqXj2+nwEAAKiJhg0bpg0bNuiFF14wbTJ5v6ZNm2rSpEn66quv1KpVq2pOCAAAAKvZ7EwHghu6efOmjh07pqysLF29elV+fn5q1qyZunXrpsDAQKvjAQAAoBpdvXpVqampysrKUkFBgYKCgtS6dWt16dJFdevWtToeAAAALEJzGwAAAAAAAADgcViWBAAAAAAAAADgcWhuAwAAAAAAAAA8Ds1tAAAAAAAAAIDHobkNAAAAAAAAAPA4NLcBAAAAAAAAAB6H5jYAAAAAAAAAwOPQ3AYAAAAAAAAAeBya2wAAAAAAAAAAj0NzGwAAAAAAAADgcWhuAwAAAAAAAAA8Ds1tAAAAAAAAAIDHobkNAAAAAAAAAPA4NLcBAAAAAAAAAB6H5jYAAAAAAAAAwOPQ3AYAAAAAAAAAeBya2wAAAAAAAAAAj0NzGwAAAAAAAADgcWhuAwAAAAAAAAA8Ds1tAAAAAAAAAIDHobkNAAAAAAAAAPA4NLcBAAAAAAAAAB6H5jYAAAAAAAAAwOPQ3AYAAAAAAAAAeBya2wAAAAAAAAAAj0NzGwAAAAAAAADgcWhuAwAAAAAAAAA8zv8D2esMFpcGicAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 491, + "width": 731 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(pm.draw(y, draws=2000, random_seed=rng), bins=30, rwidth=0.9);" + ] + }, + { + "cell_type": "markdown", + "id": "2e1b1cab-56ce-4ddd-95d3-6454c8d0aae0", + "metadata": {}, + "source": [ + "The other way is where we use the built-in `NormalMixture` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with `pmx.MarginalModel` instead of `pm.Model`. This different class is what will allow us to marginalize out variables later." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "27852bef-f23b-4151-bc41-1af26f934e61", + "metadata": {}, + "outputs": [], + "source": [ + "with pm.Model() as prebuilt_mixture:\n", + " y = pm.NormalMixture(\"y\", w=[0.3, 0.7], mu=[-2, 2])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "e318f820-9a2c-4b7d-bdfd-34cb1a9eecff", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAB1qklEQVR4nOzdfZyVdZ0//vcZBgYQBDEc5EZaFVDECe+1LwWJKWarYrqra2uk2N3DVqVsrZ9bj/xqaYpu1up+1zKTtmzri0ZaqajAmrjgTeJCgIJ3oIMgNyq3A3N+f/T1LGduz8ycmTmfmefzL97X+dy8B7jOxbzm4jqZbDabDQAAAAAASEhZZzcAAAAAAAAtJdwGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSU97ZDdC0TZs2tXpuJpOJgQMHRkTE5s2bI5vNFqkroC2cm1CanJtQepyXUJqcm1B6nJekYr/99ivqeu7cBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnlnd0AAAAAUHwTJtW24+pvt2rWE/PcYwdA8biqAAAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJCc8o7ecPPmzbFy5cp49dVXY/PmzZHNZmPAgAExdOjQGD9+fPTv378o+7z22muxbNmyqK6ujtra2qisrIxRo0bF6NGji7J+RMSSJUvilVdeiXXr1kWfPn2isrIyqqqqorKysmh7AAAAAABQX7uH27W1tfH000/HI488Ek899VSsXLmy0bGZTCZOOumkmDZtWkycOLFV+82fPz/uuOOOeO655xp8fcyYMTF9+vQ488wzW7V+bW1tzJo1K2bNmhWvv/56vdfLysripJNOiiuuuCKqqqpatQcAAAAAAE3LZLPZbHtucOqpp8arr77a4nlnnHFGXHvttdGvX7+Cxmez2fjOd74T99xzT8Hr33DDDdGrV6+Ce9q0aVNcccUV8dRTTzU7tmfPnjFjxoy4+OKLC16/sT1bK5PJxMCBAyMicnfJA53PuQmlybkJpcd5CW0zYVJtZ7dQzxPzPB0V2oNrJqnYb7/9irpeu9+5vXHjxnrHPvjBD0ZVVVV84AMfiIqKiqiuro6FCxdGdXV1bsyDDz4Yb731Vvz4xz+OioqKZveZOXNmvWD76KOPjiOPPDJ69OgRK1asiCeffDJ3cj/44IPRo0ePuOmmmwr6OmpqauLLX/5yLF68OHesvLw8Jk6cGIccckhs3bo1nn766VixYkVu/I033hj9+/eP8847r6A9AAAAAAAoTIc9c3vYsGFx3nnnxdSpU2PIkCH1Xt+zZ0/8x3/8R3z3u9+NnTt3RkTE4sWL45//+Z/jH//xH5tc+/HHH48777wzV++7775x2223xUknnZQ3btmyZfHFL34xF6LPmTMnjjnmmDj//POb7f+WW27JC7ZHjx4dd9xxRwwfPjxv3Jw5c+Ib3/hG1NTURETEt7/97aiqqooxY8Y0uwcAAAAAAIVp9/8PNHTo0PjOd74TjzzySHzxi19sMNiOiOjRo0dccMEF8YMf/CDKyv6nrVmzZsW6desaXT+bzcYtt9ySqzOZTNx+++31gu2IiLFjx8bdd9+ddyf4D3/4w9ixY0eTX0N1dXX87Gc/y9X7779/3HPPPfWC7YiIM888M6677rpcXVNTE9///vebXB8AAAAAgJZp93B79uzZ8alPfSp69OhR0PiJEyfGGWeckatramri0UcfbXT83Llz8z6k8qyzzorjjjuu0fF/9Vd/FZdcckmuXr9+ffzqV79qsqcf/ehHsWvXrlz9la98pcnnw5x99tl5PTz66KOxfPnyJvcAAAAAAKBw7R5ul5e3/Mkne4fbEREvvPBCo2P/8Ic/5NUXXnhhs+uff/75eWF73TX2ls1m4+GHH87VAwYMiE9+8pPN7nHBBRfk1Q899FCzcwAAAAAAKExJfkzxQQcdlFdv2LChwXG7d++OBQsW5OoDDzwwqqqqml2/srIyxo8fn6ufe+65Bj/4MiLiv//7v/MeizJp0qSCPuBy8uTJ0bNnz1zd1N3nAAAAAAC0TEmG21u3bs2rG7v7e+XKlfHOO+/k6qOOOqrgPfYeu2fPnnj22WcbHPfMM880Oq8pvXv3jsMPPzxXr1ixIq9XAAAAAABaryTD7RUrVuTVjX0I5apVq/LqvcPk5owdOzavXr16dUF71J3XlLr9NLYHAAAAAAAtU5Lh9pw5c/LqE088scFxdcPioUOHFrzHgQce2ORajR2vO68pdfsRbgMAAAAAFEfJhduLFi2KRYsW5er+/fvHhAkTGhy797OwIxq/w7shdcdWV1c3u0d5eXkMHjy46HsAAAAAANAyDT/MupNs3749/umf/inv2Gc/+9nYZ599Ghy/bdu2vLqxcQ2pO7buWg0d79OnT2QymaLv0ZSW7NfU3LasAxSXcxNKk3MTSo/zEroe5zK0D9dMuquSCre//e1vxyuvvJKrDz744Jg+fXqj4+uGxb169Sp4r4qKiibXauh43TnNqdtPa8LtgQMHtnhOQwYMGFCUdYDicm5CaXJuQulxXkJrvN3ZDdRTrO9xgca5ZtKdlMxjSX7605/Gfffdl6t79eoVN910U5OB8s6dO/PqloTbdcfu2LGj2T169uxZ8Pot2QMAAAAAgJYpiTu3//CHP8QNN9yQd+zaa6+NcePGNTmvbvC9a9eugvesO7Z3796N7rF9+/aIiKipqSl4/Zbs0ZTNmze3eM77MplM7qd1W7ZsiWw22+q1gOJxbkJpcm5C6XFeQtfTlu9xgca5ZpKKYv8Pnk4PtxcuXBhXXXVV1NbW5o595StfialTpzY7t2/fvnl1S8Ltund9111r7+Pvh9t15zSnbj+N7dGUYr0ZZbNZb2xQgpybUJqcm1B6nJfQNTiPof25ZtKddOpjSZYsWRJf+tKX8kLgSy65JD73uc8VNL9uWLx169aC9647tqlw+33bt2/PC+GLtQcAAAAAAC3TaeH2ypUr49JLL837kMXzzjsvvva1rxW8RmVlZV5dXV1d8Nw333wzrx4yZEize+zevTs2bNhQ9D0AAAAAAGiZTgm3X3vttbj44ovznrU1ZcqUuPbaa1u0ziGHHJJXv/HGGwXPrRuEH3zwwUXfo264XXctAAAAAABap8PD7XXr1sW0adNi/fr1uWMTJ06Mm2++OcrKWtZO3bB42bJlBc9dunRpXt1YuF33eEv2qDu2sT0AAAAAAGiZDg23N27cGNOmTYu1a9fmjh1//PFx2223Rc+ePVu83qhRo2LffffN1X/6058Knvvcc8/lft2jR484+uijGxx3zDHHNDqvKTt27Ijly5fn6jFjxkT//v0L7g8AAAAAgMZ1WLj93nvvxfTp02P16tW5Y1VVVXHHHXdE7969W7VmeXl5fPSjH83Vb775Zjz//PPNzlu3bl3euKOOOioGDRrU4Nhx48blPXd73rx5sXPnzmb3mDt3btTU1OTqyZMnNzsHAAAAAIDCdEi4vWPHjvjCF76Q9yiQ0aNHx49+9KPo169fm9Y+/fTT8+qf//znzc659957Y8+ePbl6ypQpjY7NZDJx2mmn5ep33nknHnjggYL22NveawAAAAAA0DbtHm7v3r07Lr/88li8eHHu2Ac/+MH4yU9+EgMGDGjz+pMnT47Ro0fn6t/85jd5e9X18ssvx49//ONcPXjw4DjvvPOa3OOSSy6JXr165eqZM2fGpk2bGh1///335/UwefLkOOyww5rcAwAAAACAwrVruJ3NZuPqq6+OefPm5Y4NGzYs7r777vjABz5QlD0ymUzMmDEjb88vfelLsXDhwnpjly1bFtOmTct7rMhll13W7GNRhgwZEp/+9Kdz9dtvvx0XXXRRrFmzpt7YOXPmxDXXXJOre/bsGZdffnmLviYAAAAAAJqWyWaz2fZafO3atXHyySfnb5jJRFlZyzL1YcOGxSOPPNLkmJtvvjnuvPPOvGNHH310VFVVRVlZWaxYsSKefPLJ2PvLPfPMM+Omm24qqIddu3bFZz/72Xj66adzx3r27BkTJ06Mgw8+OLZt2xaLFy+OFStW5M277rrrmr0zvClN3SHenEwmEwMHDoyIiM2bN0c7/lEDLeDchNLk3ITS47yEtpkwqbazW6jniXkd9tFf0K24ZpKK/fbbr6jrlRd1tToaOpGy2Wze864LUcj4GTNmxI4dO2LWrFm5Y88++2w8++yzDY7/xCc+Edddd13BPfTq1St+8IMfxOWXXx6LFi2KiIiampqYO3dug+PLy8vjyiuvbFOwDQAAAABAw7rMj0zLysrimmuuiX/7t3+L8ePHNzpu9OjR8b3vfS9uvfXWqKioaNEegwYNip/+9Kfx9a9/PUaMGNFoHx/+8IfjF7/4RUyfPr1F6wMAAAAAUJh2fSxJZ3r11Vdj6dKl8dZbb8WePXuisrIyRo0aFWPGjCnK+tlsNl544YV4+eWX46233orevXtHZWVlfOhDH4rKysqi7BHhsSTQFTk3oTQ5N6H0OC+hbTyWBLoP10xSkdRjSTrTyJEjY+TIke22fiaTiaqqqqiqqmq3PQAAAAAAaJgfmQIAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJCc8s5uAAAAAOieJkyq7ewW8jwxzz2AACnxrg0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkp7yzGwAAAIDUTJhU29kt1PPEPPevAdC9uPIBAAAAAJAc4TYAAAAAAMkRbgMAAAAAkJwOe+b21q1bY9myZbFkyZJYsmRJvPDCC7F27drc68OGDYvHHnusRWuOGTOmKL3dc889ccIJJzT42uzZs+PrX/96q9b967/+67j55pvb0hoAAAAAAA1o93D7Jz/5ScyePTteeumlqK0tvQ/ciIjo27dvZ7cAAAAAAEALtHu4vXjx4li5cmW7rN2jR48Wz8lms3kh+7Bhw2LcuHHtsmdr+gMAAAAAoHkd9liSvfXt2zeOOOKIWLp0aWzbtq3V6yxbtqzFc6677rqYNWtWrj777LMjk8kUPP/hhx+O4cOHt3hfAAAAAACKp93D7YqKiqiqqoojjzwyxo0bF0ceeWQccsghUVZWFieffHKbwu2WqqmpiQceeCBXZzKZmDp1aoftDwAAAABAcbR7uH3rrbe29xYFmz9/fmzatClXH3vssTFixIhO7AgAAAAAgNYo6+wGOtJ9992XV7trGwAAAAAgTd0m3N64cWPMnz8/V/fp0yemTJnSiR0BAAAAANBa3SbcfuCBB6KmpiZXn3rqqbHPPvt0YkcAAAAAALRWtwm377///rzaI0kAAAAAANLV7h8oWQpWrlwZS5cuzdXDhg2LE088sVVr3XHHHbFq1apYs2ZNvPvuu9G/f//Yb7/9Yty4cXHCCSfElClTonfv3sVqHQAAAACABnSLcLvuB0meddZZkclkWrXWr3/967x6x44dsX79+li5cmXMnj07vve978XnP//5uOiii1q9x97assbec4vRC1Aczk0oTc5NKD3OS2iZFM6TUu+x1PuDxrhm0l11+XB7z5498dvf/jbvWHs+kuTtt9+O73znO7Fw4cK49dZbo0+fPm1ab+DAgUXpa8CAAUVZBygu5yaUJucmlB7nJaXn7c5uoJ763z/qsaWK9T04dCbXTLqTLh9u/+d//mesX78+Vx977LFx0EEHtWiNsrKyOPHEE2PSpElRVVUVI0eOjP79+8fOnTujuro6Fi1aFL/4xS9i5cqVuTmPP/54fO1rX4vbbrvNT8wAAAAAAIqsy4fbdR9J0tK7tsePHx+PPPJIDB8+vN5rPXv2jEMPPTQOPfTQuOCCC+LOO++MW265JbLZbEREPPzww/GrX/0q/uZv/qbV/W/evLnVczOZTO6ndVu2bMn1BXQu5yaUJucmlB7nJbRMW75/7Cil3mOp9weNcc0kFcX+HzJdOtx+55134rHHHsvVffr0iSlTprRojYMPPrigcZlMJj73uc9FRMTMmTNzx//lX/4lzj777OjVq1eL9n1fsd6MstmsNzYoQc5NKE3OTSg9zktoXgrnSKn3WOr9QSFcM+lOyjq7gfb0wAMPxK5du3L1qaeeGv369WvXPadPnx6HHnporq6uro5nnnmmXfcEAAAAAOhuunS4ff/99+fV7flBku8rKyurt89TTz3V7vsCAAAAAHQnXTbcXr16dTz//PO5eujQoXHiiSd2yN7jx4/Pq9euXdsh+wIAAAAAdBddNtyu+0GSZ511VmQymQ7Ze//998+rN23a1CH7AgAAAAB0F10y3K6trY05c+bkHeuIR5K8b8eOHXl1RUVFh+0NAAAAANAddMlwe+HChVFdXZ2rjznmmBg5cmSH7f/666/n1XXv5AYAAAAAoG26ZLg9e/bsvLoj79qOiJg/f35efdhhh3Xo/gAAAAAAXV2XC7ffe++9mDt3bq7u06dPnH766R22/+uvv17vkSgf+chHOmx/AAAAAIDuoMuF27///e/znnn98Y9/PPr169eqtVatWhU1NTUFj9+yZUtcdtllsWvXrtyxj33sY3HQQQe1an8AAAAAABrW5cLt++67L68+55xzWr3WvffeG6eddlrcddddec/wriubzcZjjz0WU6dOjeXLl+eO9+nTJ7761a+2en8AAAAAABpW3t4brF27Nj7+8Y83+NqePXvyxo0dO7bBcXfffXccf/zxze71+uuvxzPPPJOrhw4dGieeeGILO863du3auPHGG+N73/tejBw5Mg4//PA44IADol+/frFr1654880345lnnok333wzb16PHj3illtuiUMPPbRN+wMAAAAAUF+7h9vZbDYvxG5KY+Oy2WxB8+vetX3WWWdFJpMpaG5zstlsvPLKK/HKK680O3bo0KFx0003xbHHHluUvQEAAAAAyNfu4XZHyWaz8Zvf/Cbv2NSpU9u05imnnBIbN26Mp59+usnHkrxv9OjR8bd/+7cxderU2Geffdq0NwAAAAAAjWv3cHv48OGxYsWK9t4mMplMPProo0Vd84QTTogTTjghIiI2btwYL730UrzxxhuxadOm2L59e/Ts2TMGDBgQBxxwQFRVVcWgQYOKuj8AAAAAAA3rMndut7dBgwYV9NxvAAAAAADaX1lnNwAAAAAAAC0l3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnlnd0AAAAAQCmaMKm2s1uo54l57lMEeJ93RAAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAklPe2Q2kasmSJfHKK6/EunXrok+fPlFZWRlVVVVRWVnZ2a0BAAAAAHR5HRZub926NZYtWxZLliyJJUuWxAsvvBBr167NvT5s2LB47LHHWrTmmjVrYvLkya3qp7KyMhYsWNCiObW1tTFr1qyYNWtWvP766/VeLysri5NOOimuuOKKqKqqalVfAAAAAAA0r93D7Z/85Ccxe/bseOmll6K2tra9t2s3mzZtiiuuuCKeeuqpRsfU1tbGH//4x1i0aFHMmDEjLr744g7sEAAAAACg+2j3cHvx4sWxcuXK9t4mIv5y53QmkylobHl54V96TU1NfPnLX47FixfnzZ84cWIccsghsXXr1nj66adjxYoVufE33nhj9O/fP84777yWfREAAAAAADSrU5653bdv3zjiiCNi6dKlsW3btqKte/3118c555xTtPXed8stt+QF26NHj4477rgjhg8fnjduzpw58Y1vfCNqamoiIuLb3/52VFVVxZgxY4reEwAAAABAd9bu4XZFRUVUVVXFkUceGePGjYsjjzwyDjnkkCgrK4uTTz65qOF2e6iuro6f/exnuXr//fePe+65J/bbb796Y88888yora2Nf/zHf4yIv9zB/f3vfz9uv/32DusXAAAAAKA7aPdw+9Zbb23vLdrVj370o9i1a1eu/spXvtJgsP2+s88+O37961/n7vR+9NFHY/ny5XHYYYe1e68AAAAAAN1FWWc3UMqy2Ww8/PDDuXrAgAHxyU9+stl5F1xwQV790EMPFb03AAAAAIDuTLjdhP/+7/+OdevW5epJkyZFRUVFs/MmT54cPXv2zNWPPvpou/QHAAAAANBdCbeb8Mwzz+TVRx11VEHzevfuHYcffniuXrFiRbzzzjtF7Q0AAAAAoDsTbjdh1apVefXYsWMLnrt3uB0RsXr16qL0BAAAAABAB3ygZEd66KGH4ne/+12sWrUqNm3aFBUVFTFw4MAYNWpUHHfccXH66afHAQccUPB6dQPpAw88sOC5Q4cOrbfW+PHjC54PAAAAAEDjulS4PW/evLx6+/btsXnz5njllVfikUceiZtvvjnOPffc+OpXvxr77LNPs+vt/bzt8vLyGDx4cMG9DBkyJK+urq4ueC4AAAAAAE3rUuF2c3bt2hU///nP46mnnop//dd/jZEjRzY5ftu2bblf9+nTJzKZTMF71Q3P916rJVqyZ1Nz27IOUFzOTShNzk0oPc5LaJkUzpNS77HU+4tIo0c6nmsm3VWXCLfHjBkTp5xyShxzzDFx6KGHxsCBAyObzcaGDRvi+eefj/vvvz8WLFiQG7969eq49NJL45e//GXst99+ja67dyBdUVHRop569erV6FotMXDgwFbNq2vAgAFFWQcoLucmlCbnJpQe5yWl5+3ObqCe+t8/6rGlSr2/iOLlBHRdrpl0J0mH2wMHDox77703jjrqqAZfHz58eAwfPjzOOOOMmD9/flx11VWxZcuWiIh49dVX47rrrouZM2c2uv7OnTtzv+7Zs2eLeqsbbu/YsaNF8wEAAAAAaFzS4Xa/fv0aDbbrmjhxYtx+++3xmc98Jnbv3h0REQ8++GB8/vOfj9GjRzc4p6KiIrZv3x4RETU1NS3qbdeuXXl17969WzT/fZs3b27VvIi//DeU939at2XLlshms61eCyge5yaUJucmlB7nJbRMW75/7Cil3mOp9xeRRo90PNdMUlHs/32SdLjdUscee2x86lOfil/+8pcREZHNZuP3v/99o+F23759c+H23ndxF6JuuN23b99WdBxFezPKZrPe2KAEOTehNDk3ofQ4L6F5KZwjpd5jqfcXkUaPdC7XTLqTss5uoKOde+65efXChQsbHbt3IL19+/aora0teJ+tW7c2uhYAAAAAAG3T7cLtcePG5T0/+4033mh0bGVlZe7Xu3fvjg0bNhS8z5tvvplXDxkypAVdAgAAAADQlG4XbpeVleU922XTpk2Njj3kkEPy6qaC8Lrqhtt11wIAAAAAoPW6XbgdEbFjx47crysqKhodd/DBB+fVy5YtK3iPumPrrgUAAAAAQOt1u3B706ZN8e677+bq/fffv9GxxxxzTF793HPPFbTHjh07Yvny5bl6zJgx0b9//xZ2CgAAAABAY7pduL1gwYK8+rDDDmt07Lhx4/Keuz1v3rzYuXNns3vMnTs3ampqcvXkyZNb0SkAAAAAAI3pVuF2TU1N3HnnnXnHJkyY0Oj4TCYTp512Wq5+55134oEHHmh2n3vvvTev3nsNAAAAAADaLtlwe926dbF58+aCx9fW1sY3v/nNePHFF3PHBg8eHGeccUaT8y655JLo1atXrp45c2aTH0J5//33x+LFi3P15MmTm7w7HAAAAACAlks23H7hhRfi5JNPjhtvvLHZD3pcvnx5TJs2LWbPnp13fMaMGdG3b98m5w4ZMiQ+/elP5+q33347LrroolizZk29sXPmzIlrrrkmV/fs2TMuv/zyQr4cAAAAAABaoLy9N1i7dm18/OMfb/C1PXv25I0bO3Zsg+PuvvvuOP744+sd37p1a9x1111x1113xeDBg2Ps2LExYsSI6N+/f2Sz2di4cWM8//zzsWLFinpzL7nkkjjnnHMK+hquvPLKWLJkSTz99NMREbFy5cqYMmVKTJw4MQ4++ODYtm1bLF68uN4+3/rWt2LMmDEF7QEAAAAAQOHaPdzOZrN5IXZTGhuXzWabnbt+/fqYP39+s+N69+4dV199dVxwwQUF9RQR0atXr/jBD34Ql19+eSxatCgi/vL87rlz5zY4vry8PK688so477zzCt4DAAAAAIDCJftYkjFjxsTf/d3fxaGHHhplZc1/GYMHD47Pfe5z8dBDD7Uo2H7foEGD4qc//Wl8/etfjxEjRjQ4pqysLD784Q/HL37xi5g+fXqL9wAAAAAAoDDtfuf28OHDG3wsSFuNGDEivvWtb0VExLZt2+Kll16KNWvWxIYNG2Lbtm2RyWSif//+MWjQoDjiiCMaDaRboqysLKZNmxaf+cxn4oUXXoiXX3453nrrrejdu3dUVlbGhz70oaisrGzzPgAAAAAANK3dw+2O0Ldv36iqqoqqqqoO2S+TyXTofgAAAAAA5Ev2sSQAAAAAAHRfwm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJJT3tkNAAAAQF0TJtV2dgt5npjn3jAAKDWuzgAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkp7yzGyimN954I1588cVYs2ZNvPfee1FeXh4DBgyIQw45JI444ojo1atXZ7cIAAAAAEARdFi4vXXr1li2bFksWbIklixZEi+88EKsXbs29/qwYcPisccea9Ga27dvj/nz58fjjz8eCxcujHXr1jU6tqKiIj7xiU/ExRdfHKNHjy54j9mzZ8fXv/71FvX1vr/+67+Om2++uVVzAQAAAABoXLuH2z/5yU9i9uzZ8dJLL0VtbW3R1n355ZfjnHPOiW3bthU0fufOnXHffffFAw88EJdddll84QtfKFovAAAAAAB0rHYPtxcvXhwrV64s+ro7duyoF2z36NEjxo4dG2PGjIkPfOADsWfPnnj11VfjySefjPfeey8iImpqauLWW2+Nd999N6666qoW79ujR492GQsAAAAAQOE65Znbffv2jSOOOCKWLl1a8J3XTRk/fnz8zd/8TZx22mnRr1+/eq+/++67ceutt8a///u/54796Ec/imOPPTY+9rGPtWivhx9+OIYPH97mngEAAAAAaL12D7crKiqiqqoqjjzyyBg3blwceeSRccghh0RZWVmcfPLJbQq3jzrqqPjKV74Sxx13XJPj+vfvH9/85jdjn332iX/7t3/LHb/55ptbHG4DAAAAAND52j3cvvXWW9tl3VGjRsW9997bojn/8A//EL/73e9izZo1ERHx0ksvxapVq+KQQw5pjxYBAAAAAGgnZZ3dQGuVl7c8l+/Zs2eceuqpeceWLFlSrJYAAAAAAOggyYbbrXXQQQfl1Rs2bOikTgAAAAAAaK1uF25v3bo1r+7Zs2cndQIAAAAAQGt1u3B7xYoVeXVlZWUndQIAAAAAQGu1+wdKlpJt27bF3Llzc3VZWVmccMIJLVrjjjvuiFWrVsWaNWvi3Xffjf79+8d+++0X48aNixNOOCGmTJkSvXv3LnbrAAAAAADspVuF23fddVds27YtVx9//PExaNCgFq3x61//Oq/esWNHrF+/PlauXBmzZ8+O733ve/H5z38+LrrooshkMkXpGwAAAACAfN0m3H7xxRfj//yf/5N37LLLLiv6Pm+//XZ85zvfiYULF8att94affr0adN6bQnI954raIfS4dyE0uTchNLjvKSUpPB3UI9tV+r9RaTRIx3PNZPuqluE29u2bYsrr7wydu3alTs2derUOO644wqaX1ZWFieeeGJMmjQpqqqqYuTIkdG/f//YuXNnVFdXx6JFi+IXv/hFrFy5Mjfn8ccfj6997Wtx2223telNZeDAga2eu7cBAwYUZR2guJybUJqcm1B6nJfd0dud3UCe+t+blVZ/EXoshlLvL6J4OQFdl2sm3UmXD7ez2WxcffXV8eKLL+aOHXTQQfH//X//X0Hzx48fH4888kgMHz683ms9e/aMQw89NA499NC44IIL4s4774xbbrklstlsREQ8/PDD8atf/Sr+5m/+pjhfDAAAAAAAEdENwu3rr78+HnrooVzdv3//+OEPfxj9+/cvaP7BBx9c0LhMJhOf+9znIiJi5syZueP/8i//EmeffXb06tWrBV3/j82bN7dq3vs9vf/Tui1btuRCd6BzOTehNDk3ofQ4LyklbfnerKPose1Kvb+INHqk47lmkopi/++TLh1u33777TFr1qxcXVFREbfffnuMGTOm3facPn16/OY3v4mXXnopIiKqq6vjmWeeiZNOOqlV6xXrzSibzXpjgxLk3ITS5NyE0uO8pLOl8PdPj21X6v1FpNEjncs1k+6krLMbaC///u//Ht///vdzdXl5edx6661x/PHHt+u+ZWVlMXXq1LxjTz31VLvuCQAAAADQ3XTJcPs3v/lN/O///b9zdSaTieuvvz4mT57cIfuPHz8+r167dm2H7AsAAAAA0F10uXD70UcfjW984xt5//3immuuibPPPrvDeth///3z6k2bNnXY3gAAAAAA3UGXCrcXLlwYV1xxRezevTt37IorrohPf/rTHdrHjh078uqKiooO3R8AAAAAoKvrMuH2888/H1/60pdi165duWPTp0+PL37xix3ey+uvv55X172TGwAAAACAtukS4fbKlSvj0ksvjW3btuWOXXDBBXHVVVd1Sj/z58/Pqw877LBO6QMAAAAAoKtKPtx+7bXX4uKLL44tW7bkjp111lnxrW99q1P6ef3112POnDl5xz7ykY90Si8AAAAAAF1V0uH2unXr4rOf/WysX78+d+zUU0+N7373u5HJZNq8/qpVq6Kmpqbg8Vu2bInLLrss79EoH/vYx+Kggw5qcy8AAAAAAPyPZMPtLVu2xPTp02PNmjW5Yx/5yEdi5syZ0aNHj6Lsce+998Zpp50Wd911V1RXVzc6LpvNxmOPPRZTp06N5cuX54736dMnvvrVrxalFwAAAAAA/kd5e2+wdu3a+PjHP97ga3v27MkbN3bs2AbH3X333XH88cfnHXvsscdi5cqVecf++Mc/xvjx41vU39lnnx3f+c53Gn197dq1ceONN8b3vve9GDlyZBx++OFxwAEHRL9+/WLXrl3x5ptvxjPPPBNvvvlm3rwePXrELbfcEoceemiL+gEAAAAAoHntHm5ns9m8ELspjY3LZrMFHautrW1Zcy2Yk81m45VXXolXXnml2bFDhw6Nm266KY499tgW9wMAAAAAQPPaPdxO2SmnnBIbN26Mp59+usnHkrxv9OjR8bd/+7cxderU2GeffTqgQwAAAACA7qndw+3hw4fHihUrir7uOeecE+ecc07R193bCSecECeccEJERGzcuDFeeumleOONN2LTpk2xffv26NmzZwwYMCAOOOCAqKqqikGDBrVrPwAAAAAA/IU7tws0aNCges/9BgAAAACgc5R1dgMAAAAAANBSwm0AAAAAAJIj3AYAAAAAIDmeuQ0AAACQqAmTaju7hXqemOdeSqBjeLcBAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnlnd0AAAAAHWvCpNrObqGeJ+a59woAaBn/egAAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOeWd3UB7eO2112LZsmVRXV0dtbW1UVlZGaNGjYrRo0cXbY8lS5bEK6+8EuvWrYs+ffpEZWVlVFVVRWVlZdH2AAAAAACgYR0Wbm/dujWWLVsWS5YsiSVLlsQLL7wQa9euzb0+bNiweOyxx9q0x/z58+OOO+6I5557rsHXx4wZE9OnT48zzzyzVevX1tbGrFmzYtasWfH666/Xe72srCxOOumkuOKKK6KqqqpVewAAAAAA0Lx2D7d/8pOfxOzZs+Oll16K2tradtkjm83Gd77znbjnnnuaHLdixYq46qqrYt68eXHDDTdEr169Ct5j06ZNccUVV8RTTz3V6Jja2tr44x//GIsWLYoZM2bExRdfXPD6AAAAAAAUrt3D7cWLF8fKlSvbdY+ZM2fWC7aPPvroOPLII6NHjx6xYsWKePLJJyObzUZExIMPPhg9evSIm266qaD1a2pq4stf/nIsXrw4d6y8vDwmTpwYhxxySGzdujWefvrpWLFiRW78jTfeGP3794/zzjuvSF8lAAAAAADv65Rnbvft2zeOOOKIWLp0aWzbtq1Naz3++ONx55135up99903brvttjjppJPyxi1btiy++MUvRnV1dUREzJkzJ4455pg4//zzm93jlltuyQu2R48eHXfccUcMHz48b9ycOXPiG9/4RtTU1ERExLe//e2oqqqKMWPGtPrrAwAAAACgvrL23qCioiKqqqriwgsvjO9+97vxwAMPxDPPPBM/+9nPYr/99mvT2tlsNm655ZZcnclk4vbbb68XbEdEjB07Nu6+++6oqKjIHfvhD38YO3bsaHKP6urq+NnPfpar999//7jnnnvqBdsREWeeeWZcd911ubqmpia+//3vt+hrAgAAAACgee1+5/att97abmvPnTs375EnZ511Vhx33HGNjv+rv/qruOSSS+L222+PiIj169fHr371q/j7v//7Ruf86Ec/il27duXqr3zlK02G8meffXb8+te/zt3p/eijj8by5cvjsMMOK/jrAgAAAACgae1+53Z7+sMf/pBXX3jhhc3OOf/886NHjx6NrrG3bDYbDz/8cK4eMGBAfPKTn2x2jwsuuCCvfuihh5qdAwAAAABA4ZINt3fv3h0LFizI1QceeGBUVVU1O6+ysjLGjx+fq5977rnYuHFjg2P/+7//O9atW5erJ02alPdYk8ZMnjw5evbsmasfffTRZucAAAAAAFC4ZMPtlStXxjvvvJOrjzrqqILn7j12z5498eyzzzY47plnnml0XlN69+4dhx9+eK5esWJFXq8AAAAAALRNsuH2qlWr8uq9w+TmjB07Nq9evXp1QXvUndeUuv00tgcAAAAAAC2XbLhdNyweOnRowXMPPPDAJtdq7HjdeU2p249wGwAAAACgeJINt/d+FnZExJAhQwqeW3dsdXV1s3uUl5fH4MGDi74HAAAAAAAtV97ZDbTWtm3b8up99tmn4Ll1x9Zdq6Hjffr0iUwmU/Q9mtOSPZua25Z1gOJybkJpcm5C6XFedi+l/mdc6v1F6LEYSr2/CD3SMNdMuqsuE2736tWr4LkVFRVNrtXQ8bpzmlO3n9aG2wMHDmzVvLoGDBhQlHWA4nJuQmlybkLpcV4W29ud3UA99b/3Ka0eS72/CD0WQ6n3F5Fqj3Qk10y6k2QfS7Jz5868uiXhdt2xO3bsaHaPnj17tqC7wvcAAAAAAKDlkr1zu+6d1Lt27Sp4bt2xvXv3bnSP7du3R0RETU1Ni/ordI/mbN68uVXzIv7y31De/2ndli1bIpvNtnotoHicm1CanJtQepyX3UtbvvfpCKXeX4Qei6HU+4vQIw1zzSQVxf6fHcmG23379s2rWxJu173ru+5aex9/P9yuO6c5dftpbI/mFOvNKJvNemODEuTchNLk3ITS47zs+kr9z7fU+4vQYzGUen8ReqR5rpl0J8k+lqRuWLx169aC59Yd21S4/b7t27dHbW1t0fcAAAAAAKDlkg23Kysr8+rq6uqC57755pt59ZAhQ5rdY/fu3bFhw4ai7wEAAAAAQMslG24fcsghefUbb7xR8Ny6QfjBBx9c9D3qhtt11wIAAAAAoPW6TLi9bNmygucuXbo0r24s3K57vCV71B3b2B4AAAAAALRcsuH2qFGjYt99983Vf/rTnwqe+9xzz+V+3aNHjzj66KMbHHfMMcc0Oq8pO3bsiOXLl+fqMWPGRP/+/QvuDwAAAACApiUbbpeXl8dHP/rRXP3mm2/G888/3+y8devW5Y076qijYtCgQQ2OHTduXN5zt+fNmxc7d+5sdo+5c+dGTU1Nrp48eXKzcwAAAAAAKFyy4XZExOmnn55X//znP292zr333ht79uzJ1VOmTGl0bCaTidNOOy1Xv/POO/HAAw8UtMfe9l4DAAAAAIC2Szrcnjx5cowePTpX/+Y3v4nFixc3Ov7ll1+OH//4x7l68ODBcd555zW5xyWXXBK9evXK1TNnzoxNmzY1Ov7+++/P62Hy5Mlx2GGHNbkHAAAAAAAtk3S4nclkYsaMGbk6m83Gl770pVi4cGG9scuWLYtp06blPVbksssui969eze5x5AhQ+LTn/50rn777bfjoosuijVr1tQbO2fOnLjmmmtydc+ePePyyy9v0dcEAAAAAEDzytt7g7Vr18bHP/7xBl/b+/Ega9eujbFjxzY47u67747jjz++wdc+9rGPxaWXXhp33nlnRPzl0SHTpk2Lo48+OqqqqqKsrCxWrFgRTz75ZGSz2dy8M888M84///yCvoYrr7wylixZEk8//XRERKxcuTKmTJkSEydOjIMPPji2bdsWixcvjhUrVuTN+9a3vhVjxowpaA8AAAAAAArX7uF2NpvNC7Gb0ti4vUPphsyYMSN27NgRs2bNyh179tln49lnn21w/Cc+8Ym47rrrCuopIqJXr17xgx/8IC6//PJYtGhRRETU1NTE3LlzGxxfXl4eV155ZbOPPAEAAAAAoHWSfizJ+8rKyuKaa66Jf/u3f4vx48c3Om706NHxve99L2699daoqKho0R6DBg2Kn/70p/H1r389RowY0WgfH/7wh+MXv/hFTJ8+vUXrAwAAAABQuHa/c3v48OH1HtfRXiZOnBgTJ06MV199NZYuXRpvvfVW7NmzJyorK2PUqFFtfkRIWVlZTJs2LT7zmc/ECy+8EC+//HK89dZb0bt376isrIwPfehDUVlZWaSvBgAAAACAxrR7uN0ZRo4cGSNHjmy39TOZTFRVVUVVVVW77QEAAAAAQOO6xGNJAAAAAADoXoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByyju7AQCA9jZhUm2BI99u1z729sQ89xgAAAC0he+qAAAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDklHd2AwAAAAB0XRMm1XZ2C/U8Mc/9ntAVOJMBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhOeWc30FZ///d/H4sWLWrzOpdddll8+ctfrnd8zZo1MXny5FatWVlZGQsWLGhrawBQ0iZMqu3sFup5Yp6f3wMAAHR1vvP7f/r27dvZLQAAAAAAUKDk79wuKyuLHj16tHjenj17cr/OZDJx6qmnFrxfJpMpaGx5efK/vQAAAAAAJSn59PWnP/1pi+c88sgjcdlll+XqY489NkaMGFHQ3Ouvvz7OOeecFu8JAAAAAEDxJB9ut8bs2bPz6qlTp3ZSJwAAf1Fqzy733HIAAKDUdbvvWjZu3Bj/+Z//mav79u0bU6ZM6cSOAAAAAABoqW4Xbv/2t7+NmpqaXH3qqafGPvvs04kdAQAAAADQUt0u3L7vvvvyao8kAQAAAABIT7cKt1esWBF//vOfc/WwYcPihBNO6MSOAAAAAABojW4Vbte9a/uss86KTCbTSd0AAAAAANBa5Z3dQEfZvXt3/Pa3v8071ppHkjz00EPxu9/9LlatWhWbNm2KioqKGDhwYIwaNSqOO+64OP300+OAAw4oVtsAAAAAADSg24Tb//mf/xkbNmzI1ccee2wcdNBBLV5n3rx5efX27dtj8+bN8corr8QjjzwSN998c5x77rnx1a9+tSgfVNmWO8v3nusOdSgdzk1ofymcW6XeY6n3R/fgmtm9lPqfcan3F6HHYij1/iL0WCwp9NgSrpl0V90m3O6oD5LctWtX/PznP4+nnnoq/vVf/zVGjhzZpvUGDhxYlL4GDBhQlHWA4nJu0jW83dkN1FP/+qnHlirWv0GgWFwzi6203nMiUnxfLK3+IvRYDKXeX4Qei6Ur/1vHNZPupFuE21u2bInHH388V/fp0yemTJnSojXGjBkTp5xyShxzzDFx6KGHxsCBAyObzcaGDRvi+eefj/vvvz8WLFiQG7969eq49NJL45e//GXst99+RftaAAAAAADoJuH2Aw88ELt27crVp556avTr16+guQMHDox77703jjrqqAZfHz58eAwfPjzOOOOMmD9/flx11VWxZcuWiIh49dVX47rrrouZM2e2uvfNmze3em4mk8n9tG7Lli2RzWZbvRZQPM5NaH9tuX52lFLvsdT7o3twzexeSv19p9T7i9BjMZR6fxF6LJYUemwJ10xSUez/NdEtwu37778/r27JI0n69evXaLBd18SJE+P222+Pz3zmM7F79+6IiHjwwQfj85//fIwePbrgPfdWrDejbDbrjQ1KkHMT2kcK51Wp91jq/dH9uGZ2faX+51vq/UXosRhKvb8IPRZLCj22lmsm3UlZZzfQ3latWhVLlizJ1cOGDYsTTzyx3fY79thj41Of+lSuzmaz8fvf/77d9gMAAAAA6I66fLhd94MkzzrrrHb/1Nhzzz03r164cGG77gcAAAAA0N106XC7trY25syZk3esJY8kaa1x48ZFz549c/Ubb7zR7nsCAAAAAHQnXTrc/uMf/xjr1q3L1cccc0wcdNBB7b5vWVlZ3sPRN23a1O57AgAAAAB0J1063G7LB0m21Y4dO3K/rqio6LB9AQAAAAC6gy4bbr/33nsxd+7cXN2nT584/fTTO2TvTZs2xbvvvpur999//w7ZFwAAAACgu+iy4fbvfve7vLunP/7xj0e/fv06ZO8FCxbk1YcddliH7AsAAAAA0F102XD7vvvuy6vPOeecDtm3pqYm7rzzzrxjEyZM6JC9AQAAAAC6iy4Zbr/22mvx7LPP5uqhQ4fGiSee2OJ11q1bF5s3by54fG1tbXzzm9+MF198MXds8ODBccYZZ7R4bwAAAAAAGtclw+3Zs2fn1WeddVZkMpkWr/PCCy/EySefHDfeeGMsW7asybHLly+PadOm1dt7xowZ0bdv3xbvDQAAAABA48o7u4Fiy2azMWfOnLxjU6dObfV6W7dujbvuuivuuuuuGDx4cIwdOzZGjBgR/fv3j2w2Gxs3boznn38+VqxYUW/uJZdc0mGPQwEAAAAA6E66XLj9X//1X7F27dpcfcwxx8TIkSOLsvb69etj/vz5zY7r3bt3XH311XHBBRcUZV8AAAAAAPJ1uXD7/vvvz6vbctf2mDFj4u/+7u9i0aJFsXr16qitrW1y/ODBg2Pq1Klx4YUXxpAhQ1q9LwAAAAAATety4fYNN9wQN9xwQ1HWGjFiRHzrW9+KiIht27bFSy+9FGvWrIkNGzbEtm3bIpPJRP/+/WPQoEFxxBFHxIgRI4qyLwAAAAAATety4XZ76du3b1RVVUVVVVVntwIAAAAA0O2VdXYDAAAAAADQUsJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnlnd0AAABAVzJhUm1nt1DPE/Pc1wQAdD3+hQMAAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHLKO7sBAKBpEybVdnYLeZ6Y52fj3ZW/iwAAQCnxHQEAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkJzyzm4AADrThEm1nd1CPU/M87NnAAAAaI7vngEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhOeWc3kLLXXnstli1bFtXV1VFbWxuVlZUxatSoGD16dGe3BgAAAADQpXWZcPvkk0+OtWvXtmruww8/HCNHjix4/Pz58+OOO+6I5557rsHXx4wZE9OnT48zzzyzVf0AAAAAANA0jyVpgWw2G9dff3187nOfazTYjohYsWJFXHXVVTFjxozYtWtXB3YIAAAAANA9dJk7t/eWyWSirKzw3D6TyRQ0bubMmXHPPffkHTv66KPjyCOPjB49esSKFSviySefjGw2GxERDz74YPTo0SNuuummwpsHAAAAAKBZXTLcPvvss+OGG24o6pqPP/543Hnnnbl63333jdtuuy1OOumkvHHLli2LL37xi1FdXR0REXPmzIljjjkmzj///KL2AwAAAADQnXksSQGy2WzccsstuTqTycTtt99eL9iOiBg7dmzcfffdUVFRkTv2wx/+MHbs2NEhvQIAAAAAdAfC7QLMnTs3Vq5cmavPOuusOO644xod/1d/9VdxySWX5Or169fHr371q3btEQAAAACgOxFuF+APf/hDXn3hhRc2O+f888+PHj16NLoGAAAAAACtJ9xuxu7du2PBggW5+sADD4yqqqpm51VWVsb48eNz9XPPPRcbN25sjxYBAAAAALod4XYzVq5cGe+8806uPuqoowqeu/fYPXv2xLPPPlvU3gAAAAAAuivhdjNWrVqVVx9++OEFzx07dmxevXr16qL0BAAAAADQ3ZV3dgPtYfny5XHllVfGsmXLYsOGDRERMXDgwBg+fHgcd9xxccopp8Rhhx1W0Fp1A+mhQ4cW3MeBBx7Y5FoAAAAAALROlwy3//znP8ef//znvGPvvfderFmzJp566qn4wQ9+EB/96EfjmmuuiZEjRza51rp16/LqIUOGFNxH3bHV1dUFzwUAAAAAoHFdMtwuxIIFC+JTn/pU3HzzzTFp0qRGx23bti2v3meffQreo+7YumsVIpPJtHhOQ3Pbsg5QXM5NmlPqfy9Kvb8IPRZDqfcXkUaPtI1rZvGk8PtX6j2Wen8ReiyGUu8vQo/FkkKPLeGaSXfVpcLtysrKmDx5cnz4wx+OMWPGxP777x+9evWKzZs3x5///OeYO3du3HfffbFr166IiHj33XfjH/7hH2LWrFnxoQ99qME16wbSvXr1KrifioqKJtcqxMCBA1s8pyEDBgwoyjpAcTk3S8Hbnd1APfXf+0urx1LvL0KPxdDwv0FS6JGuKq1rZmmdKxGl/54TUfo9lnp/EXoshlLvL0KPxdKV/x2R1jUT2qbLhNvXX399HHfccVFeXv9LGjx4cAwePDg++tGPxiWXXBKXXXZZrFy5MiIidu7cGVdeeWX84Q9/aDC43rlzZ17dknC77tgdO3YUPBcAAAAAgMZ1mXD7pJNOKmjcyJEj4+67745zzz033njjjYiIWLt2bfzqV7+KCy+8sN74undfv3/XdyHqju3du3fBc9+3efPmFs95XyaTyf20bsuWLZHNZlu9FlA8zk2a05b3/o5Q6v1F6LEYSr2/iDR6pG1cM4snhfOl1Hss9f4i9FgMpd5fhB6LJYUeW8I1k1QU+39NdJlwuyX233//+OpXvxozZszIHfvd737XYLjdt2/fvLol4Xbdu77rrlWIYr0ZZbNZb2xQgpybNKTU/06Uen8ReiyGUu8vIo0eKR7XzLZJ4feu1Hss9f4i9FgMpd5fhB6LJYUeW8s1k+6krLMb6CynnXZa9OvXL1f/6U9/iu3bt9cbVzeQ3rp1a8F71B3bmnAbAAAAAID6uuWd2xER5eXlceSRR8bChQsjImL37t3x1ltvxciRI/PGVVZW5tXV1dUF7/Hmm2/m1UOGDGlltwAANGfCpNrObqGeJ+Z123tJAACg3XXrf23vv//+efWmTZvqjTnkkEPy6vef012IukH4wQcf3ILuAAAAAABoTLcOt+s+hqTuh0dG1A+3ly1bVvD6S5cuzauF2wAAAAAAxdGtw+3XX389rx40aFC9MaNGjYp99903V//pT38qeP3nnnsu9+sePXrE0Ucf3fImAQAAAACop9uG22+++Wa8+OKLuXr//fePAw44oN648vLy+OhHP5o37/nnn292/XXr1uWNO+qooxoMzwEAAAAAaLlu+4GSt99+e2Sz2Vz9v/7X/4pMJtPg2NNPPz0eeOCBXP3zn/88PvShDzW5/r333ht79uzJ1VOmTGljxwAAAAC0h1L7YGofSg2FSf5M2bVrV6xevbpFc/7v//2/8R//8R+5OpPJxEUXXdTo+MmTJ8fo0aNz9W9+85tYvHhxo+Nffvnl+PGPf5yrBw8eHOedd16LegQAAAAAoHHJh9s7duyIT37ykzFjxox44oknYvfu3Y2OXb9+fXz729+Ob3zjG3nHzz777DjyyCMbnZfJZGLGjBm5OpvNxpe+9KVYuHBhvbHLli2LadOmxc6dO3PHLrvssujdu3dLviwAAAAAAJrQJR5LsmfPnnjwwQfjwQcfjH79+sXhhx8eBx98cAwYMCB69uwZ77zzTixfvjz+9Kc/RU1NTd7cY489Nq699tpm9/jYxz4Wl156adx5550REfHOO+/EtGnT4uijj46qqqooKyuLFStWxJNPPpn3uJMzzzwzzj///OJ+wQAAAAAA3VyXCLf39t5778XixYubfGzI+y644IK4+uqro1evXgWtPWPGjNixY0fMmjUrd+zZZ5+NZ599tsHxn/jEJ+K6664rrHEAAAAAAAqWfLjdu3fv+MIXvhD/9V//FUuXLo1du3Y1Ob5v375xyimnxEUXXdTko0gaUlZWFtdcc0185CMfidtvvz3+9Kc/NThu9OjRMX369DjrrLNatD4AAAAAAIVJPtzu1atXXHnllRERsXv37nj55Zfjtddei+rq6ti6dWvs3r07+vfvH/vuu2+MGjUqxowZEz169GjTnhMnToyJEyfGq6++GkuXLo233nor9uzZE5WVlbk9AAAAAABoP8mH23srLy+PUaNGxahRozpkv5EjR8bIkSM7ZC8AAAAAAP5HWWc3AAAAAAAALSXcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA55Z3dAAAAdBcTJtV2dgv1PDHP/S4AAKTJv2QBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDklHd2AwAAAIWaMKm2s1uo54l57hkCAOgM/hUGAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByyju7AQC6rgmTaju7hXqemOfnugAAANAV+A4fAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASE55ZzfQHjZv3hwrV66MV199NTZv3hzZbDYGDBgQQ4cOjfHjx0f//v07u0UAAAAAANqgS4TbtbW18fTTT8cjjzwSTz31VKxcubLRsZlMJk466aSYNm1aTJw4saD116xZE5MnT25Vb5WVlbFgwYJWzQUAAAAAoGFdItyeMmVKvPrqqwWNzWaz8eSTT8aTTz4ZZ5xxRlx77bXRr1+/du4QAADSMGFSbWe3kGfp853dAQAApapLhNsbN26sd+yDH/xgVFVVxQc+8IGoqKiI6urqWLhwYVRXV+fGPPjgg/HWW2/Fj3/846ioqCh4v7KysshkMgWNLS/vEr/FAAAAAAAlpUslr8OGDYvzzjsvpk6dGkOGDKn3+p49e+I//uM/4rvf/W7s3LkzIiIWL14c//zP/xz/+I//WPA+119/fZxzzjlF6xsAAAAAgJbpEuH20KFD4zOf+UycffbZ0aNHj0bH9ejRIy644IIYOnRofOELX4ja2r/8l8tZs2bFtGnTorKysqNaBgAAAACgDco6u4FimD17dnzqU59qMtje28SJE+OMM87I1TU1NfHoo4+2V3sAAAAAABRZlwi3W/Nc673D7YiIF154oVjtAAAAAADQzrpEuN0aBx10UF69YcOGTuoEAAAAAICW6rbh9tatW/Pq1tz9DQAAAABA5+i24faKFSvy6iFDhnRSJwAAAAAAtFS3vV15zpw5efWJJ55Y8NyHHnoofve738WqVati06ZNUVFREQMHDoxRo0bFcccdF6effnoccMABxW4ZAAAAAID/p1uG24sWLYpFixbl6v79+8eECRMKnj9v3ry8evv27bF58+Z45ZVX4pFHHombb745zj333PjqV78a++yzT7HaBgAAAADg/+l24fb27dvjn/7pn/KOffazny1qCL1r1674+c9/Hk899VT867/+a4wcObLVa2UymaLMbcs6QHE5NztXCr/npd5jqfcXocdiKPX+IvRYLCn0GFHafZZyb+/TY9uVen8ReiyGUu8vQo/FUuo9trQ/32fSXXW7cPvb3/52vPLKK7n64IMPjunTpxc0d8yYMXHKKafEMcccE4ceemgMHDgwstlsbNiwIZ5//vm4//77Y8GCBbnxq1evjksvvTR++ctfxn777deqfgcOHNiqeXUNGDCgKOsAxdX1z823O7uBeuq/r+qxpUq9vwg9FkPD/wYp9R5Lq78IPRbT/1wzS6+/FH4P9dh2pd5fhB6LodT7i9BjsZR6j23Jg7r+95nwP7pVuP3Tn/407rvvvlzdq1evuOmmm6KioqLJeQMHDox77703jjrqqAZfHz58eAwfPjzOOOOMmD9/flx11VWxZcuWiIh49dVX47rrrouZM2cW7wsBAAAAAOjmuk24/Yc//CFuuOGGvGPXXnttjBs3rtm5/fr1azTYrmvixIlx++23x2c+85nYvXt3REQ8+OCD8fnPfz5Gjx7d4r43b97c4jnvy2QyuZ/WbdmyJbLZbKvXAorHudm52vK+2lFKvcdS7y9Cj8VQ6v1F6LFYUugxorSvmSn8Huqx7Uq9vwg9FkOp9xehx2Ip9R5b2p/vM0lFsZ5S8b5uEW4vXLgwrrrqqqitrc0d+8pXvhJTp05tl/2OPfbY+NSnPhW//OUvIyIim83G73//+1aF28V6M8pms97YoAQ5NzteCr/fpd5jqfcXocdiKPX+IvRYLCn0GFHa18xS7Wtvemy7Uu8vQo/FUOr9ReixWEq9x7b0V8rXTCi2ss5uoL0tWbIkvvSlL8WuXbtyxy655JL43Oc+1677nnvuuXn1woUL23U/AAAAAIDupEuH2ytXroxLL700tm3bljt23nnnxde+9rV233vcuHHRs2fPXP3GG2+0+54AAAAAAN1Flw23X3vttbj44ovznlE0ZcqUuPbaaztk/7KysrxnyGzatKlD9gUAAAAA6A66ZLi9bt26mDZtWqxfvz53bOLEiXHzzTdHWVnHfck7duzI/bqioqLD9gUAAAAA6Oq6XLi9cePGmDZtWqxduzZ37Pjjj4/bbrst7zEh7W3Tpk3x7rvv5ur999+/w/YGAAAAAOjqulS4/d5778X06dNj9erVuWNVVVVxxx13RO/evTu0lwULFuTVhx12WIfuDwAAAADQlXWZcHvHjh3xhS98IZYuXZo7Nnr06PjRj34U/fr169Beampq4s4778w7NmHChA7tAQAAAACgK+sS4fbu3bvj8ssvj8WLF+eOffCDH4yf/OQnMWDAgDatvW7durwPpWxObW1tfPOb34wXX3wxd2zw4MFxxhlntKkPAAAAAAD+R/LhdjabjauvvjrmzZuXOzZs2LC4++674wMf+ECb13/hhRfi5JNPjhtvvDGWLVvW5Njly5fHtGnTYvbs2XnHZ8yYEX379m1zLwAAAAAA/EV5ZzfQVm+88Ub89re/rXds8uTJLVpn2LBh8cgjjzT42tatW+Ouu+6Ku+66KwYPHhxjx46NESNGRP/+/SObzcbGjRvj+eefjxUrVtSbe8kll8Q555zTol4ACjFhUm1nt1DPE/OS/5kpAAAAkIjkw+1sNtvgsT179rRonULHr1+/PubPn9/suN69e8fVV18dF1xwQYv6AAAAAACgecmH2+1tzJgx8Xd/93exaNGiWL16ddTWNn2n5ODBg2Pq1Klx4YUXxpAhQzqoSwAAAACA7iX5cHv48OENPg6kWEaMGBHf+ta3IiJi27Zt8dJLL8WaNWtiw4YNsW3btshkMtG/f/8YNGhQHHHEETFixIh26wUAAAAAgL9IPtzuSH379o2qqqqoqqrq7FYAAAAAALo1n/wFAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJKe8sxsAKFUTJtW24+pvt3jGE/P8PBIAAADgfZISAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOeWd3QAAAAAA0LgJk2oLGPV2u/extyfmuWeWzudvIQAAAAAAyRFuAwAAAACQHOE2AAAAAADJ8cxtAAAAAKBNCnsueMfyXPCuz58wAAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJCc8s5uAAAAAACgvU2YVNvZLeR5Yp77jtvK7yAAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHB8o2QabN2+OZ599Nqqrq+O9996LAw44IIYPHx5HHXVU9OjRo7PbAwAAAADosoTbrfDyyy/HzJkzY968eVFTU1Pv9cGDB8ff/u3fxuc///no1atXJ3QIAMD/396dR0V13n8c/4wKWEBFRDFuoWg90aZatyjGE4zGxrhESSI28SRiquKSaD2kSq0gLonWqk2i1tboMUuTajiuVY/WvacGV5LaBKuCC0ct4IYLCCjM7w9/3ngRZMYM3Bnm/fprvtf7jJ9jzmTu/c5znwcAAABA9cayJE7asGGDXnrpJW3fvr3MxrYkXbx4UYsXL9bQoUN17ty5Kk4IAAAAAAAAANUfM7edsHfvXsXHx6ukpMQ4FhYWpq5duyooKEiZmZnavXu3CgoKJElpaWmKjY3V6tWrFRgYaFVswC316FlS8UlV7F97+L0PAAAAAADAU9DcdlBOTo4mTZpkNLZtNpumTJmi4cOHq0aN7xtiV65c0cSJE3Xw4EFJUnp6uhITE7Vw4UJLcgMAAAAAAABAdcQ0RQctXbpUeXl5Rv32229rxIgRpsa2JAUHB2v58uVq2bKlcWzLli1KS0ursqwAAAAAAAAAUN3R3HbApUuXlJycbNQtWrTQ6NGjyz3fz89PCQkJRm2327V06dJKzQgAAAAAAAAA3oRlSRywc+dO0+aR0dHR8vHxeeiYiIgIhYeH69SpU5Lurtedn58vf3//Ss0KSKxnDQAAAAAAgOqPbpMDdu3aZar79u3r0Ljnn3/eeF1YWKh9+/a5NBcAAAAAAAAAeCua2w44cuSI8TokJETNmzd3aFyHDh1M9aFDh1yaCwAAAAAAAAC8Fc3tCmRnZ+vGjRtG3aZNG4fHtm3b1lRnZGS4LBcAAAAAAAAAeDPW3K7AvTWz72nSpInDY0NCQuTj42Os13369GmXZquuPGG9aHfLyHrWAAAAAAAA8DZ0xCqQnZ1tqhs3buzwWJvNptDQ0HLfCwAAAAAAAADwaJi5XYH8/HxT7e/v79T4gIAA4/WdO3dUWFgoPz8/h8fbbDan/r7yxv6Q94H7//u5ez6JjK7g7vkkMrqKu2d093wSGV3B3fNJZHQVT8gouXdOd852Dxl/OHfPJ5HRFdw9n0RGV3H3jO6eTyKjK7h7Pk9Ac7sCpZvbzjSmyzo/Ly/PqfcICgpy6u8rT7169VzyPlXjstUBHvDgfwf3yuju+SQyuoK755PI6CruntHd80lkdIWyr0HcPaN75ZPI6ErfX8+6Xz5P+Dck4w/n7vkkMrqCu+eTyOgq7p7R3fNJZHQFV/X9vJnNbrfbrQ7hzpYsWaIPP/zQqN9991298sorDo8fNmyYDh8+bNR79uzRY4895tKMAAAAAAAAAOBtWHO7AqVnWd/bHNJRRUVFD30/AAAAAAAAAIDzaG5XoPQa24WFhU6NL33+/WtwAwAAAAAAAAAeDc3tCpRubufl5Tk1/v7za9WqxcxtAAAAAAAAAHABmtsVCA0NNdXZ2dkOj7Xb7abzS78XAAAAAAAAAODR0NyuQMuWLU31+fPnHR576dIl0xrd4eHhLssFAAAAAAAAAN6M5nYFGjVqpDp16hj1sWPHHB6blpZmqmluAwAAAAAAAIBr0Nx2QKdOnYzXly9fVmZmpkPjUlNTTXWXLl1cmgsAAAAAAAAAvBXNbQf07t3bVG/dutWhcdu2bTNe+/n56emnn3ZpLgAAAAAAAADwVjS3HdCrVy/5+PgYdXJysmkt7bKkpKTo9OnTRh0ZGSl/f/9KywgAAAAAAAAA3qSW1QE8QUhIiKKjo/X5559LkjIzM7Vs2TKNHz++zPMLCws1e/Zso7bZbBo7dmyVZHWl4uJipaWl6eTJk7p06ZKKi4sVEBCgJk2a6Cc/+Ykef/xxqyMCAGAJu92uzMxMnTx5UllZWbp586b8/PwUFBSk1q1b64knnlDNmjWtjgl4tNzcXKWmphqfsUaNGqlZs2bq0KEDny/AArm5uTpx4oTOnj2r3Nxc2e121atXT02aNNHPf/5z015VAABUFZrbDoqNjdX69euVl5cnSVq0aJH8/f01fPhw1ajx/QT4K1euaOLEiUpPTzeO9evXT23btq3yzI/qypUr+uijj7R27Vrl5uaWe179+vXVo0cPTZs2TUFBQVWWD4B08+ZN9e/fX1lZWabjn376qbp27WpRKqB6u3Hjhnbs2KE9e/bowIEDunr1arnnBgYGKioqSjExMWrWrFkVpgQ83+nTp7VgwQLt2bOnzKclGzZsqKFDhyo2Nla+vr4WJAS8Q0lJiQ4fPqzt27dr//79OnHiRLnn2mw2RUREKCYmRpGRkVWYEkB5Zs+erc8++8x0LCoqSnPnzrUoEVA5bHa73W51CE+xZ88ejR07ViUlJcaxsLAwdevWTUFBQTp79qx2796tgoIC489btWql1atXKzAw0IrITtuyZYsSExN148YNp8a0bNmyElMBKC0pKUl/+9vfHjhOcxuoHPv379fIkSMrXJasNH9/f02bNk0vv/xyJSUDqpcNGzYoKSlJ+fn5FZ7btm1bLVq0iB+QgEryi1/8QmfPnnV6XP/+/TVz5kyPuQcGqqNvvvlGr776qql/JdHcRvXEzG0n9OzZU3PmzFFSUpJu3bolSTpz5ozOnDlT5vlt2rTR4sWLPeZLfcWKFZo3b57pmL+/vyIiItS0aVPVqVNH169fV0ZGho4ePaqbN29alBTwbqmpqVq1apXVMQCvcvPmzQca276+vmrfvr3Cw8MVHBysoqIinTx5UgcOHFBhYaEkKT8/X1OnTlVBQYGGDRtmRXTAY+zdu1fx8fEPTCTp2rWrgoKClJmZaZpIkpaWptjYWI+aSAJ4kitXrjxwLCwsTO3atVNISIj8/PyUlZWllJQU09OEmzdvVk5OjlasWCE/P7+qjAxA0u3bt5WQkPBAYxuormhuO2nw4MFq166dFixYoL1795b7qGR0dLTGjBnjMY9Kbtq0ydTY9vf314QJE/Taa6+VeUFSVFSkffv26a9//atsNltVRgW8WlFRkRISEnTvoZuGDRvq4sWLFqcCvMe9x66HDh2qZ599tszvyIsXL2rWrFnatm2bcWz27Nnq1KmTnnjiiaqMC3iMnJwcTZo0ybgRt9lsmjJlSrlLAB48eFCSlJ6ersTERC1cuNCS3IA3aNq0qYYMGaKoqCg1btz4gT8vLi7Wl19+qTlz5hg/7h46dEjvv/++pkyZUtVxAa+3bNkyYxkh7hfhDViW5Ae4evWqsclNXl6eQkJC1Lx5c3Xs2NGjNrm5fPmyXnjhBV27dk3S3XVCP/nkEz355JMWJwNQ2qJFi7R48WJJ0jPPPKMGDRpo3bp1xp+zLAlQOXbs2KHVq1crLi7O4QZ1XFycNm3aZNSRkZFatmxZZUUEPNqMGTP0xRdfGPWECRMeunl7VFSUMjIyJN1thK9du9aj9rgBPMGLL76o4cOHa/DgwQ7d3+7du1djxowxfqTy8fHRzp07FRoaWtlRAfy/U6dOadCgQSoqKtKPfvQjJSYm6re//a3x5yxLguqoRsWnoDz169dX7969NWzYMI0ePVovvfSSunTp4lGNbUmaM2eO0diWpLlz59LYBtxQenq6/vKXv0iSateurcTERIsTAd6jZ8+e+uijj5yaeZ2QkKCAgACj/uqrr5za0wLwFpcuXVJycrJRt2jRQqNHjy73fD8/PyUkJBi13W7X0qVLKzUj4I3Wrl2rl19+2eH728jISPXv39+ob9++rZ07d1ZWPACl2O12JSQkqKioSJI0btw4NW3a1OJUQOWjue3lLly4oM2bNxt19+7d1adPHwsTASiL3W7XtGnTjKWQxo8fr+bNm1ucCvAetWo5v5JbUFCQevToYdS3b9/WsWPHXBkLqBZ27txpWuovOjpaPj4+Dx0TERGh8PBwo967d69Dm1ACcNyjfPfd39yWpP/85z+uigOgAqtWrdLhw4clSa1bt9aIESMsTgRUDZrbXm7NmjWmTQbY7ApwT1988YW+/vprSVyoAJ6kRYsWpvrSpUsWJQHc165du0x13759HRr3/PPPG68LCwu1b98+l+YC4Dy+9wBrZGdna8GCBZLuLtc1Y8aMCn8oBqoLmtte7v61QOvUqaNnnnnGwjQAypKVlWW6UElKSuJCBfAQeXl5pprPLvCgI0eOGK/v7WHjiA4dOpjqQ4cOuTQXAOeV/t57lNnfAJw3a9YsY/m76OhodezY0eJEQNWhue3Frl27pjNnzhh1+/bt5evra10gAGVKSkoybhSGDBmiTp06WZwIgKOOHz9uqtlUCzDLzs42rUXfpk0bh8eW3kDy3gaTAKxT+nuvcePGFiUBvMc//vEPbd++XZLUoEEDxcXFWZwIqFr8jOrFvv32W1N9bxNJu92uf/7zn9q4caPS0tKUlZUlX19fNWjQQO3bt1fPnj3Vp08f1ajBbyNAZduyZYt2794tSQoODtY777xjcSIAjjp37pxSU1ONum7dug804wBvd+rUKVPdpEkTh8eGhITIx8fHWK/79OnTLs0GwHkbN2401d26dbMoCeAdbty4oVmzZhl1fHy86tWrZ2EioOrR3PZi6enpprp58+Y6f/684uPjdfDgQdOf5efnKzc3VxkZGVq7dq1atmypmTNnqnPnzlUZGfAq165d07vvvmvUXKgAnmXJkiWy2+1G3adPHx7PBkrJzs421c7M8rTZbAoNDdW5c+fKfC8AVevgwYOm+8g6deqYNlYG4Hrz5s1TTk6OJKl79+568cUXLU4EVD2m3nqxa9eumeo7d+7ol7/85QON7bJkZGQoJiZGmzdvrqx4gNf7/e9/b2zCExERoUGDBlmcCICjvvrqK61bt86ofXx8FBsba2EiwD3l5+eban9/f6fGBwQEGK/v3LmjwsJCl+QC4Jxbt24pISHBdGzEiBGmzygA1zp06JCSk5MlSb6+vpo+fbrFiQBrMH3Ii12/ft1Uz58/31jzMDw8XGPGjFG3bt1Uv3595ebm6sCBA/rzn/9szPi+ffu24uPjFRYWpp/+9KdVnh+ozvbv3681a9ZIunuhkpSUZG0gAA7LycnR5MmTTbO2Y2Nj9fjjj1uYCnBPpZvbfn5+To0vfX5eXp7T7wHgh5sxY4ZpP6fw8HCNHDnSukBANVdUVKSEhATjenPMmDEKCwuzNhRgEWZue7HSNxP3GtuRkZHasGGDBg0apNDQUPn6+qpRo0YaOHCg1q1bp2effdYYc+9/qABcp7CwUImJiUYdGxvLhQrgIQoLCzVhwgRdvHjRONahQweNGTPGwlSA+yo909rHx8ep8aU3Q2fmNlD1PvnkE9PTSr6+vvrDH/7AD01AJVqyZImx18SPf/xjjRo1yuJEgHWYue0GevXqpfPnz1fa+8fFxWn06NEPHC/rYiM0NFQLFix44EbhHl9fX82fP18DBgzQ//73P0nSd999p5SUFEVERLg2OGAhqz6XkrRo0SKdPXtW0t0LlfLOA7yRlZ/NihQXFysuLk5ff/21ceyxxx7TBx984HTDDvAWpa9H720O6aiioqKHvh+AyrV161bNnTvXdGzmzJl68sknLUoEVH/Hjx/XihUrjHrGjBnl9nAAb8DMbS9W1pqGr7/+uurUqfPQcYGBgYqJiTEd27VrlyujAV7rv//9r1auXGnUSUlJXKgAHmL69Onavn27UQcFBWn58uUKDQ21MBXg3kpfjzo787r0+azvC1SdlJQU/eY3v1FJSYlxLC4uTlFRURamAqq3kpISJSQkGD8GR0VFqWvXrhanAqxFc9uLlXXx36tXL4fGlj7vyJEjLskEeLPi4mL97ne/0507dyTdvVDp1q2bxakAOGLevHnGhj7S3YbdsmXL1KpVKwtTAe6vdHM7Ly/PqfH3n1+rVi1mbgNV5OjRoxo3bpzp6Ylf/epXPHEIVLLPPvtM//73vyXdnUgxefJkixMB1mNZEjfwwQcfVOr6gM2aNSvzeOPGjU11rVq1FB4e7tB7tmjRQrVr11ZBQYGku5tnAdWJFZ/LTZs26dtvv5XEhQpQHqu+Mx9m6dKlpkdDfX19tWTJErVv396V0YBqqfSTDdnZ2Q6PtdvtpvN5SgKoGidOnNCoUaNMezgNGTKEa1egkhUUFOj999836smTJys4ONi6QICboLntBn72s59Z8veWnk0WGBgom83m8Pi6desaze3c3FxXRgMsZ8Xn8urVq8bra9euqUePHhWOuf8xUEmKiYkxfY4//vhjPfXUU64LCVjMqu/M8nz++eemm4yaNWvqj3/8o7p3725dKMCDtGzZ0lQ7s6b+pUuXTGt0OzpJA8Cjy8zM1Jtvvmm6/+vbt69mzpxpXSjASxQVFZl+VEpISFBCQsJDx9jtdlO9fv16bdy40agHDx6s9957z7VBgSpGc9uLtWzZUjabzfifXekNeSpy//k8Agq4lt1uV3FxsdPjSje7S1/MAHCdDRs2aNasWUZts9n03nvv6bnnnrMwFeBZGjVqpDp16ujGjRuSpGPHjjk8Ni0tzVTT3AYqV3Z2tmJiYnTx4kXjWGRkpObPn68aNVjxFKhqj3K/WPo+s/T9I+CJ+AbyYgEBAWrbtq1R5+fnGzcWFbl165auX79u1DwKAwDwJjt27NDUqVNNPyAlJiZq8ODB1oUCPFSnTp2M15cvX1ZmZqZD41JTU011ly5dXJoLwPeuXLmimJgY09MVTz31lD788EP5+PhYmAwA4O2Yue3l+vTpo++++86oU1NTFRkZWeG4b775xvQLX5s2bSolH+BNYmJiFBMT49SY+Ph4rVu3zqg//fRTdssGKllKSoomTZpkbP4qSXFxcXrttdcsTAV4rt69e2vPnj1GvXXrVoc2pdu2bZvx2s/PT08//XRlxAO83s2bNzVy5EidOnXKONauXTstXbpUtWvXtjAZ4F3q1q2r48ePOzXmwIEDeuONN4w6KipKc+fOdXU0wFLM3PZyL7zwgukRsjVr1jg0Ljk52VRzMwEA8AZHjx7VuHHjTEtzjR071qFGHICy9erVyzTzMzk52bSWdllSUlJ0+vRpo46MjJS/v3+lZQS8VUFBgcaMGWOaENW6dWstX75cgYGBFiYDAOAumtteLiwsTAMHDjTqbdu2ae/evQ8d869//Utbtmwx6qCgIA0YMKDSMgIA4A5OnjypUaNGmTbyeeONN/TrX//aulBANRASEqLo6GijzszM1LJly8o9v7CwULNnzzZqm82msWPHVmpGwBvduXNHEydO1KFDh4xjYWFhWrlyperVq2dhMgAAvkdzG5owYYJppsvEiRP197//vcxzt2zZorffftu0xuhbb72lgICASs8JAIBVzp07pzfffFO5ubnGsVdeeUVTp061LhRQjcTGxpquJxctWqSVK1c+sNHVlStXNHLkSKWnpxvH+vXrZ9pHBsAPZ7fbFR8fb1oyqGnTpvr4448VEhJiXTAAAEphzW2oWbNmWrBggcaPH6+SkhLdunVL77zzjv70pz+pa9euCg4OVm5urvbv36+MjAzT2H79+un111+3KDkAAFVj/fr1ysnJMR1bt26dac17R4wbN05vvfWWK6MB1UJoaKgWLlyosWPHqqSkRHa7XXPnztWqVavUrVs3BQUF6ezZs9q9e7cKCgqMca1atdLMmTMtTA5UTxcuXHhgwtOFCxfUu3dvp96nadOm2r59uyujAQBgQnMbku6udThv3jxNnz5deXl5kqRTp06ZNg0p7dVXX9W0adOqKiIAAJa5/4mle4qLi13yPgDu6tmzp+bMmaOkpCTdunVLknTmzBmdOXOmzPPbtGmjxYsXs+4vUAnK+r6y2+1Of/c9ynclAADOYFkSGAYOHKgNGzZowIAB5e56bbPZ1LlzZ61cuVJJSUmqVYvfRwAAAOAagwcP1tq1a/Xcc8+ZNpm8X8OGDTV+/Hh9+eWXatasWRUnBAAAgDux2ZlChDLcvHlTR44cUVZWlq5evarAwEA1atRInTt3VnBwsNXxAAAAUM1dvXpVqampysrKUl5enkJCQtS8eXN17NhRNWvWtDoeAAAA3ADNbQAAAAAAAACAx2FZEgAAAAAAAACAx6G5DQAAAAAAAADwODS3AQAAAAAAAAAeh+Y2AAAAAAAAAMDj0NwGAAAAAAAAAHgcmtsAAAAAAAAAAI9DcxsAAAAAAAAA4HFobgMAAAAAAAAAPA7NbQAAAAAAAACAx6G5DQAAAAAAAADwODS3AQAAAAAAAAAeh+Y2AAAAAAAAAMDj0NwGAAAAAAAAAHgcmtsAAAAAAAAAAI9DcxsAAAAAAAAA4HFobgMAAAAAAAAAPA7NbQAAAAAAAACAx6G5DQAAAAAAAADwODS3AQAAAAAAAAAeh+Y2AAAAAAAAAMDj0NwGAAAAAAAAAHgcmtsAAAAAAAAAAI9DcxsAAAAAAAAA4HFobgMAAAAAAAAAPA7NbQAAAAAAAACAx6G5DQAAAAAAAADwOP8HlTsgnuQxKsMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 491, + "width": 731 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(pm.draw(y, draws=2000, random_seed=rng), bins=30, rwidth=0.9);" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "363b907c-8146-4694-a821-7a2ebacbcab6", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 2 jobs)\n", + "NUTS: [y]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [12000/12000 00:04<00:00 Sampling 4 chains, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 5 seconds.\n", + "The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
y0.8632.08-3.1383.8320.0950.067555.01829.01.01
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat\n", + "y 0.863 2.08 -3.138 3.832 0.095 0.067 555.0 1829.0 1.01" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "with prebuilt_mixture:\n", + " idata = pm.sample(draws=2000, chains=4, random_seed=rng)\n", + "\n", + "az.summary(idata)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e6d9a596-af22-4074-bc96-85a91cd35a64", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Multiprocess sampling (4 chains in 2 jobs)\n", + "CompoundStep\n", + ">BinaryGibbsMetropolis: [idx]\n", + ">NUTS: [y]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [12000/12000 00:05<00:00 Sampling 4 chains, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 6 seconds.\n", + "The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n", + "The effective sample size per chain is smaller than 100 for some parameters. A higher number is needed for reliable rhat and ess computation. See https://arxiv.org/abs/1903.08008 for details\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
idx0.7180.4500.0001.0000.0280.020252.0252.01.02
y0.8752.068-3.1913.7660.1220.087379.01397.01.01
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail \\\n", + "idx 0.718 0.450 0.000 1.000 0.028 0.020 252.0 252.0 \n", + "y 0.875 2.068 -3.191 3.766 0.122 0.087 379.0 1397.0 \n", + "\n", + " r_hat \n", + "idx 1.02 \n", + "y 1.01 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "with explicit_mixture:\n", + " idata = pm.sample(draws=2000, chains=4, random_seed=rng)\n", + "\n", + "az.summary(idata)" + ] + }, + { + "cell_type": "markdown", + "id": "043b1591-ff13-4dde-880a-aee4572a0b19", + "metadata": {}, + "source": [ + "We can immediately see that the marginalized model has a higher ESS. Let's now marginalize out the choice and see what it changes in our model." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e9a84902-73af-4485-a40b-72200411a500", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 2 jobs)\n", + "NUTS: [y]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [12000/12000 00:05<00:00 Sampling 4 chains, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 5 seconds.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
y0.7312.102-3.2023.8110.0990.07567.02251.01.01
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail \\\n", + "y 0.731 2.102 -3.202 3.811 0.099 0.07 567.0 2251.0 \n", + "\n", + " r_hat \n", + "y 1.01 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "explicit_mixture.marginalize([\"idx\"])\n", + "with explicit_mixture:\n", + " idata = pm.sample(draws=2000, chains=4, random_seed=rng)\n", + "\n", + "az.summary(idata)" + ] + }, + { + "cell_type": "markdown", + "id": "4034eb4d-83f9-4543-992f-0f68bf47fb68", + "metadata": {}, + "source": [ + "As we can see, the `idx` variable is gone now. We also were able to use the NUTS sampler, and the ESS has improved.\n", + "\n", + "But `MarginalModel` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the `recover_marginals` method." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "a6c4457a-0af5-4ba8-89c9-e2c8267f0336", + "metadata": {}, + "outputs": [], + "source": [ + "explicit_mixture.recover_marginals(idata, random_seed=rng);" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "627f23bf-c871-4b81-bbf7-14f411604eb3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
y0.7312.102-3.2023.8110.0990.070567.02251.01.01
idx0.6830.4650.0001.0000.0230.016420.0420.01.01
lp_idx[0]-6.0645.242-14.296-0.0000.2270.160567.02251.01.01
lp_idx[1]-2.2943.931-10.548-0.0000.1730.122567.02251.01.01
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \\\n", + "y 0.731 2.102 -3.202 3.811 0.099 0.070 567.0 \n", + "idx 0.683 0.465 0.000 1.000 0.023 0.016 420.0 \n", + "lp_idx[0] -6.064 5.242 -14.296 -0.000 0.227 0.160 567.0 \n", + "lp_idx[1] -2.294 3.931 -10.548 -0.000 0.173 0.122 567.0 \n", + "\n", + " ess_tail r_hat \n", + "y 2251.0 1.01 \n", + "idx 420.0 1.01 \n", + "lp_idx[0] 2251.0 1.01 \n", + "lp_idx[1] 2251.0 1.01 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.summary(idata)" + ] + }, + { + "cell_type": "markdown", + "id": "1d687f4b-ef2a-4512-8e81-0c0b1bc0d0bc", + "metadata": {}, + "source": [ + "This `idx` variable lets us recover the mixture assignment variable after running the NUTS sampler! We can split out the samples of `y` by reading off the mixture label from the associated `idx` for each sample." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "70d23a58-3ebd-4b67-80f5-42dd495dfc81", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AACHPUlEQVR4nOzde5jWdZ0//tccgAHl4AEH0aIgQAlGwayw/UpFu6J5oZb4pbVVEt0rvXQFXF0zXEPRPKxm4mobagpWpt81IzUPsGnlIUFQFHRoFc8OeABJcWAO9+8Pf9zNfTOHe2DuGd74eFxX1+XrM+/3+/W+Bz4zzXM+vO+STCaTCQAAAAAASEhpV28AAAAAAADaS7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkp7yrN0Dr1q1bV9C4kpKS6NevX0RErF+/PjKZTBF3BR9f7jXoHO416BzuNeg87jfoHO416BxN77Wu5MltAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAklPe1RsAAAAAAD5y9913x+zZs7P1nXfeGQMHDuzQHhdeeGHce++9ERExYMCAuOuuuzp0fdr22muvxapVq2Lt2rXR0NAQe+21VwwePDiGDBnS1VtLinAbAAAAYCdyxrTGrt5Clyovfy8iIurrG9o1b87VDjig+B599NH42c9+Fs8880yzH//MZz4T3/72t2PChAmdvLM0CbcBAAAAAIook8nE1VdfHb/61a9aHfe///u/8YMf/CAeeeSROP/886N79+6dtMM0CbcBAAAAAIrouuuu2yrYrqqqihEjRkRZWVn85S9/icWLF0cmk4mIiAcffDDKysriBz/4QRfsNh3CbQAAAADYQRx55JFx5JFHdvU26EB/+tOfYv78+dm6d+/ecckll8TBBx+cM666ujrOPvvsWLt2bURE3HfffXHAAQfEMccc06n7TYnDhAAAAAAAiiCTycT111+frUtKSuLyyy/fKtiOiBg+fHhce+210aNHj+y1G2+8MWpraztlryny5DYAAABJq7j9xKKuX3vcLUVdH4Cd18MPPxwvvPBCtj788MNj9OjRLY7/5Cc/Gccff3zcdNNNERHx9ttvx4IFC+K4444r+l5T5MltAAAAAIAi+J//+Z+c+pvf/Gabc44++ugoKytrcQ3+xpPbAAAAALATyGQysWLFinjxxRdj/fr10adPn6isrIzRo0dHRUVFV2/vY6e+vj4ee+yxbF1ZWRmf/exn25y31157xciRI+Ppp5+OiIhnnnkm1q9fH/369SvWVpMl3AYAAACAHcTdd98ds2fPztZ33nlnDBw4sM1599xzT8ydOzdqamq2+tiuu+4aX//61+PUU08tOOS+44474sorr8zW48aNi8suu6zNefX19XHaaafF8uXLs9cuuuii+Pu///uC+u5MXnjhhfjrX/+arUeNGlXw3FGjRmXD7YaGhli+fHkceuihHb7H1DmWBAAAAAASVV9fH9///vfjoosuajbYjoh4//3341e/+lWcdNJJsWbNmoLWnTRpUowfPz5bP/zww3Hbbbe1Oe8nP/lJTrD9jW9842MZbEdEvPTSSzn1sGHDCp47fPjwVtfiI57cBgAAAIBEXXzxxbFo0aKca4MGDYqDDjoo+vbtG++++278+c9/jpqamnjxxRdj5syZBT0JHhFx3nnnRXV1dbz22msREXHttdfGyJEjY+TIkc2Of+SRR+LnP/95th42bFhMmzZt217YTuDll1/OqQcMGFDw3MrKypxauN084TYAAAAAJGjRokXxu9/9Llv36tUrzj333PiHf/iHnHGZTCb++7//O66++up45plnorq6uqD1d9lll7j44ovjlFNOic2bN0d9fX3MnDkz5s2bF3369MkZu2bNmpg1a1ZkMpmcud27d9/OV/k3b775Zhx77LEdtl5z5syZE2PGjOmQtd56662ceq+99ip4bv7YtWvXdsiedjaOJQEAAACAxDQ0NMQ111yTrUtLS+OHP/zhVsF2RERJSUkce+yxMXPmzIiI2Lx5c8F9hg8fnvP0dU1NTVx44YXZEDvib0ejbNiwIXvtvPPOi0984hPteUltymQy0dDQUNT/NX1d22vjxo05da9evQqemz/2ww8/7JA97WyE2wAAAACQmEcffTTn/Oyvf/3r8YUvfKHVORMmTIgvfelL7e6Vf272n/70p/jFL36Rrf/zP/8znn322Wx97LHH5pzX/XGVH0i35yn2/LHC7eY5lgQAAAAAEvPwww/n1Mcdd1xB8/7v//2/8cgjj7S737nnnhvV1dXxyiuvRETEddddF6NGjYr169fHL3/5y+y4/fbbL/7lX/6l3esXYuDAgfH4448XZe1iyH9Cvlu3bgXPzQ+3N23a1CF72tkItwEAAAAgMU2flN5rr71i6NChBc373Oc+F7169drqyIy2bDlD++STT45NmzZFQ0NDzJw5M2pra7Njdt111w4/Zztl+Z+Hurq6gufmB+M9evTokD3tbBxLAgAAAAAJyWQy2SeoI6LgYDvio7O5hwwZsk19hw4dGjNmzMjWa9eu3eqc7X322Web1t4Z9ezZM6duz1nn+WPz1+Ijwm0AAAAASMj7778fjY2N2Xq33XZr1/zdd999m3sfddRRcdhhh211fdKkSfHVr351m9fdGeW/KWR7npbPHyvcbp5wGwAAAAASkv/mghUVFe2a397x+Zo7dmRb3qhyZ9e/f/+ceu3atQXPbfpmoREfHT3D1py5DQAAAAAJyX+Kt+m514Vo7/imfve738Vvf/vbra7Pnj075s2bt11PhbflzTffjGOPPbZo60dEzJkzJ8aMGdMha33qU5/KqWtqagqemx+E56/FRzy5DQAAAAAJ2XXXXaO09G+x3rp169o1/913392mvqtXr47LL788Wzc9duPtt9+OCy64IOe4lI6WyWSioaGhqP/LZDIdtt/8QLq6urrguc8//3yra/ER4TYAAAAAJKSkpCQ++clPZuu//OUvBc9tbGyMF154od09a2trY+bMmdkjUUpLS+Pyyy+PI444Ijtm8eLF8bOf/azda++sBg8eHL17987Wzz77bMFzn3nmmex/l5WVRVVVVYfubWfhWBIAAAAASMzIkSPjpZdeioiPjrD4y1/+EkOHDm1z3pNPPtmuNzbc4oorrsgJxadOnRqf+9znYuTIkfHcc8/F6tWrIyLixhtvjAMPPDAOOuigdvdoy8CBA+Pxxx/v8HWLpby8PMaOHRsPPPBARHx0jvazzz4bI0eObHXe2rVrY8WKFdl61KhR0a9fv2JuNVme3AYAAACAxBx66KE59R133FHQvF/96lft7nXvvffGPffck60/97nPxXe+852I+OjNKS+++OLsm1Q2NjbGv//7v8c777zT7j47o/Hjx+fUd955Z5tz7rrrrmhoaMjWX/3qVzt8XzsL4TYAAAAAJOZLX/pSVFZWZuu77747lixZ0uqcBx98MP70pz+1q8/q1avjiiuuyNZ77rlnzJo1K+fM78GDB8e//uu/Zut33nmn6Odvp+LQQw+NIUOGZOvf/e53sWzZshbHv/LKK/Hzn/88W++5554xceLEou4xZcJtAAAAAEhMWVlZnHHGGdm6sbExzjnnnHjwwQe3GpvJZOLXv/51XHjhhRER0b1794J61NbWxve///3sOdtlZWUxa9as2GOPPbYae+SRR+acv71kyZK46aab2vWadkYlJSVx6qmnZutMJhPnnHNOLF68eKux1dXVcfrpp8emTZuy16ZOnZp9Kp6tOXMbAAAAABL0ta99Lf70pz/FfffdFxERGzdujPPPPz9uuOGG+NznPhd9+/aNd999N5544ol44403IuKj85sHDhwY999/f5vrX3755fHiiy9m66lTp7Z6lvY555yTc/72TTfdFKNHjy7K+dsp+bu/+7v4p3/6p5g/f35ERPz1r3+NM844I6qqqmLEiBFRVlYWf/nLX2Lx4sWRyWSy8yZMmBDHHHNMV207CcJtAAAAAEjUzJkzo66uLhYtWpS99vLLL8fLL7+81dhPfepTMXv27Piv//qvNte955574t57783Wn//852PKlCmtztly/vZJJ50UtbW12fO3582b1+zT3h8np556amzatCluv/327LXly5fH8uXLmx3/ta99Lb73ve911vaSJdwGAAAA2InMufrjewptSUlJ9OvXNyIi1q9fn/MU7M6qvLw8Lr744hg7dmzMnTs31qxZs9WYXr16xeGHHx6nn3569OzZs801mztn+wc/+EHOOdst2XL+9uzZsyPib+dvX3PNNQXN31mVlpbGjBkz4otf/GLcdNNN8eyzzzY7bsiQIfHtb387Dj/88E7eYZpKMh+Huzxh69atK2jcR1+8+0XEx+eLN3QF9xp0DvcadA73GjuLittPLOr6tcfdst1ruN+gc3zc77VMJhPPPvtsvPDCC/Hee+9Fnz59orKyMsaMGePc5h3Mq6++GtXV1fHWW29FY2Nj9O/fPwYPHhyf+cxnunprBWl6r3UlT24DAAAAwE6gpKQkRo0aFaNGjerqrdCGT3ziE/GJT3yiq7eRvI/vvwUAAAAAACBZwm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA55V29gWJ55ZVXYuXKlVFTUxONjY1RWVkZQ4cOjWHDhnVYj+XLl8dLL70Ua9asiZ49e0ZlZWVUVVVFZWVlh/UAAAAA4OPj7rvvjtmzZ2frO++8MwYOHNihPS688MK49957IyJiwIABcdddd3Xo+tBZOiXc/upXvxqvv/76Ns194IEHYtCgQQWPf/jhh+P666+PZcuWNfvx4cOHx8knnxwTJ07cpv00NjbG/PnzY/78+fHqq69u9fHS0tIYO3ZsTJs2LaqqqrapBwAAAACwc3n33Xdj5cqV2f8999xz8d5772U/fsQRR8S///u/d+EO07PTPLmdyWTikksuiXnz5rU6rrq6Os4+++x46KGH4tJLL43u3bsX3GPdunUxbdq0ePzxx1sc09jYGI888kg88cQTMWPGjDjppJMKXh8AAABge1XcfmJXb6HLlJRE1Jd/FHdV1NdHJlP43NrjbinSrvi4mzVrVixbtixqamq6eis7nU4Pt0tKSqK0tPCjvktKSgoad+WVV24VbI8ZMyZGjRoVZWVlUV1dHY8++mhk/v+vavfcc0+UlZXFFVdcUdD6dXV1ccYZZ8TixYuz18rLy2PcuHExZMiQ+OCDD2LJkiVRXV2dHX/ZZZdF7969Y9KkSQX1AAAAYMe2raFhIYGbYA1g5/THP/4x3n///a7exk6p08Pto48+Oi699NIOXfP3v/99zJ07N1v36dMnrrnmmhg7dmzOuJUrV8app56a/S3JggUL4qCDDorJkye32eOqq67KCbaHDRsW119/fey777454xYsWBDnnXde1NXVRcRHv5mpqqqK4cOHb/PrAwAAAODj4cgjj4wjjzyyq7dBke2+++4xaNCgFo9WpjDJH0uSyWTiqquuytYlJSVx3XXXxcEHH7zV2BEjRsTNN98cRx11VGzatCkiIq699to4+uijo6KiosUeNTU1ceutt2brPfbYI+bNmxe77bbbVmMnTpwYjY2N8W//9m8R8dET3D/+8Y/juuuu2+bXCAAAAACkqXfv3rHffvvFiBEjYv/994/9998/BgwYEG+88UZ84xvf6OrtJa3w80F2UAsXLoxVq1Zl66OOOqrZYHuLT3/60zF16tRs/dZbb8Udd9zRao8bbrghNm/enK3POuusZoPtLY4++uicPSxatCief/75VnsAAAAAADufX//613HttdfGaaedFl/5yldiwIABXb2lnUby4fZ9992XUx9//PFtzpk8eXKUlZW1uEZTmUwmHnjggWzdt2/fgv5pyLe+9a2c+v77729zDgAAAAAAhUk63K6vr48//OEP2XrvvfeOqqqqNudVVlbGgQcemK2XLVsW7777brNjn3322VizZk22/vKXvxw9evRos8f48eOjW7du2XrRokVtzgEAAACAbZXJZOLZZ5+NBQsWxLx58+Kuu+6Kxx57LGpra7t6a1AUSZ+5vWrVqtiwYUO2Hj16dMFzR48eHU8++WRERDQ0NMTSpUvja1/72lbjtoxpb4+KiorYf//9Y/ny5RERUV1dHRs2bIg+ffoUvEcAAAA+nipuP7Go69ced0tR1we23d133x2zZ8/O1nfeeWcMHDiwzXn33HNPzJ07N2pqarb62K677hpf//rX49RTT231feeauuOOO+LKK6/M1uPGjYvLLruszXn19fVx2mmnZTOxiIiLLroo/v7v/76gvtAeST+5/cILL+TU+++/f8FzR4wYkVO/+OKLBfXIn9ea/P201AMAAAAAtkV9fX18//vfj4suuqjZYDsi4v33349f/epXcdJJJ+WcUNCaSZMmxfjx47P1ww8/HLfddlub837yk5/kBNvf+MY3BNsUTac/uf3888/H9OnTY+XKlfH2229HRES/fv1i3333jYMPPji+9rWvxX777VfQWvlhcSG/xdpi7733bnWtlq7nz2tN/n5efPHFnONQAAAAAGB7XHzxxVsdhzto0KA46KCDom/fvvHuu+/Gn//856ipqYkXX3wxZs6cWXCGdt5550V1dXW89tprERFx7bXXxsiRI2PkyJHNjn/kkUfi5z//ebYeNmxYTJs2bdteGBSg08Pt5557Lp577rmca++//3689tpr8fjjj8ecOXPi0EMPjZkzZ8agQYNaXSv/N03teafR/LEt/WaraY/y8vLo379/h/cAAAAAgPZatGhR/O53v8vWvXr1inPPPTf+4R/+IWdcJpOJ//7v/46rr746nnnmmaiuri5o/V122SUuvvjiOOWUU2Lz5s1RX18fM2fOjHnz5m119O6aNWti1qxZkclkcuZ27959O1/l37z55ptx7LHHdth6zZkzZ06MGTOmqD3oODvkmdt/+MMf4pvf/Gb8x3/8R3z5y19ucdzGjRtz6l122aXgHvlj89dq7nrPnj2jpKSkw3u0ptB+Tce1Z49A+7jXoHO416BzuNfYWRT7r2/uvdJRa3ZOn5b7u+d3Zv54/6Y9n4sd5b7I30dJSUmze2toaIhrrrkmW5eWlsall14aX/jCF5pdc9KkSdG7d++44IILYvPmzW2uv8V+++0X06dPz563XVNTExdddFFcccUV2XlbjkZp+t543//+9+OTn/xkga+6cA0NDR2+Zr7O+rtQ6J/1jmhH2WenhduVlZUxfvz4OOSQQ2L48OGxxx57RPfu3WP9+vXx3HPPxcKFC+PXv/519ub661//Gv/yL/8S8+fPjwMOOKDZNfPD4vb8JqhHjx6trtXc9fw5bcnfz7aE2/369Wv3nL59+7Z7DtB+7jXoHO416BzuNVJWX17cH22b/lzWEb3KW1ijo/u0Zlt+1iQdxf77k4qW7rWW7Cj3Ra9evXLqPn36NLu3//mf/8k5ceCYY46Jww47rNW1J0+eHA899FD8/ve/z14rLS1t87WfdNJJ8eyzz8Y999wTERF//OMf484774ypU6dGRMSll14azz77bHb88ccfH9/85jdbXXNbvP/++x2+Zr5dd9210/4u5L+e7t277zB/D1PRKV/tLr744jj44IOb/aLSv3//6N+/fxx66KExderUOP3002PVqlUREbFp06aYPn163Hfffc0G15s2bcqp2xNu54+tra1tdlzTHt26dSt4/fb0AAAAAID2ePDBB3PqE044oaB5J5xwQk64XagLL7wwVqxYES+99FJERFx11VUxevToWLduXfzsZz/LjvvsZz8b5557brvXL8S+++5b8JEqfDx0Srg9duzYgsYNGjQobr755jj22GPjjTfeiIiI119/Pe644444/vjjtxqf/yR1039S0Zb8sRUVFc2O69GjR3z44YcREVFXV1fw+u3p0Zr169cXNK6kpCT7tM17772XPd8I6FjuNegc7jXoHO41dhYV9fVFXf/9Jj+XbU+vLQ981bewRkf1KcT7Bf6sSZqK/fdnR9fWvdaSHeW+yP+X/xs2bGg2H1q6dGn2v/faa68YMGBAQTnSfvvtF7169cr2aWxsLDh/mj17dkydOjU2bdoU9fX1ceaZZ+Y8zLnrrrvGRRddFBs3btymEww+bpoe4xLxUZZY6J9FV2v6/yO70g7371T22GOP+Nd//deYMWNG9tq9997bbLid/8802hNu5z/1nb9W0+tbwu38OW3J309LPVqzLT9gZDIZP5hAJ3CvQedwr0HncK+RsmL/1W16b2xrr/yjSZtbpyP6FMr9vnP7OP/xFnKvtWRHuS/y99Hc9+hMJhOvvPJKth46dGjB+y8pKYkhQ4bEM8880+L6LfnMZz4TM2bMiB/+8IcREbF27dqcj5933nkxcODAHeZzuaMr5M+a1pV29Qaac9hhh8Wuu+6arZ966qlswNxUflj8wQcfFNwjf2xr4fYWH374YTQ2NnZ4DwAAAAAo1Pvvv5+TUe22227tmr/77rtvc++jjjqq2bO9J02aFF/96le3eV3YFjtkuF1eXh6jRo3K1vX19Vv9JijiozepbKqmpqbgHm+++WZOPWDAgGbHNe1RX18fb7/9dof3AAAAAIBC5T8E2t6jcLfl6Nymmnvfuy996UvbtSZsix3uWJIt9thjj5x63bp1MWjQoJxrQ4YMyam3nNNdiPwgfPDgwc2OGzJkSCxZsiSnx1577VVQj/xwO3+/AAAA0NUqbj+xaGvXHndL0daGj7OePXvm1E3PvS5Ee8c39bvf/S5++9vfbnV99uzZMW/evO16Krwtb775Zhx77LFFWz8iYs6cOTFmzJii9qDj7JBPbkds/Ruo/DePjNg6LF65cmXB669YsSKnbinczr/enh75Y1vqAQAAAACF2nXXXaO09G+x3rp169o1/913392mvqtXr47LL788Wzc9gvftt9+OCy64oF1H+rZXJpOJhoaGov7Pmddp2WHD7VdffTWnbu63PkOHDo0+ffpk66eeeqrg9ZctW5b977KyshZ/I3PQQQe1OK81tbW18fzzz2fr4cOHR+/evQveHwAAAAA0p6SkJD75yU9m67/85S8Fz21sbIwXXnih3T1ra2tj5syZ2QdSS0tL4/LLL48jjjgiO2bx4sXxs5/9rN1rw7baIY8lefPNN3Nuyj322KPZo0DKy8vj0EMPjbvvvjs77+mnn44DDjig1fXXrFkTTz/9dLYePXp0i/9kYuTIkVFZWRlr1qyJiIiHHnooNm3a1OyT5E0tXLgw6urqsvX48eNbHQ8AAAAAhRo5cmS89NJLERGxdu3a+Mtf/hJDhw5tc96TTz4ZGzdubHe/K664IicUnzp1anzuc5+LkSNHxnPPPRerV6+OiIgbb7wxDjzwwK0eGO0IAwcOjMcff7zD1yVdO+ST29ddd13OPwH40pe+FCUlJc2OPfzww3PqX/ziF22uf9ttt0VDQ0O2njBhQotjS0pKct4BdsOGDdkwva0eTTX3LrIAAAAAsC0OPfTQnPqOO+4oaN6vfvWrdve6995745577snWn/vc5+I73/lORHz05pQXX3xx9k0qGxsb49///d/jnXfeaXcfaK+ihtubN2+OF198sV1z/vu//ztuv/32bF1SUhInnHBCi+PHjx8fw4YNy9a/+c1vYvHixS2OX716ddx4443Zun///jFp0qRW9zR16tScd4G98sorWz3L6K677srZw/jx42O//fZrtQcAAAAAFOpLX/pSVFZWZuu77747lixZ0uqcBx98MP70pz+1q8/q1avjiiuuyNZ77rlnzJo1K+fM78GDB8e//uu/Zut33nmn6OdvQ0SRw+3a2to48sgjY8aMGfGnP/0p6uvrWxz71ltvxaxZs+K8887LuX700UfHqFGjWpxXUlISM2bMyNaZTCZOO+20eOyxx7Yau3LlypgyZUps2rQpe+3000/P/mapJQMGDIhvf/vb2fqdd96JE044IV577bWtxi5YsCBmzpyZrbt16xZnnnlmq+sDAAAAQHuUlZXFGWecka0bGxvjnHPOiQcffHCrsZlMJn7961/HhRdeGBGR8xBna2pra+P73/9+9pztsrKymDVrVuyxxx5bjT3yyCNzzt9esmRJ3HTTTe16TdBeRT9zu6GhIe6555645557Ytddd439998/Bg8eHH379o1u3brFhg0b4vnnn4+nnnoq54zqiI/+icOWm641X/nKV+KUU06JuXPnRsRHR4dMmTIlxowZE1VVVVFaWhrV1dXx6KOP5hx3MnHixJg8eXJBr2P69OmxfPny7G/AVq1aFRMmTIhx48bF4MGDY+PGjbF48eKorq7OmXfBBRfE8OHDC+oBAAAAAIX62te+Fn/605/ivvvui4iIjRs3xvnnnx833HBDfO5zn4u+ffvGu+++G0888US88cYbERExatSoGDhwYNx///1trn/55ZfnnMowderUVs/SPuecc3LO377pppti9OjRRTl/OyX33ntvXHzxxW2O+93vftfin8sjjzzS0dvaKXTqG0q+//77sXjx4laPDdniW9/6Vpx77rkF/yZpxowZUVtbG/Pnz89eW7p0aSxdurTZ8UcccUTMnj27sI3HR7/RmjNnTpx55pnxxBNPREREXV1dLFy4sNnx5eXlMX369DaPPAEAAACAbTVz5syoq6uLRYsWZa+9/PLL8fLLL2819lOf+lTMnj07/uu//qvNde+555649957s/XnP//5mDJlSqtztpy/fdJJJ0VtbW32/O158+Y1+7T3x0VjY2PO+/+1JJPJFDSOvylquF1RURHf/e53489//nOsWLEiNm/e3Or4Xr16xde+9rU44YQTWj2KpDmlpaUxc+bM+D//5//EddddF0899VSz44YNGxYnn3xyHHXUUe1aPyJi9913j1tuuSXmzZsXt956a7z66qvN7uOLX/xiTJ8+PaqqqtrdAwAAAGB71B53S1dvocuUlJREv379IiLi/fXrc/4F/86qvLw8Lr744hg7dmzMnTs31qxZs9WYXr16xeGHHx6nn3569OzZs801mztn+wc/+EHOOdst2XL+9paHSrecv33NNdcUNB/aoyTTSXd5fX19rF69Ol555ZWoqamJDz74IOrr66N3797Rp0+fGDp0aAwfPjzKyso6pN/LL78cK1asiLVr10ZDQ0NUVlZme3SETCYTzzzzTKxevTrWrl0bFRUVUVlZGQcccEDOYf7bq7U3rmyq6Rfv9R+TL97QFdxr0Dnca9A53GvsLCpuP7Go6zcNCre1V0nJRwFUxEc/Hzd3u3VEn0J1Vq+Pc8hK1/i4f2/LZDLx7LPPxgsvvBDvvfde9OnTJyorK2PMmDFtvucctEfTe60rddqxJOXl5TF06NAYOnRop/QbNGhQDBo0qGjrl5SURFVVlaezAQAAANghlJSUxKhRo9p9IgKkyr8FAAAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA55V29AQAAAHZOFbefWNT1a4+7pajrAwA7Nk9uAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJKe/qDRTLK6+8EitXroyamppobGyMysrKGDp0aAwbNqzDeixfvjxeeumlWLNmTfTs2TMqKyujqqoqKisrO6wHAAAAAABb22HC7dmzZ8f8+fNzrh1zzDFx6aWXtmudhx9+OK6//vpYtmxZsx8fPnx4nHzyyTFx4sRt2mdjY2PMnz8/5s+fH6+++upWHy8tLY2xY8fGtGnToqqqapt6AAAAAADQuh3iWJKnnnoqfv7zn2/XGplMJi6++OL453/+5xaD7YiI6urqOPvss2PGjBmxefPmdvVYt25dfOc734lLLrmk2WA74qPw+5FHHol//Md/jJtuuqld6wMAAAAAUJguf3K7rq4uzj///GhsbNyuda688sqYN29ezrUxY8bEqFGjoqysLKqrq+PRRx+NTCYTERH33HNPlJWVxRVXXFHwPs8444xYvHhx9lp5eXmMGzcuhgwZEh988EEsWbIkqqurs+Mvu+yy6N27d0yaNGm7XhsAAAAAALm6PNz+6U9/GqtWrYqIiP79+8dbb73V7jV+//vfx9y5c7N1nz594pprromxY8fmjFu5cmWceuqpUVNTExERCxYsiIMOOigmT57cZo+rrroqJ9geNmxYXH/99bHvvvvmjFuwYEGcd955UVdXFxERs2bNiqqqqhg+fHi7XxcAAAAAAM3r0mNJXnzxxfjJT34SERE9e/aMGTNmtHuNTCYTV111VbYuKSmJ6667bqtgOyJixIgRcfPNN0ePHj2y16699tqora1ttUdNTU3ceuut2XqPPfaIefPmbRVsR0RMnDgxZs+ena3r6urixz/+cbteEwAAAAAAreuycDuTycT555+fPff6tNNOi3322afd6yxcuDD75HdExFFHHRUHH3xwi+M//elPx9SpU7P1W2+9FXfccUerPW644Yac87nPOuus2G233Vocf/TRR+fsYdGiRfH888+32gMAAAAAgMJ1Wbh92223xZIlSyLioyM+vvOd72zTOvfdd19Offzxx7c5Z/LkyVFWVtbiGk1lMpl44IEHsnXfvn3jyCOPbLPHt771rZz6/vvvb3MOAAAAAACF6ZJwe82aNXHllVdGxEfHiMyaNSu6devW7nXq6+vjD3/4Q7bee++9o6qqqs15lZWVceCBB2brZcuWxbvvvtvs2GeffTbWrFmTrb/85S/nHGvSkvHjx+e8pkWLFrU5BwAAAACAwnRJuH3RRRfFX//614iIOO6442LMmDHbtM6qVatiw4YN2Xr06NEFz206tqGhIZYuXdrsuCeffLLFea2pqKiI/fffP1tXV1fn7BUAAAAAgG3X6eH2Aw88EA8++GBEfPTGjGedddY2r/XCCy/k1E3D5LaMGDEip37xxRcL6pE/rzX5+2mpBwAAAAAA7dOp4fZf//rXuOiii7L1ueeeG3379t3m9fLD4oEDBxY8d++99251rZau589rTf5+hNsAAAAAAB2jU8Ptyy+/PNauXRsREYccckhMnDhxu9ZrehZ2RMSAAQMKnps/tqamps0e5eXl0b9//w7vAQAAAABA+5R3VqPFixfHHXfcERER3bt3jwsuuGC719y4cWNOvcsuuxQ8N39s/lrNXe/Zs2eUlJR0eI/WFNqv6bj27BFoH/cadA73GnQO9xrFVuy/Vlv+3nZWn47s1dw6xejTcv/O6eVrC53N9zboHDvK/dUp4fbmzZvj/PPPj0wmExER3/3ud+NTn/rUdq+bHxZ379694Lk9evRoda3mrufPaUv+frYl3O7Xr1+752zPUS9A4dxr0Dnca9A53GsUQ315cX/k3PLzUmf16ahe5S2s0dF9WtNZvbblZ1roKL63wc6vU44l+c///M9YvXp1RER8+tOfjlNOOaVD1t20aVNO3Z5wO39sbW1tmz26devWjt0V3gMAAAAAgPYp+pPb1dXVceONN2brWbNmtSuEbk3+k9SbN28ueG7+2IqKihZ7fPjhhxERUVdX1679FdqjNevXry9oXElJSfY3ku+99172KXmgY7nXoHO416BzuNcotor6+qKu//7///NSZ/XZ3l5bntiub2GNjupTiM7q9X6BP9NCR/G9DTpH03utKxU13G5sbIzzzz8/Gwofc8wx8YUvfKHD1u/Vq1dO3Z5wO/+p7/y1ml7fEm7nz2lL/n5a6tGabfkinMlkfPGGTuBeg87hXoPO4V6jGIr9V2rL39nO6rM9vfKPJm1unY7oU6jO6uXrCl3J9zbY+RX1WJL58+fH008/HREfnbN1zjnndOj6+WHxBx98UPDc/LGthdtbfPjhh9HY2NjhPQAAAAAAaJ+ihdu1tbVx9dVXZ+tzzjkndt999w7tUVlZmVPX1NQUPPfNN9/MqQcMGNBmj/r6+nj77bc7vAcAAAAAAO1TtGNJNm/eHBs3bszW559/fpx//vmtzsn/pyJ33XVXLFiwIFsfffTRcckll2TrIUOG5Ix/4403Ct5ffhA+ePDgZscNGTIklixZktNjr732KqhHfridv18AAAAAALZNUY8laaqhoaHN/+Uf+ZHJZFr9eH5YvHLlyoL3s2LFipy6pXA7/3p7euSPbakHAAAAAADt02nhdjEMHTo0+vTpk62feuqpgucuW7Ys+99lZWUxZsyYZscddNBBLc5rTW1tbTz//PPZevjw4dG7d++C9wcAAAAAQMuKdixJnz59orq6ul1z/vznP8cJJ5yQrY855pi49NJLWxxfXl4ehx56aNx9990R8dExIE8//XQccMABrfZZs2ZN9o0uIyJGjx7d4nngI0eOjMrKylizZk1ERDz00EOxadOm6NGjR6s9Fi5cGHV1ddl6/PjxrY4HAADoDBW3n1jU9WuPu6Wo6wMAbJH0k9sREYcffnhO/Ytf/KLNObfddls0NDRk6wkTJrQ4tqSkJA477LBsvWHDhmyY3laPppquAQAAAADA9kk+3B4/fnwMGzYsW//mN7+JxYsXtzh+9erVceONN2br/v37x6RJk1rtMXXq1OjevXu2vvLKK2PdunUtjr/rrrty9jB+/PjYb7/9Wu0BAAAAAEDhkg+3S0pKYsaMGdk6k8nEaaedFo899thWY1euXBlTpkyJTZs2Za+dfvrpUVFR0WqPAQMGxLe//e1s/c4778QJJ5wQr7322lZjFyxYEDNnzszW3bp1izPPPLNdrwkAAAAAgNYV7cztzvSVr3wlTjnllJg7d25EfHR0yJQpU2LMmDFRVVUVpaWlUV1dHY8++mhkMpnsvIkTJ8bkyZML6jF9+vRYvnx5LFmyJCIiVq1aFRMmTIhx48bF4MGDY+PGjbF48eKtzhm/4IILYvjw4R30SgEAAAAAiNhJwu2IiBkzZkRtbW3Mnz8/e23p0qWxdOnSZscfccQRMXv27ILX7969e8yZMyfOPPPMeOKJJyIioq6uLhYuXNjs+PLy8pg+fXqbR54AAAAAANB+yR9LskVpaWnMnDkzfvrTn8aBBx7Y4rhhw4bF5ZdfHj/60Y+iR48e7eqx++67xy233BLf+9734hOf+ESL+zjkkEPil7/8ZZx88sntWh8AAAAAgMLsUE9uf+ELX9jqWI/2GjduXIwbNy5efvnlWLFiRaxduzYaGhqisrIyhg4dut1HhJSWlsaUKVPixBNPjGeeeSZWr14da9eujYqKiqisrIwDDjggKisrt6sHAAAAAACt26HC7Y40aNCgGDRoUNHWLykpiaqqqqiqqipaDwAAAAAAmrfTHEsCAAAAAMDHh3AbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOSUd/UGAAAAgJ1fxe0nFnX92uNuKer6AOx4PLkNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHLKu3oDAAAAAB2p4vYTi7Z27XG3FG1tANrHk9sAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHLKO7NZY2NjvPLKK/Hyyy/HmjVrYsOGDbF58+bo1atX9OvXL/bbb78YOnRolJWVbXevV155JVauXBk1NTXR2NgYlZWVMXTo0Bg2bFgHvJKPLF++PF566aVYs2ZN9OzZMyorK6OqqioqKys7rAcAAAAAAFsrerj97rvvxo033hhLly6N5557Lj788MNWx/ft2zcmTpwYU6dOjb333rvd/R5++OG4/vrrY9myZc1+fPjw4XHyySfHxIkT2712xEcB/fz582P+/Pnx6quvbvXx0tLSGDt2bEybNi2qqqq2qQcAAAAAAK0r+rEkr7/+etxwww2xdOnSNoPtiIj33nsv5s+fH0cccUTceeedBffJZDJx8cUXxz//8z+3GGxHRFRXV8fZZ58dM2bMiM2bNxe8fkTEunXr4jvf+U5ccsklzQbbER+F34888kj84z/+Y9x0003tWh8AAAAAgMJ06rEkERF77rlnDBs2LAYNGhR9+/aNsrKyWL9+fTz33HPx1FNPRWNjY0REbNy4Mb73ve/F5s2bY/LkyW2ue+WVV8a8efNyro0ZMyZGjRoVZWVlUV1dHY8++mhkMpmIiLjnnnuirKwsrrjiioL2XVdXF2eccUYsXrw4e628vDzGjRsXQ4YMiQ8++CCWLFkS1dXV2fGXXXZZ9O7dOyZNmlRQDwAAAAAAClP0cLusrCwOPvjgOOyww+JLX/pSDB48uMWxr7/+elx44YXx0EMPZa9dcsklccghh8QnP/nJFuf9/ve/j7lz52brPn36xDXXXBNjx47NGbdy5co49dRTo6amJiIiFixYEAcddFBB4flVV12VE2wPGzYsrr/++th3331zxi1YsCDOO++8qKuri4iIWbNmRVVVVQwfPrzNHgAAAAAAFKbox5KMGDEibr311vinf/qnVoPtiIh99tknrrvuuvjSl76UvbZp06b4+c9/3uKcTCYTV111VbYuKSmJ6667bqtge8tebr755ujRo0f22rXXXhu1tbWt7qumpiZuvfXWbL3HHnvEvHnztgq2IyImTpwYs2fPztZ1dXXx4x//uNX1AQAAAABon6KH2+1VVlYWZ511Vs61P/7xjy2OX7hwYaxatSpbH3XUUXHwwQe3OP7Tn/50TJ06NVu/9dZbcccdd7S6pxtuuCHnfO6zzjordttttxbHH3300Tl7WLRoUTz//POt9gAAAAAAoHA7XLgdEfHZz342evXqla3ffPPNFsfed999OfXxxx/f5vqTJ0+OsrKyFtdoKpPJxAMPPJCt+/btG0ceeWSbPb71rW/l1Pfff3+bcwAAAAAAKMwOGW5HROyyyy7Z/97yJpD56uvr4w9/+EO23nvvvaOqqqrNtSsrK+PAAw/M1suWLYt333232bHPPvtsrFmzJlt/+ctfzjnWpCXjx4+Pbt26ZetFixa1OQcAAAAAgMLskOH2hx9+GOvXr8/Wn/jEJ5odt2rVqtiwYUO2Hj16dME9mo5taGiIpUuXNjvuySefbHFeayoqKmL//ffP1tXV1Tl7BQAAAABg2+2Q4fZ9990XdXV12frLX/5ys+NeeOGFnLppmNyWESNG5NQvvvhiQT3y57Umfz8t9QAAAAAAoH12uHD7+eefj8suuyxb9+vXL0488cRmx+aHxQMHDiy4z957793qWi1dz5/Xmvz9CLcBAAAAADpGeVdvIJPJxPvvvx+rVq2K++67L2677bbYvHlzRET06tUrrrnmmthzzz2bndv0LOyIiAEDBhTcN39sTU1Nmz3Ky8ujf//+Hd4DAAAAAID26fRw+8UXX4wjjzwyWzc2Njb7hpHjxo2L733ve/HpT3+6xbU2btyYUzd9E8q25I/NX6u56z179oySkpIO79GaQvs1HdeePQLt416DzuFeg87hXvt4KvYfde7fq87pleJram6drvjcFbvXzv6a2PH43gadY0e5vzo93M5kMtHQ0NDix0tLS+P444+Pk08+uc0nsfPD4u7duxe8jx49erS6VnPX8+e0JX8/2xJu9+vXr91z+vbt2+45QPu516BzuNegc7jXPj7qy4v7Y2DTn2E6q1dqr6m8hTW64nNX7F47+2tix+Z7G+z8drgztxsbG2P+/Pnxta99LS699NLsESXN2bRpU07dnnA7f2xtbW2bPbp161bw+u3pAQAAAABA+3T6k9tDhgyJ6urqbL158+ZYv359PPfcc3HffffFb3/726irq4u6urr42c9+FqtWrYqf/OQnzQbX+U9StxaE58sfW1FR0ey4Hj16xIcffhgREXV1dQWv354erVm/fn1B40pKSrK/kXzvvfeaPeoF2H7uNegc7jXoHO61j6eK+vqirv9+k59hOqtXKq9pyxPb9S2s0RWfu2L32tlfEzse39ugczS917pSl7+hZPfu3WOvvfaKvfbaK8aNGxcnnnhifPe7340333wzIiIeeeSRuPbaa2PGjBlbze3Vq1dO3Z5wO/+p7/y1ml7fEm7nz2lL/n5a6tGabfkinMlkfPGGTuBeg87hXoPO4V77+Cj2H3PTv0ed1SuF15R/NGlz63TF567YvXb218SOzfc22PntcMeS7LfffjF37tycI0BuueWWWLdu3VZj88PiDz74oOA++WNbC7e3+PDDD6OxsbHDewAAAAAA0D47XLgdETF06NA44ogjsnVtbW08/PDDW42rrKzMqWtqagruseXJ8C1aevPKpj3q6+vj7bff7vAeAAAAAAC0zw4ZbkdEHHLIITl103O6txgyZEhO/cYbbxS8fn4QPnjw4GbHbU+P/HA7fy0AAAAAALbNDhtu77nnnjn1+++/v9WY/LB45cqVBa+/YsWKnLqlcDv/ent65I9tqQcAAAAAAO2zw4bb+WF2nz59thozdOjQnOtPPfVUwesvW7Ys+99lZWUxZsyYZscddNBBLc5rTW1tbTz//PPZevjw4dG7d++C9wcAAAAAQMvKu3oDLcl/6nnvvffeakx5eXkceuihcffdd0fER8eAPP3003HAAQe0uvaaNWvi6aefztajR4+O3XffvdmxI0eOjMrKylizZk1ERDz00EOxadOm6NGjR6s9Fi5cGHV1ddl6/PjxrY4HAAA+3ipuP7Go69ced0tR1wcA6Gw75JPbtbW18dvf/jbnWv4Z3FscfvjhOfUvfvGLNte/7bbboqGhIVtPmDChxbElJSVx2GGHZesNGzZkw/S2ejTVdA0AAAAAALZPUcPtzZs35xzNUYjGxsa44IILct648YADDmjxvOrx48fHsGHDsvVvfvObWLx4cYvrr169Om688cZs3b9//5g0aVKre5o6dWp07949W1955ZWxbt26FsffddddOXsYP3587Lfffq32AAAAAACgcEUNt2tra+Poo4+Of/mXf4nf//73sXnz5lbHP/3003HCCSfEXXfd9bcNlpbG97///RbnlJSUxIwZM7J1JpOJ0047LR577LGtxq5cuTKmTJkSmzZtyl47/fTTo6KiotV9DRgwIL797W9n63feeSdOOOGEeO2117Yau2DBgpg5c2a27tatW5x55pmtrg8AAAAAQPsU/cztTCYT999/f9x///3Rs2fP2G+//eIzn/lM9O3bN3r27BkffPBB1NTUxDPPPBOvvvpqztySkpKYPXt2m2dof+UrX4lTTjkl5s6dGxEfHR0yZcqUGDNmTFRVVUVpaWlUV1fHo48+GplMJjtv4sSJMXny5IJex/Tp02P58uWxZMmSiIhYtWpVTJgwIcaNGxeDBw+OjRs3xuLFi6O6ujpn3gUXXBDDhw8vqAcAAAAAAIXp1DeU/PDDD2PZsmWxbNmyNsdWVlbGrFmz4itf+UpBa8+YMSNqa2tj/vz52WtLly6NpUuXNjv+iCOOiNmzZxe28Yjo3r17zJkzJ84888x44oknIiKirq4uFi5c2Oz48vLymD59eptHngAA2++MaY1FXX/O1Tvk25QAAAB8rBU13N5ll13isssuiz/+8Y+xePHiWLNmTZtzRowYEcccc0x84xvfiF133bXgXqWlpTFz5sz4P//n/8R1110XTz31VLPjhg0bFieffHIcddRRBa+9xe677x633HJLzJs3L2699datnjTfso8vfvGLMX369Kiqqmp3DwAAAAAA2lbUcLusrCyOPvroOProoyMiYu3atfHCCy/Ea6+9Fu+9915s2rQpevXqFbvuumvsu+++8dnPfjb69OmzXT3HjRsX48aNi5dffjlWrFgRa9eujYaGhqisrIyhQ4du9xEhpaWlMWXKlDjxxBPjmWeeidWrV8fatWujoqIiKisr44ADDojKysrt6gEAAAAAQOs69ViSvfbaK/baa69O6TVo0KAYNGhQ0dYvKSmJqqoqT2cDAAAAAHQBB0gCAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQnPKu3gAAAMCOquL2E4u6fu1xtxR1fQCAnZkntwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDklHf1BgAAAABSVHH7iUVdv/a4W4q6PkDqPLkNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcsq7egMAAKk4Y1pjUdefc7XnDgAAAArlJygAAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA55V29AQCgc50xrbFoa8+52u/NAQAA6Bx+AgUAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA55V29AQBg53TGtMbtml9e/l5ERNTXNzT78TlX+x09AADAx5mfCgEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhOeWc3XL9+faxatSpefvnlWL9+fWQymejbt28MHDgwDjzwwOjdu3eH9HnllVdi5cqVUVNTE42NjVFZWRlDhw6NYcOGdcj6ERHLly+Pl156KdasWRM9e/aMysrKqKqqisrKyg7rAQAAAADA1ooebjc2NsaSJUviwQcfjMcffzxWrVrV4tiSkpIYO3ZsTJkyJcaNG7dN/R5++OG4/vrrY9myZc1+fPjw4XHyySfHxIkTt2n9xsbGmD9/fsyfPz9effXVrT5eWloaY8eOjWnTpkVVVdU29QAAAAAAoHVFD7cnTJgQL7/8ckFjM5lMPProo/Hoo4/G17/+9bjwwgtj1113LXjuJZdcEvPmzWt1XHV1dZx99tnx0EMPxaWXXhrdu3cvaP2IiHXr1sW0adPi8ccfb3FMY2NjPPLII/HEE0/EjBkz4qSTTip4fQAAAAAAClP0cPvdd9/d6tqnPvWpqKqqij333DN69OgRNTU18dhjj0VNTU12zD333BNr166NG2+8MXr06NFmnyuvvHKrYHvMmDExatSoKCsri+rq6nj00Ucjk8lk1y8rK4srrriioNdRV1cXZ5xxRixevDh7rby8PMaNGxdDhgyJDz74IJYsWRLV1dXZ8Zdddln07t07Jk2aVFAPAAAAAAAK02lnbu+zzz4xadKkOOaYY2LAgAFbfbyhoSFuv/32+OEPfxibNm2KiIjFixfH1VdfHf/2b//W6tq///3vY+7cudm6T58+cc0118TYsWNzxq1cuTJOPfXUbIi+YMGCOOigg2Ly5Mlt7v+qq67KCbaHDRsW119/fey777454xYsWBDnnXde1NXVRUTErFmzoqqqKoYPH95mDwAAAAAAClNa7AYDBw6MSy65JB588ME49dRTmw22IyLKysriW9/6VsyZMydKS/+2rfnz58eaNWtaXD+TycRVV12VrUtKSuK6667bKtiOiBgxYkTcfPPNOU+CX3vttVFbW9vqa6ipqYlbb701W++xxx4xb968rYLtiIiJEyfG7Nmzs3VdXV38+Mc/bnV9AAAAAADap+jh9p133hnf/OY3o6ysrKDx48aNi69//evZuq6uLhYtWtTi+IULF+a8SeVRRx0VBx98cIvjP/3pT8fUqVOz9VtvvRV33HFHq3u64YYbYvPmzdn6rLPOit12263F8UcffXTOHhYtWhTPP/98qz0AAAAAAChc0cPt8vL2n3zSNNyOiHjmmWdaHHvffffl1Mcff3yb60+ePDknbM9fo6lMJhMPPPBAtu7bt28ceeSRbfb41re+lVPff//9bc4BAAAAAKAwRQ+3t8UnP/nJnPrtt99udlx9fX384Q9/yNZ77713VFVVtbl+ZWVlHHjggdl62bJlzb7xZUTEs88+m3Msype//OWC3uBy/Pjx0a1bt2zd2tPnAAAAAAC0zw4Zbn/wwQc5dUtPf69atSo2bNiQrUePHl1wj6ZjGxoaYunSpc2Oe/LJJ1uc15qKiorYf//9s3V1dXXOXgEAAAAA2HY7ZLhdXV2dU7f0JpQvvPBCTt00TG7LiBEjcuoXX3yxoB7581qTv5+WegAAAAAA0D47ZLi9YMGCnPqLX/xis+Pyw+KBAwcW3GPvvfduda2WrufPa03+foTbAAAAAAAdY4cLt5944ol44oknsnXv3r3j7/7u75od2/Qs7IiWn/BuTv7YmpqaNnuUl5dH//79O7wHAAAAAADts0OF2x9++GGcf/75Ode+853vxC677NLs+I0bN+bULY1rTv7Y/LWau96zZ88oKSnp8B4AAAAAALRP8+/U2EVmzZoVL730UrYePHhwnHzyyS2Ozw+Lu3fvXnCvHj16tLpWc9fz57Qlfz/bEm4XGqY3HdeeAB5oH/catK6j7ov8ey2TyRStV3v3szP0gS18X2tbsT8tuX8GndPLa9r2Ph3Zq7l1uuJzV+xeXlPH9aIwvrdB59hR7q8dJty+5ZZb4te//nW27t69e1xxxRWtBsqbNm3KqdsTbuePra2tbbNHt27dCl6/PT1a069fv3bP6du3b7vnAO3nXiNV5eXvFW3tfv3+dl90VJ+ysrJO69WSLb06qw90Bd/XmldfXtwfmZr+//3O6uU1bXufjupV3sIaXfG5K3Yvr6njetF+vrfBzm+HCLfvu+++uPTSS3OuXXjhhTFy5MhW5+UH35s3by64Z/7YioqKFnt8+OGHERFRV1dX8Prt6QEAU6YWNzS9+Ub/xx4AAICdS5eH24899licffbZ0djYmL121llnxTHHHNPm3F69euXU7Qm385/6zl+r6fUt4Xb+nLbk76elHq1Zv359QeNKSkqyv5F87733mv3n28D2c69RLPX1DUVdv+n3k2L26qg+JSUl2Se2Gxoamr3XOus1Ne3VmX9O0Bl8X2tbRX19Udd/v8l931m9vKZt77O9vbY8sV3fwhpd8bkrdi+vqeN6URjf26BzNL3XulKXhtvLly+P0047LScEnjp1avzzP/9zQfPzw+IPPvig4N75Y1sLt995552I+OgNLxsbG6O0tLD34Sy0R2u25YtwJpPxxRs6gXuNlHTW39WO6tN0nZbW7Mz7L7XPH2wL39eaV+xPSe7Xu87p5TVte5/t6ZV/NGlz63TF567YvbymjutF+/neBju/wlLaIli1alWccsopOW+yOGnSpDjnnHMKXqOysjKnrqmpKXjum2++mVMPGDCgzR719fXx9ttvd3gPAAAAAADap0vC7VdeeSVOOumknH96O2HChLjwwgvbtc6QIUNy6jfeeKPguflB+ODBgzu8R364nb8WAAAAAADbptPD7TVr1sSUKVPirbfeyl4bN25c/Md//EfBx31skR8Wr1y5suC5K1asyKlbCrfzr7enR/7YlnoAAAAAANA+nXrm9rvvvhtTpkyJ119/PXvt85//fFxzzTXRrVu3dq83dOjQ6NOnT2zYsCEiIp566qmC5y5btiz732VlZTFmzJhmxx100EFbzfvHf/zHNtevra2N559/PlsPHz48evfuXfD+AICPtzOmNbY9aDvMubrLTqcDAADoEJ32U837778fJ598crz44ovZa1VVVXH99ddHRUXFNq1ZXl4ehx56aLZ+88034+mnn25z3po1a3LGjR49Onbfffdmx44cOTLn3O2HHnooNm3a1GaPhQsXRl1dXbYeP358m3MAAAAAAChMp4TbtbW18d3vfjfnKJBhw4bFDTfcELvuuut2rX344Yfn1L/4xS/anHPbbbdFQ0NDtp4wYUKLY0tKSuKwww7L1hs2bIi77767oB5NNV0DAAAAAIDtU/RjSerr6+PMM8+MxYsXZ6996lOfip/97GfRt2/f7V5//PjxMWzYsFi1alVERPzmN7+JY489Ng4++OBmx69evTpuvPHGbN2/f/+YNGlSqz2mTp0at912W2zevDkiIq688sr46le/Grvttluz4++6666c1zt+/PjYb7/92vW6AAAAALaouP3Eoq1de9wtRVsboJiK+uR2JpOJc889Nx566KHstX322Sduvvnm2HPPPTukR0lJScyYMSOn52mnnRaPPfbYVmNXrlwZU6ZMyTlW5PTTT2/zWJQBAwbEt7/97Wz9zjvvxAknnBCvvfbaVmMXLFgQM2fOzNbdunWLM888s12vCQAAAACA1hX1ye033ngjfvvb3251rb3nT++zzz7x4IMPtvjxr3zlK3HKKafE3LlzI+Kjo0OmTJkSY8aMiaqqqigtLY3q6up49NFHI5PJZOdNnDgxJk+eXNAepk+fHsuXL48lS5ZERMSqVatiwoQJMW7cuBg8eHBs3LgxFi9eHNXV1TnzLrjgghg+fHi7Xi8AAAAAAK0rarjdNEhueq3pedeFKGT8jBkzora2NubPn5+9tnTp0li6dGmz44844oiYPXt2wXvo3r17zJkzJ84888x44oknIiKirq4uFi5c2Oz48vLymD59eptHngAAAAAA0H6d8oaSnaG0tDRmzpwZP/3pT+PAAw9scdywYcPi8ssvjx/96EfRo0ePdvXYfffd45Zbbonvfe978YlPfKLFfRxyyCHxy1/+Mk4++eR2rQ8AAAAAQGGK+uT2vvvuu9UxHcU2bty4GDduXLz88suxYsWKWLt2bTQ0NERlZWUMHTp0u48IKS0tjSlTpsSJJ54YzzzzTKxevTrWrl0bFRUVUVlZGQcccEBUVlZ20KsBAAAAAKA5RQ23u9KgQYNi0KBBRVu/pKQkqqqqoqqqqmg9AAAAAABo3k5zLAkAAAAAAB8fwm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJJT3tUbAIAd1RnTGou6/pyr/Y4ZAAAAtpWfqgEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkeENJAAAgORW3n1jU9WuPu6Wo6wMAsP08uQ0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkp7yrNwAAQNc6Y1pjUdefc7XnKQAAgI7nJw0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAklPe1RsAgPY6Y1pjUdefc7Xf/QIAAMCOzk/vAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkp7yrNwAAAADAjqHi9hOLun7tcbcUdX3g48WT2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACSnvKs3AADAx8MZ0xqLuv6cqz23AQAAHyd+AgAAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACS4w0lAQCADlFx+4lFXb/2uFuKuj4AAGnx5DYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJCc8q7eQDG88sorsXLlyqipqYnGxsaorKyMoUOHxrBhwzqsx/Lly+Oll16KNWvWRM+ePaOysjKqqqqisrKyw3oAAAAAANC8Tgu3P/jgg1i5cmUsX748li9fHs8880y8/vrr2Y/vs88+8T//8z/b1ePhhx+O66+/PpYtW9bsx4cPHx4nn3xyTJw4cZvWb2xsjPnz58f8+fPj1Vdf3erjpaWlMXbs2Jg2bVpUVVVtUw8AAAAAANpW9HD7Zz/7Wdx5553xv//7v9HY2FiUHplMJi655JKYN29eq+Oqq6vj7LPPjoceeiguvfTS6N69e8E91q1bF9OmTYvHH3+8xTGNjY3xyCOPxBNPPBEzZsyIk046qeD1AQAAAAAoXNHD7cWLF8eqVauK2uPKK6/cKtgeM2ZMjBo1KsrKyqK6ujoeffTRyGQyERFxzz33RFlZWVxxxRUFrV9XVxdnnHFGLF68OHutvLw8xo0bF0OGDIkPPvgglixZEtXV1dnxl112WfTu3TsmTZrUQa8SAAAAAIAtuuTM7V69esVnP/vZWLFiRWzcuHG71vr9738fc+fOzdZ9+vSJa665JsaOHZszbuXKlXHqqadGTU1NREQsWLAgDjrooJg8eXKbPa666qqcYHvYsGFx/fXXx7777pszbsGCBXHeeedFXV1dRETMmjUrqqqqYvjw4dv8+gAAAAAA2FppsRv06NEjqqqq4vjjj48f/vCHcffdd8eTTz4Zt956a+y2227btXYmk4mrrroqW5eUlMR11123VbAdETFixIi4+eabo0ePHtlr1157bdTW1rbao6amJm699dZsvccee8S8efO2CrYjIiZOnBizZ8/O1nV1dfHjH/+4Xa8JAAAAAIC2Ff3J7R/96EdFW3vhwoU5R54cddRRcfDBB7c4/tOf/nRMnTo1rrvuuoiIeOutt+KOO+6If/qnf2pxzg033BCbN2/O1meddVarofzRRx8d/+///b/sk96LFi2K559/Pvbbb7+CXxcAAAAAAK0r+pPbxXTffffl1Mcff3ybcyZPnhxlZWUtrtFUJpOJBx54IFv37ds3jjzyyDZ7fOtb38qp77///jbnAAAAAABQuGTD7fr6+vjDH/6Qrffee++oqqpqc15lZWUceOCB2XrZsmXx7rvvNjv22WefjTVr1mTrL3/5yznHmrRk/Pjx0a1bt2y9aNGiNucAAAAAAFC4ZMPtVatWxYYNG7L16NGjC57bdGxDQ0MsXbq02XFPPvlki/NaU1FREfvvv3+2rq6uztkrAAAAAADbJ9lw+4UXXsipm4bJbRkxYkRO/eKLLxbUI39ea/L301IPAAAAAADaL9lwOz8sHjhwYMFz995771bXaul6/rzW5O9HuA0AAAAA0HHKu3oD26rpWdgREQMGDCh4bv7YmpqaNnuUl5dH//79O7wHwM7ijGmNRV1/ztXJ/j4WAAAAKIJkw+2NGzfm1LvsskvBc/PH5q/V3PWePXtGSUlJh/doS6E9m45rzz6B9nGvdZ3O/Hx3Vi+vqbB1SkpKIpPJFK1Xe/ezM/TZWXv5utx+Hf19rdh/BLn77ZxeXtO29+nMXim+pubW6YrPXbF7eU1p9Oqq11Ts9f1/AyieHeX+2mnC7e7duxc8t0ePHq2u1dz1/Dltyd/Ptobb/fr1a/ecvn37blMvoH3ca7nKy98r6vr9+v3t891ZvXbG11TsXsXoU1ZW1mm9WuLvRMf06szXRPt1xPe1+vLi/njR9P8bd1Yvr2nb+3Rmr9ReU3kLa3TF567YvbymNHp11WsqNj+zwc4v2X/jvWnTppy6PeF2/tja2to2e3Tr1q0duyu8BwAAAAAA7Zfsk9v5T1Jv3ry54Ln5YysqKlrs8eGHH0ZERF1dXbv2V2iPtqxfv76gcSUlJdnfSL733nvN/vNtYPu511pWX99Q1PWbfj3srF4742sqdq+O6lNSUpJ9YruhoaHZe83fifR6deZrojAd/X2tor6+I7bVoveb/Bl3Vi+vadv7dGavVF7Tlie261tYoys+d8Xu5TWl0aurXlMx+JkNOkfTe60rJRtu9+rVK6duT7id/9R3/lpNr28Jt/PntCV/Py31aMu2fBHOZDK+eEMncK91rs78XHdWL6+psHVaWtPnT6+u6rOz6ojva8X+I8j92tA5vbymbe/Tmb1SeE35R5M2t05XfO6K3ctrSqNXV72mYvMzG+z8kj2WJD8s/uCDDwqemz+2tXB7iw8//DAaGxs7vAcAAAAAAO2XbLhdWVmZU9fU1BQ8980338ypBwwY0GaP+vr6ePvttzu8BwAAAAAA7ZdsuD1kyJCc+o033ih4bn4QPnjw4A7vkR9u568FAAAAAMC222nC7ZUrVxY8d8WKFTl1S+F2/vX29Mgf21IPAAAAAADaL9lwe+jQodGnT59s/dRTTxU8d9myZdn/LisrizFjxjQ77qCDDmpxXmtqa2vj+eefz9bDhw+P3r17F7w/AAAAAABal2y4XV5eHoceemi2fvPNN+Ppp59uc96aNWtyxo0ePTp23333ZseOHDky59zthx56KDZt2tRmj4ULF0ZdXV22Hj9+fJtzAAAAAAAoXLLhdkTE4YcfnlP/4he/aHPObbfdFg0NDdl6woQJLY4tKSmJww47LFtv2LAh7r777oJ6NNV0DQAAAAAAtl/S4fb48eNj2LBh2fo3v/lNLF68uMXxq1evjhtvvDFb9+/fPyZNmtRqj6lTp0b37t2z9ZVXXhnr1q1rcfxdd92Vs4fx48fHfvvt12oPAAAAAADaJ+lwu6SkJGbMmJGtM5lMnHbaafHYY49tNXblypUxZcqUnGNFTj/99KioqGi1x4ABA+Lb3/52tn7nnXfihBNOiNdee22rsQsWLIiZM2dm627dusWZZ57ZrtcEAAAAAEDbyovd4PXXX4+///u/b/ZjTY8Hef3112PEiBHNjrv55pvj85//fLMf+8pXvhKnnHJKzJ07NyI+OjpkypQpMWbMmKiqqorS0tKorq6ORx99NDKZTHbexIkTY/LkyQW9hunTp8fy5ctjyZIlERGxatWqmDBhQowbNy4GDx4cGzdujMWLF0d1dXXOvAsuuCCGDx9eUA8AADrOGdMai7r+nKuTfkYEAAB2CkUPtzOZTE6I3ZqWxjUNpZszY8aMqK2tjfnz52evLV26NJYuXdrs+COOOCJmz55d0J4iIrp37x5z5syJM888M5544omIiKirq4uFCxc2O768vDymT5/e5pEnAAAAAABsm53ikZPS0tKYOXNm/PSnP40DDzywxXHDhg2Lyy+/PH70ox9Fjx492tVj9913j1tuuSW+973vxSc+8YkW93HIIYfEL3/5yzj55JPbtT4AAAAAAIUr+pPb++6771bHdRTLuHHjYty4cfHyyy/HihUrYu3atdHQ0BCVlZUxdOjQ7T4ipLS0NKZMmRInnnhiPPPMM7F69epYu3ZtVFRURGVlZRxwwAFRWVnZQa8GAAAAAICWFD3c7gqDBg2KQYMGFW39kpKSqKqqiqqqqqL1AAAAAACgZTtluA0AAADAjqvi9hOLsm5JSUR9eXmUn3RnUdYHdiw7xZnbAAAAAAB8vAi3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOSUd/UGACieM6Y1FnX9OVf7HSkAAADQNYTbAACwk6u4/cRmr5eURNSXf/QjQUV9fWQy27Z+7XG3bOvWAABgm3nkDgAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAD4/9q78yipqjMB4F8JDQyLtNA2RhAR0AEnwcElippgUMd9IYk4iSexzSCgRtQhQeLYiFt0GDHG1kNiNC6ZZBSOGB3laNxgjgpuxHHBKCBCUNnERmik2Wr+cKxQzdJV2NXVr/v3+6u+1/e+972G6nrvq/vuBUgcxW0AAAAAABJHcRsAAAAAgMRR3AYAAAAAIHEUtwEAAAAASBzFbQAAAAAAEkdxGwAAAACAxFHcBgAAAAAgcRS3AQAAAABIHMVtAAAAAAASR3EbAAAAAIDEUdwGAAAAACBxFLcBAAAAAEgcxW0AAAAAABJHcRsAAAAAgMRpXewEAAAgyS6+dEtB9191i/EoAACwPa6UAQAAAABIHMVtAAAAAAASR3EbAAAAAIDEUdwGAAAAACBxLCgJAABFMLa8Iqd27aakdmn/64fdu0v9AKC5aTfl3ILu32cuFI+R2wAAAAAAJI7iNgAAAAAAiaO4DQAAAABA4phzG6AILr50S0H3X3WL7y4BAACA5k31AwAAAACAxFHcBgAAAAAgcRS3AQAAAABIHMVtAAAAAAASR3EbAAAAAIDEUdwGAAAAACBxFLcBAAAAAEic1sVOAAAAqN+8+em82k+8dEvm9djyHfdNpTZFRMT+fXctLwAAKBYjtwEAAAAASBzFbQAAAAAAEkdxGwAAAACAxFHcBgAAAAAgcRS3AQAAAABIHMVtAAAAAAASR3EbAAAAAIDEUdwGAAAAACBxFLcBAAAAAEgcxW0AAAAAABJHcRsAAAAAgMRR3AYAAAAAIHEUtwEAAAAASBzFbQAAAAAAEkdxGwAAAACAxFHcBgAAAAAgcRS3AQAAAABIHMVtAAAAAAASp3WxEwAAAACApGs35dyC7n/9sHsLun9IIiO3AQAAAABIHMVtAAAAAAASx7QkAACwlbHlFfW2aTcltVX7dF77n7j8njwzAgAAtsfIbQAAAAAAEkdxGwAAAACAxFHcBgAAAAAgcRS3AQAAAABIHMVtAAAAAAASp3WxEwBoKi6+dEtO7Vq3Xh0REZs2bc5r/1W3+D4RAAAAoKGotAAAAAAAkDiK2wAAAAAAJI7iNgAAAAAAiaO4DQAAAABA4lhQEgAAyDJvfjqv9hP/f1HmseW59du/byrvnAAAoC4jtwEAAAAASBzFbQAAAAAAEkdxGwAAAACAxFHcBgAAAAAgcSwoCQAAAAAJ0m7KuQXd//ph9xZ0/9BQjNwGAAAAACBxFLcBAAAAAEgcxW0AAAAAABJHcRsAAAAAgMRR3AYAAAAAIHEUtwEAAAAASBzFbQAAAAAAEkdxGwAAAACAxGld7AQAAKA+Y8sr6m3Tbkpqq/bpvPY/cfk9eWYEAAAUm5HbAAAAAAAkjuI2AAAAAACJo7gNAAAAAEDiKG4DAAAAAJA4itsAAAAAACSO4jYAAAAAAInTutgJAMl08aVbCrr/qlt2a9TjAAAAAJAsitsAAAAAwDbaTTm3oPtfP+zegu6f5s+QRQAAAAAAEkdxGwAAAACAxDEtCQAAUBTz5qfzaj9xq7U4xpbX33f/vqm8cwIAIDmM3AYAAAAAIHEUtwEAAAAASBzFbQAAAAAAEsec219CdXV1zJkzJ5YuXRpr166N8vLy6NGjRwwcODBatWpV7PQAAAAAAJotxe1dsHDhwpg0aVLMmDEjNm7cuM3P99xzzzj77LNj5MiR0aZNmyJkCAAAAADQvJmWJE8PP/xwfPvb344nn3xyu4XtiIgVK1bEbbfdFmeffXYsWbKkkTMEAAAAAGj+jNzOw8yZM2PcuHGxZcuWzLZevXrF4YcfHqWlpbF48eJ49tlnY/369RERMXfu3Bg5cmQ88MAD0bFjx2KlDQBQMGPLK+pt025K6v/bpvPe/8Tl9+TdBwAAaBkUt3O0fPnyuOyyyzKF7VQqFZdffnmce+65sdtufxsAv2rVqrjkkkvipZdeioiI+fPnx/jx4+Pmm28uSt4AAEDEvPn5fbky8dLPr/tz/VJm/76pvHMCAODLMS1JjiZPnhw1NTWZ+OKLL47zzjsvq7AdEdGlS5e48847o0+fPplt06dPj7lz5zZargAAAAAAzZ2R2zlYuXJlTJ06NRP37NkzRowYscP2bdu2jcrKyqioqIiIiHQ6HZMnT46qqqpCp0oLd/GlW+pv9CVU3eL7MAAAAACaBsXtHDz99NNZi0cOGzYsSkpKdtpn0KBB0bt373jvvfci4vP5utetWxft27cvaK4AAPnMg/15+zynazAPNgAA0AQYhpmDZ555Jis+8cQTc+p3wgknZF7X1tbG888/36B5AQAAAAC0VEZu5+DVV1/NvC4rK4t99tknp34DBw7Mil9++eU4/vjjGzQ3AAAAACA37aacW9D9rx92b0H3TzYjt+uxbNmyWLNmTSbu379/zn0PPPDArHjBggUNlhcAAAAAQEtm5HY9vpgz+wt77713zn3LysqipKQkM1/3woULGzQ3ksNCjwAAAAA7ZkQ1u0Jxux7Lli3Livfaa6+c+6ZSqejWrVssWbJku/sCAIovn8UX8114McLii9ASzZuf+9+KiVsNgsj1b8z+fVP1NwIAaAEUt+uxbt26rLh9+/Z59e/QoUPm9aZNm6K2tjbatm2bc/9UKrcL163b5dqH5qOx/s0b8/9WUz2nuu+1dDr3m1e/P8cq1nEa81gNdZxc3muN+/trrOM0v3NqzGM1x3Mq/LGyd97c/q2az79Twxzri78xhc41+2944xwriee0vf0U43dX6GM5p2Qcqzm+bxvzWEn+W1TfsZzTrh+nuWsq56m4XY+6xe18CtPba19TU5PXPkpLS/M6XkRE586d8+7TVFT8y+qC7v+eu4rzu2ndurDnVVrauVGP05jHasrn1KpVq0Y7Vr6S8PtLwrGa4zkV+liFOM6O3msNdaxcLspat279/2035b3/L/rmohjn9Hn7/M4ru2/j/P6a6jl9mWPlekOwq78/51Scc8r3WPme09Z93v5Lfuc0aczn+x/TNbf2/fvt2u3i1vcwm/L4G/iFfM4r33OK2LXz+rLnVNeOPhsa+jg701jHck7JOFYxzqnQx4n4W32kuZxTc/x3au7nROGl0vkMO2yBbr/99rj11lsz8fXXXx/f/e53c+5/zjnnxCuvvJKJZ8yYEV/5ylcaNEcAAAAAgJbGKnT1qDvK+ovFIXO1YcOGne4PAAAAAID8KW7Xo+4c27W1tXn1r9t+6zm4AQAAAADYNYrb9ahb3K6pqcmr/9btW7dubeQ2AAAAAEADUNyuR7du3bLiZcuW5dw3nU5nta+7LwAAAAAAdo3idj369OmTFX/wwQc59125cmXWHN29e/dusLwAAAAAAFoyxe16lJeXR6dOnTLx22+/nXPfuXPnZsWK2wAAAAAADUNxOweHHHJI5vXHH38cixcvzqnfnDlzsuLDDjusQfMCAAAAAGipFLdzcOyxx2bFjz/+eE79nnjiiczrtm3bxlFHHdWgeQEAAAAAtFSK2zkYMmRIlJSUZOKpU6dmzaW9PbNmzYqFCxdm4sGDB0f79u0LliMAAAAAQEvSutgJJEFZWVkMGzYsfv/730dExOLFi+OOO+6Iiy66aLvta2tr47rrrsvEqVQqLrjggkbJdVds3rw55s6dG/PmzYuVK1fG5s2bo0OHDrH33nvH/vvvH/vuu2+xUwSAnUqn07F48eKYN29eLF26NNauXRtt27aN0tLSOOCAA6Jfv37RqlWrYqcJTU51dXXMmTMn874pLy+PHj16xMCBA71noAFUV1fHu+++G4sWLYrq6upIp9PRuXPn2HvvveMf//Efs9Z3AoCk+eijj+KNN96IDz/8MNatWxdt27aNsrKy2G+//aJfv37Rpk2bgueguJ2jkSNHxh//+MeoqamJiIiqqqpo3759nHvuubHbbn8bAL9q1aq45JJLYv78+ZltJ598chx44IGNnnN9Vq1aFb/5zW9i2rRpUV1dvcN2e+yxRxx99NFx5ZVXRmlpaaPlB83V2rVr45RTTomlS5dmbb/vvvvi8MMPL1JWkDxr1qyJp556KmbMmBEvvvhifPLJJzts27Fjxxg6dGhUVFREjx49GjFLaJoWLlwYkyZNihkzZmz3icQ999wzzj777Bg5cmSj3JRAc7Fly5Z45ZVX4sknn4zZs2fHu+++u8O2qVQqBg0aFBUVFTF48OBGzBJajuuuuy5+97vfZW0bOnRo3HjjjUXKCJJvy5Yt8cgjj8R9990Xb7311g7blZSUxMCBA2PEiBHxjW98o2D5pNLpdLpge29mZsyYERdccEFs2bIls61Xr15xxBFHRGlpaSxatCieffbZWL9+febnffv2jQceeCA6duxYjJR3aPr06TF+/PhYs2ZNXn369OlTwKygZZgwYUL813/91zbbFbchd7Nnz47hw4fXO01YXe3bt48rr7wyvvOd7xQoM2j6Hn744ZgwYUKsW7eu3rYHHnhgVFVV+VIIcvRP//RPsWjRorz7nXLKKXHNNdc0uftGSLLXXnstvve972XVcCIUt+HLWLJkSYwZMyZee+21nPucf/758ZOf/KRgORm5nYdjjjkmbrjhhpgwYUJ89tlnERHx/vvvx/vvv7/d9v3794/bbrutyV2g3HXXXTFx4sSsbe3bt49BgwZF9+7do1OnTvHpp5/GggUL4vXXX4+1a9cWKVNofubMmRP3339/sdOAxFu7du02he02bdrEQQcdFL17944uXbrEhg0bYt68efHiiy9GbW1tRESsW7currjiili/fn2cc845xUgdimrmzJkxbty4bQZrHH744VFaWhqLFy/OGqwxd+7cGDlyZJMcrAFN0apVq7bZ1qtXrxgwYECUlZVF27ZtY+nSpTFr1qysp/gee+yxWL58edx1113Rtm3bxkwZmqWNGzdGZWXlNoVtYNfNmzcvzjvvvFixYkVmWyqVigEDBkS/fv2ia9euUVtbm5mq5K9//Wuj5KW4naczzzwzBgwYEJMmTYqZM2fu8DHOYcOGxahRo5rcY5yPPvpoVmG7ffv2MXr06Pj+97+/3YuoDRs2xPPPPx//+Z//GalUqjFThWZnw4YNUVlZGV88MLPnnntmfSgA+fvike6zzz47vvWtb233s2zFihVx7bXXxhNPPJHZdt1118UhhxwS/fr1a8x0oaiWL18el112WeZGP5VKxeWXX77DafZeeumliIiYP39+jB8/Pm6++eai5A1J1L179zjrrLNi6NChsddee23z882bN8eUKVPihhtuyHwB+/LLL8ctt9wSl19+eWOnC83OHXfckZkWyH0XfHmrVq2K4cOHZ72XjjvuuPjZz362wyf83n333Zg2bVrB15cwLcmX8Mknn2QW4KmpqYmysrLYZ5994uCDD26SC/B8/PHHcdJJJ8Xq1asj4vP5R++999746le/WuTMoGWoqqqK2267LSIivvnNb0bXrl3joYceyvzctCSQu6eeeioeeOCBGDNmTM4F6jFjxsSjjz6aiQcPHhx33HFHoVKEJufqq6+OP/zhD5l49OjRO10gfejQobFgwYKI+LwQPm3atCa5jgw0Jaeffnqce+65ceaZZ+Z0Tzhz5swYNWpU5kunkpKSePrpp6Nbt26FThWarffeey/OOOOM2LBhQ/zd3/1djB8/Pn72s59lfm5aEshf3XupUaNGxWWXXVbEjP5mt/qbsCN77LFHHHvssXHOOefEiBEj4tvf/nYcdthhTbKwHRFxww03ZArbERE33nijwjY0kvnz58evf/3riIho165djB8/vsgZQbIdc8wx8Zvf/CavkdeVlZXRoUOHTPzCCy/ktfYEJNnKlStj6tSpmbhnz54xYsSIHbZv27ZtVFZWZuJ0Oh2TJ08uaI7QHEybNi2+853v5HxPOHjw4DjllFMy8caNG+Ppp58uVHrQ7KXT6aisrIwNGzZERMSFF14Y3bt3L3JWkGwvvPBCVmH72GOPbTKF7QjF7Rbjww8/jMceeywTH3nkkXH88ccXMSNoOdLpdFx55ZWZaYwuuuii2GeffYqcFSRb69b5z6xWWloaRx99dCbeuHFjvP322w2ZFjRZTz/9dNZ0esOGDYuSkpKd9hk0aFD07t07E8+cOTOnRSihJduVz6eti9sREW+88UZDpQMtzv333x+vvPJKREQccMABcd555xU5I0i+rZ92LSkpyXoSoilQ3G4hHnzwwayFFCyiBY3nD3/4Q/z5z3+OCBdYUGw9e/bMileuXFmkTKBxPfPMM1nxiSeemFO/E044IfO6trY2nn/++QbNC/DZBA1l2bJlMWnSpIj4fDqtq6++ut4vcoGd++tf/xqzZ8/OxIMHD25yg/UUt1uIrR8f6NSpU3zzm98sYjbQcixdujTrAmvChAkusKCIampqsmLvR1qKV199NfP6i3VicjFw4MCs+OWXX27QvIBtP5t2ZfQ3EHHttddmppwbNmxYHHzwwUXOCJJv+vTpsfVyjXWfNmoKFLdbgNWrV8f777+fiQ866KBo06ZN8RKCFmTChAmZG5azzjorDjnkkCJnBC3bO++8kxVbsIuWYNmyZVnzy/fv3z/nvnUXkPxigUmg4dT9bNprr72KlAkk15/+9Kd48sknIyKia9euMWbMmCJnBM3Da6+9lhUfeuihxUlkJ3wl3AK8+eabWfEXi0im0+n4n//5n3jkkUdi7ty5sXTp0mjTpk107do1DjrooDjmmGPi+OOPj9128x0I7Irp06fHs88+GxERXbp0iZ/85CdFzghatiVLlsScOXMy8e67775N4Q6ao/feey8r3nvvvXPuW1ZWFiUlJZn5uhcuXNiguQERjzzySFZ8xBFHFCkTSKY1a9bEtddem4nHjRsXnTt3LmJG0HxsXVPs1q1blJeXR0TEokWLYtq0afHcc8/FRx99FJ999lnssccesd9++8VRRx0VZ5xxRnTt2rVRclTcbgHmz5+fFe+zzz7xwQcfxLhx4+Kll17K+tm6deuiuro6FixYENOmTYs+ffrENddc0yS/mYGmbPXq1XH99ddnYhdYUHy333571iN1xx9/vEe/aRGWLVuWFeczKjSVSkW3bt1iyZIl290X8OW89NJLWfdknTp1ylr8GKjfxIkTY/ny5RERceSRR8bpp59e5IygeVizZk3mvRXxeT1x06ZN8atf/SomT54cmzZtymq/bt26+OCDD+K5556LqqqqGD58eFx44YWRSqUKmqchuS3A6tWrs+JNmzbFP//zP29T2N6eBQsWREVFRTz22GOFSg+apX//93/PLAY0aNCgOOOMM4qcEbRsL7zwQjz00EOZuKSkJEaOHFnEjKDxrFu3Litu3759Xv07dOiQeb1p06aora1tkLygpfvss8+isrIya9t5552X9Z4Ddu7ll1+OqVOnRkREmzZt4qqrripyRtB8VFdXZ8VlZWVxxRVXRFVV1TaF7brWrVsXt956a4wePbretl+W4UotwKeffpoV33TTTZl5F3v37h2jRo2KI444IvbYY4+orq6OF198MX71q19lRnxv3Lgxxo0bF7169Yp/+Id/aPT8IWlmz54dDz74YER8foE1YcKE4iYELdzy5ctj7NixWaO2R44cGfvuu28Rs4LGU7e43bZt27z6121fU1OT9z6AbV199dVZayP17t07hg8fXryEIGE2bNgQlZWVmWu8UaNGRa9evYqbFDQjW6/ZEhHx/PPPZ7a1a9cuKioq4uSTT4599903Nm7cGO+8805MmTIlHnnkkcz78k9/+lPcfPPNMXbs2ILlaeR2C1D3huaL/4iDBw+Ohx9+OM4444zo1q1btGnTJsrLy+O0006Lhx56KL71rW9l+nzxoQHsXG1tbYwfPz4Tjxw50gUWFFFtbW2MHj06VqxYkdk2cODAGDVqVBGzgsZVd6R1SUlJXv3rLkRu5DZ8effee2/WE0Vt2rSJ//iP//DFEeTh9ttvz6wFsd9++8X5559f5IygedlRPbG0tDTuv//+uOyyy+Lv//7vo127dtGpU6c49NBDY+LEiTFx4sSs9ft++9vfxl/+8peC5WnkdiMaMmRIfPDBBwXb/5gxY2LEiBHbbN/eBVK3bt1i0qRJ29ysfKFNmzZx0003xamnnhofffRRRES89dZbMWvWrBg0aFDDJg4NrFjvtYiIqqqqWLRoUUR8foG1o3bQXBTz/VafzZs3x5gxY+LPf/5zZttXvvKV+OUvf5l3cQ+SrO614BeLQ+Zqw4YNO90fkJ/HH388brzxxqxt11xzTXz1q18tUkaQPO+8807cddddmfjqq6/eYX0D2DU7ek9dc8010b9//x32O/300+PNN9+Me++9NyIi0ul0/Pa3v42JEycWJE8jt1uA7c2r+IMf/CA6deq0034dO3aMioqKrG3PPPNMQ6YGzcpf/vKXuPvuuzPxhAkTXGBBEV111VXx5JNPZuLS0tK48847o1u3bkXMChpf3WvBfEde121vPmDYdbNmzYqf/vSnsWXLlsy2MWPGxNChQ4uYFSTLli1borKyMvNl7dChQ+Pwww8vclbQ/Gzvmq9Pnz5xwgkn1Nt3xIgRWQOKZsyYkfXZ15AUt1uA7f1nHDJkSE5967Z79dVXGyQnaG42b94c//Zv/5ZZKGHo0KFxxBFHFDkraLkmTpyYWVwo4vPi3h133BF9+/YtYlZQHHWL2zU1NXn137p969atjdyGXfT666/HhRdemPU0xL/8y7940g/y9Lvf/S7+93//NyI+H7xQyLl8oSXbXj1x6ymMd6asrCwGDBiQiVevXp1Z26+hmZakEf3yl78s6ByFPXr02O72vfbaKytu3bp19O7dO6d99uzZM9q1axfr16+PiM8X5YKmrhjvtUcffTTefPPNiHCBRctSrM+2nZk8eXLWY6pt2rSJ22+/PQ466KCGTA0So+7TCsuWLcu5bzqdzmrvyQfYNe+++26cf/75WfOXnnXWWa4ZIU/r16+PW265JROPHTs2unTpUryEoBnr2rVrlJSUZE1pt//+++fc/4ADDsgaJLts2bI44IADGjTHCMXtRvW1r32tKMetO0qtY8eOkUqlcu6/++67Z4rb1dXVDZkaFEQx3muffPJJ5vXq1avj6KOPrrdP3UdyKioqst6b99xzT3z9619vuCShAIr12bYjv//977NueFq1ahW/+MUv4sgjjyxeUlBkffr0yYrzmSd/5cqVWTc0uQ6QAP5m8eLF8aMf/SjrXurEE0+Ma665pnhJQUJt2LAh60uiysrKqKys3GmfdDqdFf/xj3+MRx55JBOfeeaZ8fOf/7xhE4VmoKSkJHr27BkLFizIbOvcuXPO/eu2Xb16dYPltjXF7RagT58+kUqlMn/Q6y4KVJ+t23sMFeqXTqdj8+bNeferW+yuexEG7NzDDz8c1157bSZOpVLx85//PI477rgiZgXFV15eHp06dcqscP/222/n3Hfu3LlZseI25GfZsmVRUVERK1asyGwbPHhw3HTTTbHbbmYJhS9rV+676t6vFWoeYGgO+vbtm1Xczqem2FiLkvs0bQE6dOgQBx54YCZet25d5uamPp999ll8+umnmdjjPgA0RU899VRcccUVWV8KjR8/Ps4888ziJQVNyCGHHJJ5/fHHH8fixYtz6jdnzpys+LDDDmvQvKA5W7VqVVRUVGQ9LfH1r389br311qxFtgCgqar7NHk+09stXbo0K95jjz0aJKe6jNxuIY4//vh46623MvGcOXNi8ODB9fZ77bXXsr7F7N+/f0Hyg6SrqKiIioqKvPqMGzcuHnrooUx83333WeUbdsGsWbPisssuyyzoGhExZsyY+P73v1/ErKBpOfbYY2PGjBmZ+PHHH89pEbsnnngi87pt27Zx1FFHFSI9aHbWrl0bw4cPj/feey+zbcCAATF58uRo165dETODZNt9993jnXfeyavPiy++GD/84Q8z8dChQ+PGG29s6NSgWTruuOPiuuuuywwimjNnTtb7aUfS6XS89tprmbhVq1bRr1+/guRo5HYLcdJJJ2U99vbggw/m1G/q1KlZsRsaAJqS119/PS688MKsR94uuOCCnIp20JIMGTIka6To1KlTs+bS3p5Zs2bFwoULM/HgwYOjffv2BcsRmov169fHqFGjsgYXHXDAAXHnnXdGx44di5gZAORnr732ioMPPjgTP/PMM7Fq1ap6+z333HPx4YcfZuIBAwYU7DNQcbuF6NWrV5x22mmZ+IknnoiZM2futM9zzz0X06dPz8SlpaVx6qmnFixHAMjHvHnz4vzzz89aVOiHP/xhXHrppcVLCpqosrKyGDZsWCZevHhx3HHHHTtsX1tbG9ddd10mTqVSccEFFxQ0R2gONm3aFJdcckm8/PLLmW29evWKu+++O69FuACgqbj44oszr2tra7PWOdqempqauP7667O2/eAHPyhIbhGK2y3K6NGjs0bbXHLJJfHf//3f2207ffr0uPjii7PmLv3xj38cHTp0KHieAFCfJUuWxI9+9KOorq7ObPvud78bV1xxRfGSgiZu5MiRWddyVVVVcffdd2+zkNaqVati+PDhMX/+/My2k08+OWsNF2Bb6XQ6xo0blzUFUPfu3eOee+6JsrKy4iUGAF/CoEGD4phjjsnE06dPj8svv3y76/ktXrw4zjvvvKyn/772ta/FSSedVLD8Uumtq5c0e88880xcdNFFWTcxvXv3jsMPPzy6dOkS1dXVMXv27KyVUCM+v6H5xS9+0djpQrNmzm3YdbfddltUVVVlbWvVqlXe+7nwwgvjxz/+cUOlBU3ejBkz4oILLsi6FuzVq1ccccQRUVpaGosWLYpnn3021q9fn/l5375944EHHjCdAtTjgw8+iCFDhmRtS6VSWdND5qJ79+7x5JNPNmRq0KKZcxu+vNWrV8fZZ5+dVbTu1KlTfOMb34iePXvGxo0b4913343Zs2dnTX3XpUuXePDBB2PvvfcuWG4WlGxhhgwZEhMnToyrrroqampqIiLivffey1ropK7vfe97ceWVVzZWigBQr+19N7958+YG2Q80Z8ccc0zccMMNMWHChPjss88iIuL999+P999/f7vt+/fvH7fddpvCNuRge58p6XQ678+nXfk8A4BC6ty5c9x5550xevTozJoSa9asyZrOuK7evXvHr3/964IWtiNMS9IinXbaafHwww/HqaeeusOVulOpVBx66KFx9913x4QJE6J1a9+DAAA0B2eeeWZMmzYtjjvuuKxFJre25557xkUXXRRTpkyJHj16NHKGAAA0NT169IgHHngg/vVf/zW6d+++w3bl5eXx05/+NB566KHo2bNnwfMyLUkLt3bt2nj11Vdj6dKl8cknn0THjh2jvLw8Dj300OjSpUux0wMAoIA++eSTmDNnTixdujRqamqirKws9tlnnzj44IN3aaofAACav3Q6HW+88UYsXLgwVqxYEalUKrp06RL9+/ePfv36NWouitsAAAAAACSOaUkAAAAAAEgcxW0AAAAAABJHcRsAAAAAgMRR3AYAAAAAIHEUtwEAAAAASBzFbQAAAAAAEkdxGwAAAACAxFHcBgAAAAAgcRS3AQAAAABIHMVtAAAAAAASR3EbAAAAAIDEUdwGAAAAACBxFLcBAAAAAEgcxW0AAAAAABJHcRsAAAAAgMRR3AYAAAAAIHEUtwEAAAAASBzFbQAAAAAAEkdxGwAAAACAxFHcBgAAAAAgcRS3AQAAAABIHMVtAAAAAAASR3EbAAAAAIDEUdwGAAAAACBxFLcBAAAAAEgcxW0AAAAAABLn/wCVUpVcqT40JwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 491, + "width": 731 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# fmt: off\n", + "post = idata.posterior\n", + "plt.hist(\n", + " post.where(post.idx == 0).y.values.reshape(-1),\n", + " bins=30,\n", + " rwidth=0.9,\n", + " alpha=0.75,\n", + " label='idx = 0',\n", + ")\n", + "plt.hist(\n", + " post.where(post.idx == 1).y.values.reshape(-1),\n", + " bins=30,\n", + " rwidth=0.9,\n", + " alpha=0.75,\n", + " label='idx = 1'\n", + ")\n", + "# fmt: on\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "id": "7fe000d6-9e6a-4ae7-9cae-3d0eed952410", + "metadata": {}, + "source": [ + "One important thing to notice is that this discrete variable has a lower ESS, and particularly so for the tail. This means `idx` might not be estimated well particularly for the tails. If this is important, I recommend using the `lp_idx` instead, which is the log-probability of `idx` given sample values on each iteration. The benefits of working with `lp_idx` will explored further in the next example." + ] + }, + { + "cell_type": "markdown", + "id": "6b458c9e-3b2d-4ba3-a657-5d7db1c046c5", + "metadata": {}, + "source": [ + "## Coal mining model" + ] + }, + { + "cell_type": "markdown", + "id": "e8dd6e73-6d3b-4ee0-9bff-eb0a581399af", + "metadata": {}, + "source": [ + "The same methods work for the {ref}`Coal mining ` switchpoint model as well. The coal mining dataset records the number of coal mining disasters in the UK between 1851 and 1962. The time series dataset captures a time when mining safety regulations are being introduced, we try to estimate when this occurred using a discrete `switchpoint` variable." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "9086c01b-5da7-4744-96ba-8d0b52e088c4", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zv/upstream/pymc/pymc/model/core.py:1307: RuntimeWarning: invalid value encountered in cast\n", + " data = convert_observed_data(data).astype(rv_var.dtype)\n", + "/home/zv/upstream/pymc/pymc/model/core.py:1321: ImputationWarning: Data in disasters contains missing values and will be automatically imputed from the sampling distribution.\n", + " warnings.warn(impute_message, ImputationWarning)\n" + ] + } + ], + "source": [ + "# fmt: off\n", + "disaster_data = pd.Series(\n", + " [4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,\n", + " 3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,\n", + " 2, 2, 3, 4, 2, 1, 3, np.nan, 2, 1, 1, 1, 1, 3, 0, 0,\n", + " 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,\n", + " 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,\n", + " 3, 3, 1, np.nan, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,\n", + " 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]\n", + ")\n", + "\n", + "# fmt: on\n", + "years = np.arange(1851, 1962)\n", + "\n", + "with pmx.MarginalModel() as disaster_model:\n", + " switchpoint = pm.DiscreteUniform(\"switchpoint\", lower=years.min(), upper=years.max())\n", + " early_rate = pm.Exponential(\"early_rate\", 1.0, initval=3)\n", + " late_rate = pm.Exponential(\"late_rate\", 1.0, initval=1)\n", + " rate = pm.math.switch(switchpoint >= years, early_rate, late_rate)\n", + " disasters = pm.Poisson(\"disasters\", rate, observed=disaster_data)" + ] + }, + { + "cell_type": "markdown", + "id": "20d95bc6-ac70-427f-9bf4-c5b42cdf09fe", + "metadata": {}, + "source": [ + "We will sample the model both before and after we marginalize out the `switchpoint` variable" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "77b71716-a585-49b8-b31a-43e54211a385", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Multiprocess sampling (2 chains in 2 jobs)\n", + "CompoundStep\n", + ">CompoundStep\n", + ">>Metropolis: [switchpoint]\n", + ">>Metropolis: [disasters_unobserved]\n", + ">NUTS: [early_rate, late_rate]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [4000/4000 00:04<00:00 Sampling 2 chains, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 5 seconds.\n", + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", + "/home/zv/upstream/pymc-experimental/pymc_experimental/model/marginal_model.py:169: UserWarning: There are multiple dependent variables in a FiniteDiscreteMarginalRV. Their joint logp terms will be assigned to the first RV: disasters_unobserved\n", + " warnings.warn(\n", + "Multiprocess sampling (2 chains in 2 jobs)\n", + "CompoundStep\n", + ">NUTS: [early_rate, late_rate]\n", + ">Metropolis: [disasters_unobserved]\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [4000/4000 01:52<00:00 Sampling 2 chains, 0 divergences]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 112 seconds.\n", + "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" + ] + } + ], + "source": [ + "with disaster_model:\n", + " before_marg = pm.sample(chains=2, random_seed=rng)\n", + "\n", + "disaster_model.marginalize([\"switchpoint\"])\n", + "\n", + "with disaster_model:\n", + " after_marg = pm.sample(chains=2, random_seed=rng)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "55b108e7-c49a-40f1-afd7-c3890587a917", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
switchpoint1890.2242.6571886.0001896.0000.1920.136201.0171.01.0
early_rate3.0850.2792.5983.6360.0070.0051493.01255.01.0
late_rate0.9270.1140.7151.1430.0030.0021136.01317.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", + "switchpoint 1890.224 2.657 1886.000 1896.000 0.192 0.136 \n", + "early_rate 3.085 0.279 2.598 3.636 0.007 0.005 \n", + "late_rate 0.927 0.114 0.715 1.143 0.003 0.002 \n", + "\n", + " ess_bulk ess_tail r_hat \n", + "switchpoint 201.0 171.0 1.0 \n", + "early_rate 1493.0 1255.0 1.0 \n", + "late_rate 1136.0 1317.0 1.0 " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.summary(before_marg, var_names=[\"~disasters\"], filter_vars=\"like\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "fb62001a-3b80-4923-96e2-064d411ff523", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
early_rate3.0770.2892.5293.6060.0070.0051734.01150.01.0
late_rate0.9320.1130.7251.1500.0030.0021871.01403.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \\\n", + "early_rate 3.077 0.289 2.529 3.606 0.007 0.005 1734.0 \n", + "late_rate 0.932 0.113 0.725 1.150 0.003 0.002 1871.0 \n", + "\n", + " ess_tail r_hat \n", + "early_rate 1150.0 1.0 \n", + "late_rate 1403.0 1.0 " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.summary(after_marg, var_names=[\"~disasters\"], filter_vars=\"like\")" + ] + }, + { + "cell_type": "markdown", + "id": "66532abc-38a6-4796-ab4d-9252159663fc", + "metadata": {}, + "source": [ + "As before, the ESS improved massively" + ] + }, + { + "cell_type": "markdown", + "id": "e058dba7-9b6b-4002-8360-2fae6fe71306", + "metadata": {}, + "source": [ + "Finally, let us recover the `switchpoint` variable" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "19459eaa-a781-4baf-8360-77dad3c15217", + "metadata": {}, + "outputs": [], + "source": [ + "disaster_model.recover_marginals(after_marg);" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "b306de49-12b1-44f1-90e7-2d2320567afb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
early_rate3.0770.2892.5293.6060.0070.0051734.01150.01.0
late_rate0.9320.1130.7251.1500.0030.0021871.01403.01.0
switchpoint1889.7462.4431886.0001894.0000.0740.0521054.01541.01.0
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", + "early_rate 3.077 0.289 2.529 3.606 0.007 0.005 \n", + "late_rate 0.932 0.113 0.725 1.150 0.003 0.002 \n", + "switchpoint 1889.746 2.443 1886.000 1894.000 0.074 0.052 \n", + "\n", + " ess_bulk ess_tail r_hat \n", + "early_rate 1734.0 1150.0 1.0 \n", + "late_rate 1871.0 1403.0 1.0 \n", + "switchpoint 1054.0 1541.0 1.0 " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.summary(after_marg, var_names=[\"~disasters\", \"~lp\"], filter_vars=\"like\")" + ] + }, + { + "cell_type": "markdown", + "id": "1fc7e742-67b4-4152-8ec5-4bd8c4f7c640", + "metadata": {}, + "source": [ + "While `recover_marginals` is able to sample the discrete variables that were marginalized out. The probabilities associated with each draw often offer a cleaner estimate of the discrete variable. Particularly for lower probability values. This is best illustrated by comparing the plot of the log-probabilities with the histogram of the sampled values." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "3338722f-a0c6-4277-b458-8ff8dcb59434", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeZyVdd3/8ff3OofZQBzggLgwlEuJlTkTJENMJWpmhQPlhjUhQW5pSnALQZmlYWMYmJgbdwmTiGjC3Nx1i3suDP60mSJzDwI1WUY5iszGOdf398fVGRiY5axzlnk9Hw8fcJ0513W+43DNnHlfn+vzMdZaKwAAAAAAAAAAsoiT7gUAAAAAAAAAABArwm0AAAAAAAAAQNYh3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWIdwGAAAAAAAAAGQdwm0AAAAAAAAAQNYh3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWIdwGAAAAAAAAAGQdwm0AAAAAAAAAQNYh3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWIdwGAAAAAAAAAGQdf7oXAERj165d6V4CcpQxRsXFxZKkYDAoa216FwRkIc6j3HFI3ZfkD77Q4bFQ8WjtLn84TSvqWziXgMRxHgGJ4zwCkoNzqXODBg1K6vGo3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWYaAkEhYMBlVfX69t27bpww8/1LBhw3TUUUeptLRUPp8v3csDAAAAAAAAkIMItxG3zZs366abbtKTTz6pvXv3HvTxoUOH6rzzztPFF1+svLy8NKwQAAAAAAAAQK6iLQniUltbq69//et65JFHOg22JWnnzp1asmSJzjvvPL311lu9vEIAAAAAAAAAuYzKbcTsz3/+s+bOnSvXddsf+8hHPqKTTz5ZxcXF2rp1q5544gm1tLRIkl566SVdfPHFuu+++zRgwIB0LRsAAAAAAABADiHcRkx27NihmTNntgfbxhjNmTNHU6dOlePsuxHgvffe05VXXqn/9//+nyTpjTfe0DXXXKNf/epXaVk3AAAAAAAAgNxCWxLE5LbbbtOePXvat6+44gpNmzatQ7AtSYMHD9bSpUt1zDHHtD/2pz/9SS+99FKvrRUAAAAAAABA7iLcRtQaGxt1//33t2+XlJTooosu6vL5+fn5+vGPf9y+ba3VbbfdltI1AgAAAAAAAOgbCLcRtccee6zD8Mhzzz1X/fr163af8vJyHX300e3bf/7zn9XU1JSyNQIAAAAAAADoGwi3EbXHH3+8w/aXv/zlqPY744wz2v/e2tqqZ599NqnrAgAAAAAAAND3EG4jan/5y1/a/x4IBDRixIio9istLe2w/fzzzyd1XQAAAAAAAAD6HsJtRGX79u3avXt3+/aoUaOi3veEE07osP3Pf/4zaesCAAAAAAAA0DcRbiMqmzZt6rB9xBFHRL1vIBDo0Jt78+bNSVsXAAAAAAAAgL6JcBtR2b59e4ft4cOHR72vMUaHHXZYl8cCAAAAAAAAgFj5070AZIempqYO20VFRTHt379///a/h0Ihtba2Kj8/P+r9jTExvR4Qrf3/bfHvDIgP51Eu6ezrZ/i69hLOJSBxnEdA4jiPgOTgXOodhNuIyoHhdizBdGfP37NnT0zHKC4ujun1gHgceuih6V4CkPU4j7Kcz3fQQ36fj5/DacC5BCSO8whIHOcRkBycS6lDWxJEpbW1tcP2/j20o5GXl9ft8QAAAAAAAAAgFlRuIyoHVlnv3bs3pv3b2tq6PV5PgsFgTM8HomWMab+C+v7778tam+YVAdmH8yh3DAiHD3pzGAqH9SE/h3sF5xKQOM4jIHGcR0BycC51Ltl3hRJuIyoH9tiOtfL6wOfv34M7GnwDQG+w1vJvDUgQ51G26+xrx9c0HTiXgMRxHgGJ4zwCkoNzKXVoS4KoHBhu79mzJ6b993++3++PuXIbAAAAAAAAAPZHuI2oHHbYYR22t2/fHvW+1toOzz/wWAAAAAAAAAAQK8JtROWYY47psP32229HvW9jY2OHHt1HH3100tYFAAAAAAAAoG8i3EZUhg0bpkMOOaR9++WXX45635deeqnDNuE2AAAAAAAAgEQRbiNqn/nMZ9r//u6772rr1q1R7VdfX99he8yYMUldFwAAAAAAAIC+h3AbUTv11FM7bD/00ENR7bdu3br2v+fn5+tzn/tcUtcFAAAAAAAAoO8h3EbUJkyYoH79+rVv33///R16aXemrq5Omzdvbt/+whe+oKKiopStEQAAxM/agx/74AMpFOrkAwAAAACQZoTbiFogENC5557bvr1161bdeeedXT6/tbVV119/ffu2MUaXXnppStcIAABi19ho9d+/c/Xqawd/bOub0qSzvY83NhJyAwAAAMgchNuIycUXX6z+/fu3b99yyy363e9+J9d1Ozzvvffe04wZM/TGG2+0P/aVr3xFJ5xwQq+tFQAA9Ky+wWpKldWyGikU6vw5waC0rEaaUmVV30DADQAAACAz+NO9AGSXww47TL/61a906aWXynVdWWv1i1/8QitXrtTYsWNVXFysLVu26IknnlBLS0v7fscee6x+9rOfpXHlAAD0TaGQ1fo6actWqbnZqrDQaGSJNK5c2vh3aeZsK2ulA65TH8R1pdZW7/mLFkplpaZ3PgEAAAAA6ALhNmL2xS9+UTfccIOuvfZaNTc3S5L+9a9/6V//+lenzx81apSWLFmiAQMG9OIqAQDo2xobrWrXWq2u9SqvfT7JGMlaq3BYGjhQamryQuvOem13xnUlx5HmzrdasVwKBAi4AQAAAKQPbUkQl0mTJunBBx/Uaaed1mHI5P6GDh2q733ve1q1apWOOuqoXl4hAAB91/6tRoJB77Fw2Gs7Eg57296gyOiD7QjXlVpapNq1tCcBAAAAkF5UbiNuRx99tG699Vbt2rVL9fX12rZtm/bs2aNAIKARI0aorKxMPp8v3csEAKBPqW+wUbcaiZfrSmtqpalVVn4/1dsAAAAA0oNwGwkbNGiQTj311HQvAwCAPqWzXtqDiq1uXhJbq5F47QpKdRukivGpfR0AAAAA6ArhNgAAQBbpqZd2b/E5XrBe0XsvCQAAAAAdEG4DAABkifoGqznzrFpb97Uc6c1Ae3/GkZqarCTakgAAAABID8JtAACALNAbvbRj4YalV1+T7lzqqrDQaGSJNK5c9OAGAAAA0GsItwEAADJcY6NXsd0bvbSj5Vrp+Rekv9Tva4lSXCxNrrSqnGgUCBByAwAAAEgtwm0AAIAU62z4YyyVzrVrvVYkmRJsR7huxyryYFBaViOtXGVVvUAqKyXgBgAAAJA6hNsAAAAp0tPwx2gqnUMhb/9MaEUSDdeVWlulmbOtFi0k4AYAAACQOk66FwAAAJCL6husplRZLavxgm3JG/4YCu0bAhmpdJ5SZVXf0HlZ9vq6fftni0j7lLnzrRobM6zcHAAAAEDOoHIbAAAgDt21Gtn4d0U9/LGnSuctW72K70ggni1cV2pp8VqqTJ9G9TYAAACA5CPcBgAAiEFPrUYGDpSamhTT8EfXlRzHq3ResVwdWpQ0N1uZLM2GXVdaUytNrbJR9RYHAAAAgFjQlgQAACBK0bQa+eADbzvW4Y/7Vzrvr7DQpHyQpDGS3+8F9cm2KyjVbUj+cQEAAACAcBsAACAK9Q1WM2dbtbambrhjpNI5FNqXZo8sSW1LEsfx/lu00Oj4jx/88USrxn2O11oFAAAAAJKNcBsAAKAHjY1Wc+ZZuW7qgu2IAyudx5VLxcWpeS3HkQoKpMU3GZWeZFLS/sQ4UlMTQyUBAAAAJB89twEAAHpQu9ar2E51exBpX6VzxX+2/X6jyZVeK5REgnWf4wXN1pXCrjSoWJpUKVVONB16fCebG5a275Bq7rEHDd6kDzcAAACARBBuAwAAdCMU8oZHprpiO2JfpfO+4LdyotHKVbG3RHEcKT9fuuoKaVfQqKnJqqjIC5fLx0YXLica6LtWWvew5PPZDoM3i4ulyZU25eE6AAAAgNxFuA0AANCN9XX7hkf2BjcsvfqadOdSt0OVc/UCo5mzrRwnuoDbcbx+2Tfe4LUc8cQeIvuT9G7xwL7hwaC0rEZaucqqeoFUVkrADQAAACA2hNsAAADd2LJV8vlSO9Rxf66Vnn9B+kv9gVXO0rU/lm64UWpp6T7gjvTSrl6wf7Adn8GDFHWgHivXlVpbpZmzrRYtJOAGAAAAEBvCbQAAgG40N9uUDFrszoGDKyNVzvn50rw50qbN0upa7/FU99IeNMh73VhbokTLdb3wfO58qxXLRYsSAAAAAFEj3AYAAOhGYaGR7Y1Jkj2IVDlfe520aKHR1CqpboNXWR5PL+1o9esXe0uUWLmuV41eu9Zq+rTkrT0Uslpf5/0/YpglAAAAkHsItwEAALoxsqT3WpL0pGOVs1HFeKMKSfH00o5FWanRooXe6/bUEiVeriutqZWmVtmEg+fGRqvatXZfdbtPDLMEAAAAcpCT7gUAAABksnHlXhiaKfavcu5NZaVGK5Z7FeOR/x8+xxs46UvSO8pdQa8aPRH1DVZTqqyW1ewbBBoOS6HQvosUkTYvU6qs6hvSX5UPAAAAID6E2wAAAN3w+40mV3oV05kiUuUcCvVuMBsIGE2f5mjNA0Y3XG/03RlGF5wvfXeG0RmnexXSifA5XguReNU3WM2cbaPqD77/MEsCbgAAACA7ZdCvaQAAAJmpcqJRfn7sAbcxXmXzwIHedqTS2UlCJ4xkVDnHy+/3WqJ86wKji2Y4+tYFRocdpoQHbxrH6x8ej8ZGqznz7EHDOLvjupK1XruVxkYCbgAAACDb0HMbAACgB4GAUfUCxTRU0XG8sHfRQqNPfbLj8MdXX5OefyGx3tWRKueK+A+RVMkYvOmGpVdfk+5c6sY8/LF2rVexHesSUjXMEgAAAEDqEW4DAABEIZahio4jFRRI1QuMSk/yAtOK8Wof/njnUld/qU8s3N5X5ZwZgWwyBm+61gv9/1If2/DHUMgbHhnv/89kDrMEAAAA0HtoSwIAABClaIYqDiqWplZJK5bvC7YP5FU5J7YW60pFRZkTxCZr8Kbrxj78cX3dvuGR8UpnmxcAAAAA8aFyGwAAIAbeUEWjqVW2Q6uRoiKvjUb52J7baCSjyjnsesfJFN7gTatlNYlVpHdm/+GPixZ6Fxn2t2WrN8wykf+nmdbmBQAAAEDPCLcBAADi4A1V3NdqJBaRKudEqo0HFXtBeiapnGi0cpXX+zoVAbfjeG1hVixXhxYlzc02icMsM6caHgAAAED3aEsCAADQy7wqZy+sjYfjSJMqoxu02Ju8wZtGxsT/uXVn/+GP+8vFNi8AAAAAeka4DQAAkAaVE43y82MPgSPDKisnZmYQ6w3eNCooSF3AvabWGyIZkYttXgAAAAD0jHAbAAAgDeKpcnYcyRipeoHp0JYj03Q3eNNJwrIPHP6YjGGWmdjmBQAAAED3CLcBAADSJJYq50jF9uKbjEpPytxgO8IbvOlozQNGN1xv9N0ZRhecL40Zk3hFd2T4Y0SutnkBAAAA0D3CbQAAgDTqrsrZ9593aoOKpalV0orl2RFs788bvGn0rQuMLprh6OMfSzzc3jf8cZ9cbfMCAAAAoGv+dC8AAACgr/OqnI2mVlnVbfCqkpuarIqKjEaWeO0ycqWq2Bv+mNj0Rzcsbd8h1dxj1dxsVVjo/X9acJ00e44XWLtuz8fJljYvAAAAADpHuA0AAJAhvCpnqUKSlJthazKGP7pWWvew5PNZGSNZaxUOe5Xvp58m/fnPUmtb9wF3pGK7ekH2VcMDAAAA8BBuAwAA7CcUslpf51VP718VPK48d6qn0yky/DEYTPxYB4bkwaD08CNSXp70pdOlDc95j/kcr5WJdaWw67V5mVTptSKhYhsAAADIXoTbAAAAkhobrWrXWq2u/U8g6tNBVcGTKy2BaIK84Y9Wy2qiax0SK9eV2tqkRx6VFlZLLS0mp9u8AAAAAH0Z4TYAAOjz6hus5syzam3dF7h2VhW8rEZaucqqeoE3CBLxqZxotHJVx//fyeS6XtuR+ddIK5ZLFeONcrXNCwAAANCXJTirHgAAILvVN1jNnB1d0Oq6UmurNHO2VX1DYkMR+7JAwKh6gZExXgidCq4rtbRItWv5OgEAAAC5inAbAAD0WY2NXsW260ZfQey6krXS3PlWjY0Ep/EqKzVatNCooCC1AfeaWq+POgAAAIDcQ7gNAAD6rNq1XsW2jTH7pCo4OcpKjVYsN5pa5fU0l7zhj36/92cy7ApKdRt6fl4oZPXU01Y191jdudRVzT3eNsE4AAAAkLnouQ0AAPqkUMgbHhlvz+dIVfDUKstwwgQEAkbTpxlNrbKq26AOwx83b7Z69PGD+5/Hwud4x6zo4uMMEgUAAACyF+E2AADok9bXeWFmIiJVwRXjk7Givs3vN6oYHwmhvRD5zqVWJsE82TheWN7ZQEkGiQIAAADZjbYkAACgT9qy1avSTUSkKhipUVhoYm4ZcyDrSkVFnQfbDBIFAAAAshvhNgAA6JOam5NZFYxUGFmSWEsSSQq73nH2xyBRAAAAIDcQbgMAgD4plVXBSI5x5fsGTcZrULFUPrbjYwwSBQAAAHID4TYAAOiTUlUVjOTx+40mV0pOnO9YHUeaVKkOAz+TNUg0FCLgBgAAANKNcBsAAPRJqaoKRnJVTjTKz4894HYcqaDA239/yRwkCgAAACC9CLcBAECflIqqYCRfIGBUvcDImOi/Vo4jGSNVLzAKBDp+fRgkCgAAAOQOwm0AANBnJbsqGKlRVmq0aKFRQUHPX6vI12bxTUalJx389WGQKAAAAJA7/OleAAAAQKqFQlbr67xq2+Zmq8JCo5ElXmuS6gVGM2dbOU50fZi7qwpG6pSVGq1Y7g1zXF3rtRbxOV7QbF2v//mgYq+avnJi118bb5BoYsE0g0QBAACAzEC4DQAAclZjo+0Yhvq8YNpaq3DY67k9uVK69sfSDTdKLS3dB9yRquDqBZ1XBSO1AgGj6dOMplZZ1W3wLlY0NVkVFXkXK8rH9twmhkGiAAAAQO4g3AYAADmpvsFqzjyr1tZ9gfWBoWYwKC2rkfLzpXlzpE2blVBVMHqH329UMV6qkCTF9rWIDBJNZKgkg0QBAACAzEC4DQAAslZX7UYKC61mz5Gs7bnViOtKra3StddJixYaTa1S3FXByHzeIFGrZTXRtaE5EINEAQAAgMxBuA0AALJOT+1GYuW6Xmg5d77ViuVGFeNNXFXByA6VE41WrupY1R8NBokCAAAAmaWHefMAAACZpb7BakqVV3kbaS0RDkuhUGK9lF3X67lduzaxYYPIfIGAUfUCI2O8wDoaDBIFAAAAMg+V2wAAIKN01WpkXLm08e/SzNk2qnYj8XBdaU2tNLXK0nYix5WVGi1a6FXrM0gUAAAAyE6E2wAAICP01Gpk4ECpqckLIW0Ki6t3Bb2e2xXjU/cayAxlpUYrlqvjvzsGiQIAAABZg3AbAACkXX2D1Zx5HXsgH9hi5IMPemctPserGq/onZdDmgUCRtOnGU2tsgwSBQAAALIM4TYAAEir+gab0lYjsTKOF24yTLJv8fuNKsaLQaIAAABAFiHcBgAAadPY6FVsp7rVSCysKxUVEW4CAAAAQKaLcj48AABA8tWu9VqRZEqwLXl9lkeWpHsVAAAAAICeULkNAADSIhTyhvhlQiuS/Q0q9vosA50JhazW13m9uZubrQoLvd7c48rpzQ0AAAD0NsJtAACQFuvrpGAw3avoyHGkSZWElDhYY6NV7VrvgkwwKPl8kjGStVbhsFRcLE2utKqcaBQI8O8HAAAA6A20JQEAAGmxZasXEGYKx5EKCqTKiQST6Ki+wWpKldWymn0XZMJhKRTy/pS8x5fVSFOqrOobMqjPDgAAAJDDCLcBAEBaNDdbmQzJkR3Hq8KtXkDVLTqqb7CaOdvrDd9TCx3XlVpbpZmzCbgBAACA3kC4DQAA0qKw0GTEIMlIxfbim4xKTyLYxj6NjVZz5lm5bvS94V3XG5A6d75VY2MG/AMHAAAAchjhNgAASIuRJftaOvQWnyP5/d6fkjc8cmqVtGI5wTYOVrvWq9iO9SKM60otLd7+AAAAAFKHgZIAACAtxpV7Q/hSOVQy0m7kphul5majLVulpiaroiKjkSVS+ViGR6JzoZA3PDLaiu0Dua60plaaWmX5NwYAAACkCOE2AABIC7/faHKlN6Qv3gCxO5F2I9UL9lVlV0iSCBrRs/V1iV942RWU6jZIFeOTsSIAAAAAB6ItCQAASJvKiUb5+V4QHQtjvPYiAwd627QbQbJt2Sr5fIkdw+d4xwEAAACQGlRuAwCAtAkEjKoXSDNnWzlOdBXckVYjixYafeqTXmUs7UaQbM3NVibBf0LG8f5dcrcAAAAAkBqE2wAAIK3KSo0WLZTmzrdqaek+4O601ch42o0g+QoLjWyskyQP4Ial7TukmnusmputCgu9iy/jyrn4AgAAACQD4TbiFg6H1dDQoDfffFM7d+7UgAEDNHz4cJWVlam4uDjdywMAZJGyUqMVy6Xatd4Qv2DQa+lgHMm6Utj1Wo1MqvRamQQCBINIrZElUjic2DFcK617WPL5vCpwa63CYW+Q6uRKy79lAAAAIEGE2znmnXfe0caNG/X3v/9dGzdu1Isvvqg9e/a0f/zyyy/XFVdckdBrtLW16fbbb9eqVau0c+fOgz7er18/nXLKKZo1a5Y+8pGPJPRaAIC+IxAwmj7NaGqVpdUI0m5cuRdCJzpUUjo4JA8GpWU10spVVtULvIs7AAAAAGJHuJ0DWlpadNVVV+nFF1/sNGxOpjfffFNXXHGFXn755S6fs3fvXj388MN65pln9LOf/UwTJ05M6ZoAALnF7ze0GkHa+f1GkyutltVE1ws+Vq4rtbZ6/eYXLSTgBgAAAOLhpHsBSFxbW5ueeOKJlAfbu3fv1kUXXdQh2C4sLNRXvvIVXXzxxTrvvPNUUlLS/rGmpibNmTNHTz/9dErXBQAAkAqVE43y871e76ngupK1Xr/5xsbE+nsDAAAAfRGV2zns8MMP12GHHaa//vWvSTne/PnztWnTpvbtk08+WYsXL9bgwYPbHwuHw7r77rv1y1/+8j99JcOaOXOmHnroIQUCgaSsAwAAoDcEAkbVC7zqasdJXQV3S4vXb37Gd5J/fAAAACCXUbmdIwYPHqzPf/7z+t73vqfbb79dzz77rJ588kn94Ac/SMrxN27cqHXr1rVvH3vssVq6dGmHYFuSfD6fpk+frssvv7z9sd27d+uOO+5IyjoAAAB6U1mp0aKFRgUFqa3gXlMrhUJUbwMAAACxoHI7BwwcOFB1dXUpfY3bbrutw/aPf/xj5eXldfn8iy++WLW1tdq6daskaeXKlbr00ksPCsMBAAAyXVmp0YrlXnX16lpvIKTPkYwjWVcKJ6Gie1dQqtsgTfxa4scCAAAA+goqt9GjPXv26JlnnmnfPuaYYzR27Nhu9+nXr5/OOeec9u22tjY9/vjjKVsjAABAKgUCRtOnOVrzgNEN1xt9d4bRBedL351hdMbpks+X2PF9jrRlK5XbAAAAQCwIt9Gjp59+Wm1tbe3bZ5xxRlT7ffnLX+6w/dhjjyV1XQAAAL3N7zeqGG/0rQuMLprh6FsXGB12mGRMYsc1jtTUlJw1AgAAAH0F4TZ69MILL3TYLi0tjWq/kpISDRkypMvjAAAA5ILCQiObYNG1daWiouSsBwAAAOgrCLfRo02bNnXYPuGEE6Led9SoUe1//+CDD7Rz586krQsAACATjCyRwuHEjhF2pZElCZZ/AwAAAH0M4TZ6tH+4nZeX16EauydHHHFEl8cCAADIBePKpeLixI4xqFgq736kCQAAAIADEG6jRzt27Gj/+/Dhw2ViaCp52GGHddjetm1b0tYFAACQCfx+o8mVkhPnO2vHkSZVescBAAAAED1/uheAzNbS0qLwfvfZFsXYDHLAgAEdtpvinJQUS6AOxGL/f1v8OwPiw3mUSzr7+hm+rlGoPMvRylWuWlsl141+P8eRCgq8/TmXgMRxHgGJ4zwCkoNzqXcQbqNbB4bR+fn5Me2fl5fX7fGiVZzovb5AFA499NB0LwHIepxHWc7nO+ghv8/Hz+EoFBdLv7llr757yQeSogu4Hcf77ze3DNRxx/br8DHOJSBxnEdA4jiPgOTgXEod2pKgW62trR22+/Xr18UzO3dguN3S0pLwmgAAADLRZ8f00123D1RhQc8tShxHKiyQlt4xUGNGx/b+CgAAAICHyu0kmTBhgt5+++2UHX/WrFm66KKLUnb8rhxYqb13796Y9m9ra+uwXVBQENc6gsFgXPsBPTHGtF9Bff/992WtTfOKgOzDeZQ7BoTDB705DIXD+pCfw1H72HHSPTWO/met1YNrrIJByedIxpGsK4Vdb3jk5ElGZ000GhrYo8j/Xs4lIHGcR0DiOI+A5OBc6lyy7wol3Ea3DuyxfWAld08ODLdj7dkdwTcA9AZrLf/WgARxHmW7zr52fE1jFRgifedCo29/S6rbIG3ZKjU1WRUVGY0skcrH7hse2dX/W84lIHGcR0DiOI+A5OBcSh3CbXSroKBAPp+vfajknj17Ytr/ww8/7LAdb7gNAACQbfx+o4rxUoWkzod1AgAAAEgE4XaS3HzzzTFXNcfiqKOOStmxezJs2DC98847kqTt27fLWhv1lNdt27Z12B4+fHjS1wcAAAAAAACg7yHcTpJPfepT6V5CyhxzzDHt4XZbW5saGxs1dOjQqPaN7Lf/sQAAAAAAAAAgUYTb6NHRRx+tZ555pn37pZde0he+8IWo9n355Zfb/z5w4EAFAoGkrw8AACDbhUJWdRuk7Tua1dRs5RhXJSOkceX7+nMDAAAA6IhwGz36zGc+o+XLl7dvNzQ0RBVub9myRe+++2779ujRo1OyPgAAgGzV2GhVu9Zqda0UDFr5fE0yRrJWCoel4mJpcqVV5USjQICQGwAAANgf4TZ6VFFRoby8PLW1tUmS1q1bp6uuuqrH/R566KEO26eeemoqlgcAyBKhkNX6OmnLVqm52aqw0GhkCZWp6LvqG6zmzLNqbZVc13vsPzO82wWD0rIaaeUqq+oFUlkp5woAAAAQQbiNHvXv318VFRV67LHHJEmbNm3Shg0bNHbs2C732bt3rx544IH27by8PE2YMCHlawUAZJ6OlamSz6f/VKZaKlPRZ9U3WM2cbWXtvmC7K64rtbZKM2dbLVpIwA0AAABEOOleALLDJZdc0mH7uuuua6/k7swdd9yhrVu3tm+ff/75Gjx4cMrWBwBIj1DI6qmnre7672bdvKRJNfe4euppq1DISvICvClVVstqvGBb8ipTQ6F9FaqRytQpVVb1DTYtnwfQmxobvYpt1+052I5wXa9Vydz5Vo2NnCcAAACAROU2onTiiSfqjDPO0Lp16yRJb7zxhmbMmKHFixd3CK1d19Xdd9+tJUuWtD92yCGH6OKLL+71NQMAUieaPsFjT7Z65FFRmQocoHat14rExphRu67U0uLtP30a5wgAAABgrI31bTUy0ZIlS/Sb3/zmoMettXL3SxSMMXKcgwv2jzzySD3yyCPdvsYHH3ygc889V5s3b25/rLCwUBMmTNCIESO0a9cu1dXVdajY9vl8uuOOO1RRURHPp9Vu165dCe0PdMUYo+LiYklSMBgU3xKBnnXWJzhZHEcqKJBWLKdFSTocUvcl+YMvdHgsVDxau8sfTtOKck8oZDXpbNt+J0M8BhVLqx8w9KoHOsF7OyBxnEdAcnAudW7QoEFJPR6V2znC61sajvt50ew7cOBA3XXXXbr88sv1yiuvSJKam5v1xz/+sdPnFxUV6ac//WnCwTYAIHPE0ic4HlSmItetr1NCwbYk7QpKdRukivHJWBEAAACQvei5jZiMGDFC999/vy677DINHTq00+f069dPp59+uh588EGdddZZvbxCAECqxNMnOB6uK62pVXvfbiCXbNnqDVVNhM/xjgMAAAD0dVRu54grrrhCV1xxRa+8Vl5enq688kpdfvnlqq+v15tvvqnGxkb1799fw4cPV1lZWdJvMQAApF+8fYLjQWUqclVzs5VJ8KYE40hNTVYSdzcAAACgbyPcRtx8Pp/GjBmjMWPGpHspAIAUC4W84ZGprNjeX6QylcZWyDWFhSbhfotuWHr1NenOpa4KC41GlkjjykUPbgAAAPQ5hNsAAKBHyegTHAsqU5GrRpZIUYw66ZZrpedfkP5SH5mnIhUXS5MrrSonMowVAAAAfQc9twEAQI+S0Sc4FtaViooI6JB7xpV7QXSiXFcKhfYF5cGgtKxGmlJlVd9Av3oAAAD0DYTbAACgR8noExyLsOtVuAK5xu83mlwpOSl4F+66UmurNHM2ATcAAAD6BsJtAADQI69PcO+93qBiqXxs770e0JsqJxrl56cu4LZWmjvfqrGRgBsAAAC5jXAbAAD0KBl9gqPlONKkSobjIXcFAkbVC4yMSV3A3dIi1a4l3AYAAEBuI9wGAAA9Slaf4J44jlRQ4FW2ArmsrNRo0UKjgoLUBdxraqVQiIAbAAAAuYtwGwAA9CiVfYIjHEcyRqpeYBQIEG4j95WVGq1YbjS1at/FI59P8vslJwmnwK6gVLch8eMAAAAAmcqf7gUAAIDsUDnRaOUqq9ZWryo0mSIV29ULjEpPIthG3xEIGE2fZjS1ymrDc0bbdxRoT5PV3/7WrOdfSOxc8znSlq1SRfKWCwAAAGQUKrcBAEBU4ukT7Djef2eesV9lquNVpvr+c4xBxdLUKmnFcoJt9F1+v1HFeKMZ3ynUlZcX6fiPm4TvlDCO1NREWxIAAADkLiq3AQBA1Lw+wdLc+VYtLd1XlR5YjR0KWdVt8CpJm5qsioqMRpZI5WMZHgkcqLBQsgnm0m5Y2r5DqrnHqrnZqrDQO+fGlXPOAQAAIDcQbgMAgJh4fYKl2rVWq2ulYNDrE2yMZF0p7HrV2JMqvVYmkf7ZXmVqpEUCwRrQnZElRuFwYum2a6V1D0s+n/XOT2sVDnt3UUyutB3OTwAAACAbEW4DAICYddUn2Oe0qGQE1dhAosaVeyF0MJj4scLhjtvBoLSsRlq5yqp6gXfBCgAAAMhGhNsAACBukT7BxcWFkqRgsE020V4KAOT3G02u9ELoZA9wlbxjtrZKM2dbLVpIwA0AAIDsxEBJAAAAIANVTjTKz49+gGusXNfr6z13vlVjIxelAAAAkH0ItwEAAIAMFAgYVS8wMia1AXdLi9dDHwAAAMg2hNsAAABAhiorNVq00KigILUB95paKRQi4AYAAEB2IdwGAAAAMlhZqdGK5UZTq7whk5LkcyS/3/szGXYFpboNyTkWAAAA0FsYKAkAAABkuEDAaPo0o6lVVnUbpC1bpaYmq6Iio82brR59XAqH4z++z/GOWZG8JQMAAAApR7gNAAAAZAm/36hifCSENpKkO5daGZPYcY3jheWRYwIAAADZgLYkAAAAQBYrLDSyCbbLtq5UVESwDQAAgOxCuA0AAABksZElibUkkaSw6x0HAAAAyCa0JQEAAAcJhazW13k9eJubrQoLjUaWSOPKvbYIADLHuHJv0GQwGP8xBhVL5WOTtCAAAACglxBuAwCAdo2NVrVrrVbXekGZzycZI1lrFQ57AdrkSqvKiUaBACE3kAn8fqPJlVbLaiTXjX1/x5EmVXLhCgAAANmHtiQAAECSVN9gNaXKC8giFaDhsBQK7Wt5EAxKy2qkKVVW9Q0JNvkFkDSVE43y872gOhaOIxUUePsDAAAA2YZwGwAAqL7BauZsq9bWnis/XVdqbZVmzibgBjJFIGBUvcDImOgDbsfx7syoXsCdGAAAAMhOhNsAAPRxjY1Wc+ZZuW70LQ1cV7JWmjvfamcjATeQCcpKjRYtNCoo6DngjlRsL77JqPQkgm0AAABkJ8JtAAD6uNq1XsW2jTGjdl2ppUX6n7WE20CmKCs1WrHcaGqV1yNfknyO5Pd7f0re8MipVdKK5QTbAAAAyG4MlAQAoA8LhbzhkfEMoZO8/Vavsfr+5Vb9+hGSAZkgEDCaPs1oapVV3QZpy1apqcmqqMhoZIlUPpbhkQAAAMgNhNsAAPRh6+v2DY+M166g9PQzezXhlLxkLAlAkvj9RhXjpQpJEmE2AAAAcg9tSQAA6MO2bJV8vsSO4XOkTZvDyVkQAAAAAABRItwGAKAPa262MgkWdBpH2tNE320AAAAAQO8i3AYAoA8rLDQxD5I8kHWl/kW0PAAAAAAA9C56bgMA0IeNLJHCCXYUCbvS0R9NsLcJgLQJhazW13ltipqbrQoLvcGT48oZPAkAAIDMRrgNAEAfNq5cKi5ObKjkoGKpYny/JK0IQG9pbLSqXWu1utb7HuDzScZI1lqFw973hsmVVpUTjQIBQm4AAABkHtqSAADQh/n9RpMrJSfOdwSOI02eZNSvH8EXkE3qG6ymVFktq9l3cSsclkKhfXdzBIPSshppSpVVfQN99QEAAJB5CLcBAOjjKica5efHHnA7jlRQIJ01kWAbyCb1DVYzZ1u1tkqu2/1zXVdqbZVmzibgBgAAQOahLQkAAH1Ed311qxcYzZxt5Tg9h12SF2wb4+03lHYFQNZobLSaM8/KdRX1MFnX9c75ufOtViwXLUoAAACQMQi3AQDIcdH11ZWu/bF0w41SS0v3AXekYrt6gVHpSYRcQDapXetVbEcbbEe4rve9oXat1fRpnPcAAADIDITbAADksPoGr0pz//YDkX66EZG+uvn50rw50qbN2heEO5JxJOtKYdcbHjmpUgyYA7JQKORd5Irm7ozOuK60plaaWmXl93P+AwAAIP0ItwEAyFGRvrrWRt9X99rrpEULjaZWSXUbvBYmTU1WRUVeC5PysSLUArLU+rp9wyPjtSvofW+oGN/987prg8T3EAAAACQL4TYAADko8b66RhXjjSokSQRRQC7YstVrS3Tg3Rux8DnecSq6+Hh0bZAsd38AAAAgKZx0LwAAACRfMvrqAsgtzc1WJsE82Tje3RydqW+wmlJltaxmX4V4OCyFQvsC9UgbpClVVvUNfJ8BAABAYgi3AQDIMcnqqxsKETwBuaSw0MR8wetA1pWKig5OyCNtkPbv79+VSBukmbMJuAEAAJAYwm0AAHJMMvvqAsgdI0sSa0kieYNlR5Z0fGz/NkjRXlSLtEyaO9+qsZGAGwAAAPEh3AYAIMdE+uomItJXF0DuGFfu9bxOxKBib7Ds/miDBAAAgHQh3AYAIMekuq8ugOzk9xtNrvQGx8bDcaRJld5xImiDBAAAgHQi3AYAIMeksq8ugOxWOdEoPz/2gNtxpIICb//90QYJAAAA6US4DQBAjklVX10A2S8QMKpeYGRM9AG340jGSNULjAKBjuE2bZAAAACQToTbAADkmFT11QWQG8pKjRYtNCoo6DngjlRsL77JqPSkg+/moA0SAAAA0smf7gUAAIDk8vrqWi2ria8Pbmd9dQHklrJSoxXLvWGOq2u91iI+xwuarevdvTGo2PteUDnx4IrtCK8NUmLBtBuWtu+Qau6xam62Kiw0GlniXajj+xAAAAC6Q7gNAEAOqpxotHKVVWtrbAF3V311AeSeQMBo+jSjqVVWdRu81iBNTVZFRV64XD6253A5GW2QXCute1jy+bwqcGutwmHvDpTJlbbbcB0AAAB9G+E2AAA5yOurK82cbeU40QXc3fXVBZC7/H6jivFShSQptnM/0gYp0aGS0sEheTAoLauRVq6yql7gVZunUyhktb7OuwhAhTkAAEBmINwGACBHeX11pbnzrVpaug+4IxXb1Qs676sLAJ1JtA1ST1xXam31LtQtWpiegLux0XZs3+ITFeYAAAAZgoGSAADkMK+vrtHUqn1DJn2O5Pd7f0peX92pVdKK5QTbAGJXOdEoP7/n4ZTxcl3JWu9CXWNjcgdPhkJWTz1tVXOP1Z1LXdXc422HQt7r1DdYTanywvtIdXo4LIVC+yrNIxXmU6qs6hsYjAkAANCbqNwGACDHJaOvLgBIXbfmWHCdNHuOom6DFCvXlVpavAGY06cl/v0qmmrssSdbPfKoF6z39DllQoU5AABAX0S4DQBAH5FIX10AfVs0YfDpp0l//rPU2pa6gHtNrTS1yiZ0Qa6+wWrOvI4Ddzvr9/3QutjX5zhehfmK5aJFCQAAQC8g3AYAAADQpWjD4IcfkfLypC+dLm147j8huCMZR7KuFE5C4L0rKNVtkCrGd/+8rirMCwutZs+Jrho7HsmuMAcAAED3CLcBAAAAdKq+wWrmbBt1a462NumRR6WF1VJLi+nQBmnzZqtHHz84GI+Fz/EC64ouPt5ThXlvSFaFOQAAAHpGuA0AAADgII2NXsV2ZKBjNCKtOeZfI61YLlWMN4q0QbpzqZVJMOs1jheWd9ZaKZoK894SbYU5AAAAEpOimeYAAAAAslntWi8ojjbYjti/Ncf+CgtNzMc6kHWloqLOg+2ZszsG2+kUqTAHAABAamV8uB0KhbRr1y5t375du3fvVigUSveSAAAAgJwWCnmtPeINiiOtOUKhfWn2yJLEK6nDrnec/e1fYZ4Jwba0f4U5AAAAUikj2pKEQiG9+OKLeuWVV/Taa6/p1Vdf1ZYtW/Thhx+qtbX1oOcXFhbqyCOP1FFHHaVjjz1WpaWlOumkkzR48OA0rB4AAADILevrvJ7ViTiwNce4cqm4OLHjDiqWysd2fCzeCvNU6qrCHAAAAMmVtnC7paVFjz76qP70pz9pw4YNam5ubv+Y7eGdaVNTk15//XW98cYbevLJJ9sfHzVqlM4880x9+ctf1ogRI1K1dAAAACCnbdnqDWNM5vBHv99ocqXVspr4KqwdR5pUqQ5DGhOtME+VzirMAQAAkHy9Hm6/8847uvvuu/WHP/xBe/bs6RBk+/1+DRs2TMOHD9dhhx2mgQMHqqCgQAUFBXIcRy0tLWpra1NTU5N27Nihbdu2adu2bdqzZ48k6aWXXtLLL7+sX/3qVxo3bpxmzJih8vLy3v4UAQAAgKzW3Jya4Y+VE41Wroq9N7bjSAUF3v77S0aFeSp0VmEOAACA5Ou1cPv999/XkiVLdN9992nv3r2y1mrw4MEaP368xowZo1GjRuljH/uY8vLyYj72m2++qZdeekkbN27UU089pddff13PPvus1q9fr0984hO65pprdOKJJ6bgswIAAAByjzf8MbE+H5215ggEjKoXSDNnWzlOdAG340jGSNULjAKBjsdLRoV5snVWYQ4AAIDU6JVw+//+7/90/fXX691331VRUZEmTZqkb3zjGzrxxBNlEi0JkTRixAiNGDFCZ5xxhv7rv/5L27Zt0x//+Efdd999evHFF3X++efr7LPP1tVXX60BAwYk4TMCAAAAcleqhj9KUlmp0aKF0tz5Vi0t3QfckYrt6gVGpScd/HtDMirMk6mrCnMAAACkRkrD7b179+r666/Xfffdp0MPPVRXX321zjvvPPXv3z+VL6vhw4dr+vTpmj59up566iktXrxYq1at0gsvvKDbbrtNI0eOTOnrAwAAANksVcMfI8pKjVYs94ZBrq71XsfneK1MrOsF44OKvQroyokHV2xHJKPCPFm6qzAHAABAaqQs3G5ubtYll1yi559/XhdeeKEuv/zytFRNf/7zn9fnP/95/elPf9LPf/5znXPOObrlllt08skn9/paAAAAgGyQiuGPBwoEjKZPM5paZVW3wWsx0tRkVVRkNLLEC8Z7au2RjArzZOipwhwAAACpkZJwu7W1Vd/5zne0fft2LVu2TGPGjEnFy8TkK1/5isrLyzV//nxdeumluvvuu+nDDQAAAHQh2cMfu+L3G1WMlyok7T98MhrJqDDvjuN4f55xulT3XPwV5gAAAEiNlITbs2bN0t69e/XAAw9o8ODBqXiJuAwaNEi/+c1vdPPNN+uiiy7SqlWrVFLSSSNAAAAAoI9L9vDHVEi0wrw7B1Zjh0LxV5gDAAAgNVISbo8YMUK//OUvVVhYmIrDJ+zKK6/UUUcdpZ07dxJuAwAAAF1I5vDHVIm3wnx/0VRjJ1JhDgAAgNRISbg9Z86cVBw2qb7xjW+kewkAAABAxkvW8MdEhUJW6+u8yunmZqvCQq9yely5F6jHU2F+041Sc7OhGhsAACBLpWygJNLDWqutW7fq9ddf17Zt2/Thhx8qPz9fxcXF+tjHPqbjjz9ePp8vKa8VDofV0NCgN998Uzt37tSAAQM0fPhwlZWVqbi4OCmvAQAAgPRLxvDHeDU22o7Bus8Lpq21Coe9ntuTK6VrfyzdcKPiqjCnGhsAACA7ZVy4vWvXLm3fvl3HH398upeSNXbv3q1HH31UTz75pJ577jnt2rWry+cOGDBAkydP1oUXXqijjjoqrtdra2vT7bffrlWrVmnnzp0Hfbxfv3465ZRTNGvWLH3kIx+J6zUAAACQeXq7NUd9g9WceR1bjoTDHZ8TDErLaqT8fGneHGnTZmVshTnV4AAAAMllrLU23YuIWL58uaqrq+W6rsaPH6+77ror3UvKeBs2bNCMGTO0d+/emPYrKirSj370o5jbs7z55pu64oor9PLLL0f1Gj/72c80ceLEmF6jM90F9kAijDHtdxoEg0Fl0LdEIGtwHuWOQ+q+JH/whQ6PhYpHa3f5w2laUd/CudRRfYPVzNlW1sbWamTRQqMTP6UMqjBXhwrzVAbr4DwCkoHzCEgOzqXODRo0KKnHy5jK7U2bNrUH29ZaPfPMM9qyZYtGjhyZ7qVltA8//PCgYDsvL0+f/vSndfTRR2vw4MFqa2vT66+/rueee06tra2SpKamJs2bN08tLS365je/GdVr7d69WxdddJE2bdrU/lhhYaFOOeUUjRgxQsFgUHV1ddq6dWv7a8yZM0fFxcWqqKhI0mcMAACAXNfY6FVsu64XDkfDdb2Ae+58qxXLjSrGm4ysMF+5yqp6gdfLHAAAAInJmHC7rq5OeXl5am5uliQNGzZMhx9+eJpXlT2MMSovL9d5552nU045Rfn5+Qc9Z+fOnbruuuu0bt269seuv/56feYzn4mqDcz8+fM7BNsnn3yyFi9erMGDB7c/Fg6Hdffdd+uXv/zlf/oghjVz5kw99NBDCgQCCX6WAIADcfs7gFxUu9YLimMtcHJdr+d27Vqr6dN653tgLBXmriu1tkozZ1stWkjADQAAkKiMCbfb2tp04oknatq0afrXv/6lM888U3l5eTEd4/3339cTTzyhSZMmpWaRGerzn/+8Zs2a1WNAPXToUP3617/WrFmz9L//+7+SJNd19atf/Up33nlnt/tu3LixQyh+7LHHaunSpQd9jXw+n6ZPn67m5mbdcsstkryK7zvuuEPz58+P59MDAHQiugFrltvfAWSdUMj73hZNK5LOuK60plaaWmVTfpEv8Qpz8T0aAAAgAU66FxBx0kknaePGjRo9erQuvPBCHXbYYTEfY+vWrfrhD3+YgtVlri9+8Yu66667YhrA+eMf/1j9+/dv316/fr12797d7T633XbbQcfo7uLDxRdfrJKSkvbtlStX6r333ot6jQCArtU3WE2pslpW4wXbknf7eyi07zb4yO3vU6qs6hvo7QYge6yv2/e9LV67gl7P7VRLRoU5AAAA4pcx4XZpaalGjx6tefPmKRQKxXWMvjh00O+Pvfi+uLhY48ePb9/eu3dvtwMi9+zZo2eeeaZ9+5hjjtHYsWO7fY1+/frpnHPOad9ua2vT448/HvNaAQAdRW5/37+va1f2v/2dgBtAttiy1bsbJRE+xztOKiWrwjwU4vszAABAvDIm3Jakm2++WeFwWJMnT9Zzzz0X8/6vvPJKClaVm/avqpakxsbGLp/79NNPq62trX37jDPOiOo1vvzlL3fYfuyxx2JYIQDgQPvf/h5tmBK5VX7ufKvGRgIUAJmvudnKJNipwzhSU1Nqv+dlU4U5AABArsqYntvhcFjGGP3yl7/U2rVr9aMf/UjhcFif+9zndPzxx2v48OEaMGCAHKfzPL65uVkrVqzo5VVnrz179nTY7tevX5fPfeGFFzpsl5aWRvUaJSUlGjJkiN59991OjwMAiE02DVgDgHgVFhrZWL/RHcC6UlFRar/fRSrMI+2g4hGpMK9I3rIAAAD6lIwJt5cvX64bb7yxw2PWWj3wwANRH8NaK5NomUcf8eqrr3bY7q7H+aZNmzpsn3DCCVG/zqhRo9pbmnzwwQfauXOnhg4dGsNKAQBSdg1YA4BEjCxJLDCWpLDrHSeVklthzvdlAACAeGRMuD1o0KBOKzQSrdrAwd566y3V19e3bw8cOLDbwHr/cDsvL09DhgyJ+rWOOOKIg45FuA0AsUvm7e8V43t8KgCkzbhyqbg4se95g4ql8u5HxCQsGRXmbljavkOqucequdmqsNBoZIn3/4ALkQAAAD3LmHA7EpgaY3T44Yfr05/+tAoKCqLef8+ePXrqqafU2tqaqiXmjFtvvbXDG/HTTz+928GUO3bsaP/78OHDY6qOP7AifNu2bTGsFAAQwe3vAPoKv99ocqXVspr47lZxHGlSZerD4WRUmLtWWvew5PN5VeDWWoXDXrg/udKqcqJRIEDIDQAA0JWMCbcHDx4sSTr22GP1hz/8QXl5eTEf49Zbb9WSJUuSvbScsn79eq1evbp9u1+/frr44ou7fH5LS4vC+71rLyoqiun1BgwY0GG7qakppv0jaDeDVNn/3xb/zpDJWlqSc/t7c3Py/61zHuWSzr5+hq9rL+Fc2qfyLEcrV7lqbY0t4HYcqaDA2z/V/w8/N04qLrYJ31UjHRySB4PSshpp5SqrG28wKivt2/8eYsF5BCSO8whIDs6l3pEx4Xakcnv06NFxBdtS9IMO+6odO3bo6quv7lC1ffHFF2vkyJFd7nNgGJ2fnx/Tax74tYw33C4uLo5rPyAWhx56aLqXAHRp0KBmWRvf99AIa6XBgwtVXFyYpFUdjPMoy/l8Bz3k9/n4OZwGff1cKi6WfnPLXn33kg8kRRdwO473329uGajjju16WHoyTTmvSXfc1Rz3PITuuK7U2irNnO3qrtsH6rNjeudzyiV9/TwCkoHzCEgOzqXUcdK9gIjBgwfriCOO0OGHHx73MYYMGZLQ/rmstbVV3//+97Vz5872x0pLS3XJJZf0uN/++vWL7U31geF2S0tLTPsDADxHf9SX+IC1sHccAMgGnx3TT3fdPlCFBV5o3R3HkQoLpKV3DNSY0b0XAp97doEKolhfvFzX++/y73+gHTtSkKADAABkuYyp3M7Ly9Pjjz+e0DE+/vGPJ3yMeE2YMEFvv/12yo4/a9YsXXTRRXHtGw6HNWvWLDU0NLQ/dvjhh+vmm2/uMaw+sFJ77969Mb12W1tbh+1Y+qjvL5iM+z2BThhj2q+gvv/++wyxRcb69Ik2KQPWTvzUHgWDiVWAH4jzKHcMCIcPenMYCof1IT+HewXn0sE+dpx0T42j/1lr9eAarwWIz/HaLFlXCrve97bJk4zOmmg0NLAnKW1CopWXJ1UvcHTVLFeOE1+P8J64rtTcItXcE9T0aRlTm5SxOI+AxHEeAcnBudS5ZN8VmjHhdqyeffbZ9rC2sLBQn/70pzV69Og0ryoz/eQnP9EjjzzSvl1cXKylS5ceNOyxMwf22I51YOeB4XasPbsj+AaA3mCt5d8aMpbPJ02uVMID1ny+1H5P5TzKdp197fiapgPn0j6BIdJ3LjT69rekug3eYNymJquiIqORJVL52H3DI9Px/6z0JGnRQqO5861aWlIXcK9eY/Xtb7kpH5SZSziPgMRxHgHJwbmUOlkbbm/dulXPPfecJK8y+Xe/+50+8YlP6JZbbom7Z3cuuvHGG3X//fe3bxcVFenOO+/UscceG9X+BQUF8vl87UMl9+zZE9Prf/jhhx224w23AQBS5USjlats/APWJhKIAMhefr9RxXipQlLnw0/Tp6zUaMVyqXat1epadVphnqhdQS/crxif+LEAAAByRdaG21OmTNGUKVPat621WrJkiW666Sb98Ic/7PX13HzzzTFXNcfiqKOOinmf2267Tf/93//dvp2Xl6dbb71Vn/70p2M6zrBhw/TOO+9IkrZv3y5rbdRTXrdt29Zhe/jw4TG9NgBgn0DAqHqBNHO2jfr2d8eRjJGqFxgFApkVBgFALgkEjKZPM5paZQ+qMN+82erRx5XQ7ASf4x2zInlLBgAAyHpZG24fyBij4447Tj/72c/SEm5/6lOf6vXX7M4999yjxYsXt2/7fD4tWrRI48aNi/lYxxxzTHu43dbWpsbGRg0dOjSqfSP77X8sAED8ykqNFi1UVLe/Ryq2qxcYlZ5EsA0AvaGzCvM7l1pFWRvSJeN4YXmmVa0DAACkU8aG22+99ZaeffZZvfvuu3KjKE176623tG7dOvXv378XVpfZamtrdd1117VvG2O0YMECnXbaaXEd7+ijj9YzzzzTvv3SSy/pC1/4QlT7vvzyy+1/HzhwoAKBQFxrAADsE83t74OKvR7blROp2AaAdCssNAn32XTD0quvSXcudVVY6PUbH1cuenADAIA+LSPD7erqai1fvjyqUHt/1lp985vfTNGqssOjjz6qefPmdXjzfM0112jSpElxH/Mzn/mMli9f3r7d0NAQVbi9ZcsWvfvuu+3bDPwEgOTp7vb3AwesAQDSa2RJYi1JJMm10vMvSH+p937vCYel4mJpcqXlQiYAAOizMi7c/ulPf6qVK1fGXNlQWFio888/XzNnzkzRyjJfXV2dZs6cqVAo1P7YrFmzdMEFFyR03IqKCuXl5amtrU2StG7dOl111VU97vfQQw912D711FMTWgcA4GCZPGANAOAZV+4F0cFgYsdx3Y7tqIJBaVmNtHKVVfUC784eAACAviSjwu2nnnpK9957r4wx+tznPqdPfOITysvL029+8xudffbZGjZsWPtzrbXauXOn1q9fr7ffflv/9V//lXCIm802btyoyy67rD2AlqRLL71UF110UcLH7t+/vyoqKvTYY49JkjZt2qQNGzZo7NixXe6zd+9ePfDAA+3beXl5mjBhQsJrAQAAALKN3280udJqWU10w4Bj4bpSa6s3bHjRQgJuAADQt2RUuL148WIdeuihWrJkicaMGdP+eE1Njc4880yVl5d3ut+DDz6on//852pubtb06dN7a7kZ4/XXX9d3v/tdNTU1tT/27W9/O6rq6mhdcskl7eG2JF133XVavXq18vLyOn3+HXfcoa1bt7Zvn3/++Ro8eHDS1gMAAABkk8qJRitXWbW2pibgdhxv2PCK5aJFCQAA6DOcdC8g4s0339RLL72kn/zkJx2CbckbRLht27Yu9/3617+uJUuW6JZbbtE///nPVC81o7z11lv6zne+o+B+9zieffbZmjdvXlJf58QTT9QZZ5zRvv3GG29oxowZeu+99zo8z3Vd/fa3v9WSJUvaHzvkkEN08cUXJ3U9AAAAQDYJBIyqFxgZ4wXRyea6UkuLN2wYAACgr8iYyu36+noNHz5cX/nKVw762BFHHKH6+npNnjy5y/3Ly8t15plnqqamRtdee20KV5pZ1qxZox07dnR4bPXq1Vq9enVMx7nssst0+eWXd/uc66+/Xq+99po2b94sSXruuec0YcIETZgwQSNGjNCuXbtUV1fXoWLb5/Np0aJFCgQCMa0HAAAAyDVlpUaLFnoV1i0tqangXlMrTa2yDBUGAAB9QsZUbu/YsUPHHntspx8bNWqUnn322R6HTJ5++umqq6tLxfIyVmf/T8LhcMz/RTPAc+DAgbrrrrt0/PHHtz/W3NysP/7xj7r99tt13333dQi2i4qK9Itf/EIVFRXJ+WQBAACALFdWarRiudHUKm/IpCT5HMnvl5wk5NG7glLdhsSPAwAAkA0yJtwuKipSv379Ov3YCSecoHfeeUePPPJIt8cIBALdti9B4kaMGKH7779fl112mYYOHdrpc/r166fTTz9dDz74oM4666xeXiEAAACQ2QIBo+nTHK15wOiG642+O8PogvOlMWMSb1nic6QtW3t+HgAAQC7ImLYkw4YNU1tbW6cf+8IXviC/369f//rXGj9+vIqKijp93uuvv66CgoJULjPjXHHFFbriiit69TXz8vJ05ZVX6vLLL1d9fb3efPNNNTY2qn///ho+fLjKyso0aNCgXl0TAAAAkG38fqOK8ZJ3n6PRnUtd/aU+sXYlxpGamqwk2pIAAIDclzHh9ic+8Ql98MEH+tvf/qbq6mr5fD7NmzdPo0aN0qGHHqqKigo98cQTuvrqq3XzzTfL5/N12L+pqUl33XWXjjzyyDR9Bn2Pz+fTmDFjDhoACgAAACB2hYUmqnaB3XHD0vYdUs09Vs3NVoWFRiNLpHHlog83AADIORkTbh9xxBEaMmSIfvCDH+jtt9+WJM2aNUt/+tOfJElTp07V448/rscee0znn3++LrvsMo0ePVoFBQX629/+phtuuEFbtmzRN7/5zXR+GgAAAAAQl5ElUjic2DFcK617WPL5rIzxZvSEw15/78mVVpUTjQIBQm4AAJAbMqbntiR95Stf0dtvvy1jvDdb7777bvvHTj75ZH3jG9+QtVYvvviiLrvsMn32s5/ViSeeqKqqKv3jH/+QJH3jG99Iy9oBAAAAIBHjyvcNmUxUOCyFQvvC8mBQWlYjTamyqm9IrDocAAAgU2RUuH3WWWfpsssuU79+/WSM0WWXXdbh43PnztXRRx/dfquetbb9P2OMKisrNWrUqHQsHQCAHoVCVk89bVVzj9WdS13V3ONth0KEDAAAr23I5MrEh0p2xXWl1lZp5mwCbgAAkBuMTbSpWwq0tbWptbVVhxxyyEEfe++993TttdfqkUce6dCPbsKECVq8eLHy8vJ6c6noJbt27Ur3EpCjjDEq/k+JVDAYTLjPJdCZxkar2rVWq2u9yjmfT/+5VVz73SqurL1VnPModxxS9yX5gy90eCxUPFq7yx9O04r6Fs4lSN7PjClVVq2tiQ2W7I7jSAUF0orl2flzpzucR0DiOI+A5OBc6tygQYOSeryM6bm9v7y8vC5D6sGDB+vXv/61duzYoRdffFHNzc067rjj9LGPfayXVwkAQM/qG6zmzOsYUhzYTzVyq/jKVVbVC6Sy0twKGgAA0QsEjKoXeNXVjpOagNt1pZYWqXat1fRp/MwBAADZK6PaksRi2LBhmjBhgr761a8SbAMAMlJ9g9XM2dFV33GrOAAgoqzUaNFCo4KC1LYoWVMrWmMBAICslvHhdktLi/75z39q48aNB5Xvv/3222ptbU3TygAA6Fpjo1ex7brRV925rteqZO58q8ZGwgYA6MvKSo1WLDeaWrVvyKTPkfx+789k2BWU6jYk51gAAADpkJFtSUKhkB588EH94Q9/0D/+8Q+F/3P/dm1tbYcq7erqaj377LOaNm2aLrnkEvn9GfnpAAD6oNq1XsV2rG3VuFUcABARCBhNn2Y0tcqqboO0ZavU1GRVVGS0ebPVo48f3OoqFj7HO2ZF8pYMAADQqzIuDf7Xv/6l73//+3r99dclqb1a2xgj94DSt8WLF+vxxx/XjTfeqOeee05Lly5Vfn5+r68ZAID9hULe8Mh4+6RGbhWfWmXl9xNwA0Bf5/cbVYyPhNDez4U7l1qZBH9EGMcLyyPHBAAAyDYZ1ZZk+/btuvDCC/X666/LWitrrYYPH65PfepTnT7fcRyddtppevDBBxUKhfSjH/2ol1cMAMDB1td5QyITwa3iAIDuFBaamO8OOpB1paIigm0AAJC9Mqpye+HChdq2bZuGDh2qadOm6Wtf+5qGDRsmSTr++OO73G/AgAG65ZZb9NWvflUvvPCCRo8e3VtLBgDgIFu2Sj4ft4oDAFJnZEliP2ckKex6xwEAAMhWGRNuv//++/rTn/6kT37yk7rjjjs0ZMiQmPYPBAI677zzdO+99xJuAwDSqrmZW8UBAKk1rtwbNJnInUKDiqXysUlaEAAAQBpkTFuS5557To7jaOHChTEH2xEnn3yy/vKXvyR5ZQAAxCYZt4q7YWn7DqnmHqs7l7qqucfqqaetQqEEDwwAyAl+v9HkSsmJ8zc6x5EmVYrZDgAAIKtlTOX2tm3bdMwxx+gjH/lI3Mc45JBD1NjYmLxFAQAQh2TcKu5aad3Dks/nVYFbaxUOe1V6kyutKicaBQIEEgDQl1VONFq5yqq1NbYhxo4jFRR4+wMAAGSzjKncbm5uViAQSOgYO3bsUEFBQZJWBABAfCK3iidDOCyFQvvC8mBQWlYjTamyqm+gihsA+rJAwKh6gZEx0VdwO45kjFS9gIukAAAg+2VMuD1kyBBt3rw5oWM89dRTKilhIgoAIL0SvVW8J64rtbZKM2cTcANAX1dWarRooVFBQc8/dyIV24tvMio9iWAbAABkv4wJt0866SS9/fbbevTRR+Pa/7XXXlNtba3GjRuX5JUBABC7yolG+fmpDbitlebOt2psJOAGgL6srNRoxXKjqVX77hzyOZLf7/0pecMjp1ZJK5YTbAMAgNyRMT23jz32WI0aNUrz589X//79VV5eHvW+zz//vH7wgx8oFArp7LPPTuEqAQCIjneruFdd7Tix9UKNlutKLS1S7Vqr6dMIKgCgLwsEjKZPM5paZVW3QdqyVWpqsioqMhpZIpWPZXgkAADIPRkTbkvS7NmzNWPGDE2fPl1nnnmmpkyZorKyMjn/KXszZt+bsQ8++EDPPPOMVq9erWeeeUaSVFVVldBASgAAksm7Vdyrrm5pSV3AvaZWmlplCS0AAPL7jSrGSxWSJH4uAACA3JZR4fbnPvc5ff/739fNN9+sP/3pT/rTn/6kgoICHX744TLGaO7cuTLG6N1339WOHTva97PWqqysTHPmzEnj6gEAOJh3q7hXXb261hsI6XMk40jWlcJJCLx3BaW6DVLF+MSPBQAAAABAtsiocFuSLr30Uu3evVu/+93vZK1Vc3Nz+6DJV155RZIXZu9vzJgxuvnmm+Xz+Xp9vQAA9KS7W8U3b7Z69HEpHI7/+D7HO2ZF8pYMAAAAAEDGy7hwW5KuvvpqVVRU6JprrtGbb77ZHmYbYzoE2wUFBZoxY4Yuu+yy9tYlAABkqs5uFb9zqZVJ8K5x43hhObefAwCiFQpZra/zLo42N1sVFnq9uceV05sbAABkj4wMtyWpvLxc69at05NPPqknn3xSr7zyit5//33l5eWppKREY8eO1Ve/+lUNHjw43UsFACBuhYXmoDuSYmVdqaiIIAIA0LPGRtuxVZZPMsa7OzYcloqLpcmVVpUTjQIBfrYAAIDMlrHhtiQ5jqMJEyZowoQJ6V4KAAApMbIksZYkkte3e2RJctYDAMhd9Q1Wc+ZZtbbuG3J84M+gYFBaViOtXGVVvcCbHQEAAJCpMqqXx7///W+FQqF0LwMAgF4zrtyrkkvEoGKpfGwyVgMAyFX1DVYzZ3cMtrviulJrqzRztlV9Q2J3FwEAAKRSRoXbp556qp5//vl0LwMAgF7j9xtNrpTiHR3hONKkSvqjAgC61tjoVWy7bs/BdoTrStZKc+dbNTYScAMAgMyUUeG2tZZwGwDQ51RONMrPjz3gdhypoMDbHwCArtSu9Sq2Yx3x4LpSS4u3PwAAQCbKqHBbkn7/+9/rX//6V7qXAQBArwkEjKoXGBkTfcDtON4AsOoFDPwCAHQtFPKGR0ZbsX0g15XW1HrHAQAAyDQZF27v3r1b559/vlatWqW2trZ0LwcAgF5RVmq0aKFRQUHPAXekYnvxTUalJxFsAwC6tr7OGxKZiF1BqW5DMlYDAACQXBkXbkvSwIEDtXjxYlVUVKi6ulpbt25N95IAAEi5slKjFcuNplbtGzLpcyS/3/tT8oZHTq2SViwn2AYA9GzLVsnnS+wYPsc7DgAAQKbxp3sBB5o0aZJuuOEGua6rxx9/XPfee6/OPPNMjR07VlOmTNGECRPkxDt1CwCAFAiFrNbXeb/4NzdbFRYajSyRxpXHPugxEDCaPs1oapVV3QbvmE1NVkVF3jHLxzI8EgAQveZmK5Pgjw3jeD+LJH7+AACAzJJR4faYMWNUVVUlSXIcR6eddppOO+00bdmyRffee6/mz5+vwsJCnXvuuTrnnHM0dOjQNK8YANCXNTZa1a71epkGg15lnDHegORw2Ku+nlxpVTkx9r7Yfr9RxXipQhJhAgAgXoWFRjbWSZIHcMPS9h1SzT024Yu4AAAAyWRsou90elFra6v+93//V/fee69eeeUVnXrqqbrgggt08sknp3tpSLFdu3alewnIUcYYFf+n/0MwGEz4lz/0HfUNVnPmWbW2dj+ky3Gk/Hxv8GNZaW4GAJxHueOQui/JH3yhw2Oh4tHaXf5wmlbUt3AuIRWeetpq3o+T829p30Vc7XcRV3FdxE0VziMgcZxHQHJwLnVu0KBBST1eVvX3yM/P1ze+8Q098MADWrFihYqKinTxxRfrK1/5in7/+9/rww8/TPcSAQB9QH2D1czZPQfbkvfx1lZp5myr+gbezAAAete48n1zHBIVDkuhkPen5N21tKxGmlLFzzgAAJAeWRVu7+/oo4/WCSecoKFDh2rTpk36+c9/roqKCl1zzTV6+eWX0708AECOamz0KrZdt+dgO8J1vSq3ufOtGhv55R8A0Hv8fqPJld6dRKnARVwAAJBOWRduv/rqq/rJT36iz3/+81qwYIHeeustGeP1kWtra9OLL76or3/96zrvvPO0Zs0ahUKhdC8ZAJBDatd6Fdux3lHmulJLi7c/AAC9qXKiUX5+agNuLuICAIB0yKhwe8mSJdq5c+dBj4dCIf3xj3/UN7/5TU2aNEmrVq1SU1OTrLWy1mrIkCG65JJL9Nhjj+nBBx/UQw89pLKyMv3iF7/Ql7/8Zf3xj39Mw2cDAMg1oZA3PDLaiu0Dua60ptY7DgAAvSUQMKpeYGRMagNuLuICAIDellHh9q233qo33nijfXvbtm1avHixvvjFL2r27Nmqr69vD7QlafTo0frVr36lJ598UldddZWGDx8uSRo5cqTmzJmjp556St/61rf085//XN/61rf03nvvpeXzAgDkhvV1Xn/RROwKSnUbkrEaAACiV1ZqtGihUUFBagNuLuICAIDe5E/3AvZnrdWqVavU1tam+++/X08++aTC/5lWEgm0+/fvr7POOksXXHCBjjvuuG6Pl5eXpwsvvFCTJk3SlVdeqRkzZujee+9Vfn5+yj8XAEDu2bJV8vn2DdKKh8/xjlORvGUBABCVslKjFcu96urVtd4FW58jGUeyrhSO886k/UUu4laMT/xYAAAAPcmocFuSHnroIT300EOS9gXaknTcccdpypQpqqysVP/+/WM6ZnFxse666y5NnjxZS5cu1fe+972krhkA0Dc0N1sZk9gxjCM1NVlJCR4IAIA4BAJG06cZTa2yqtvgXXBtarIqKjLavNnq0ce5iAsAALJHxoXb0r5Q2+/36/TTT9cFF1ygMWPGJHTMvLw8zZgxQ7fffjvhNgAgLoWFpsOF13hYVyoqItgGAKSX329UMT4SQns/l+5cykVcAACQXTIy3B4+fLjOPfdcnXvuuQoEAgkda9u2bfrrX/+q8vJyjRw5Uu+8806SVgkA6GtGliRWzSZ5t3yPLEnOegAASCYu4gIAgGyTceH26NGjtXTp0qT0xd6+fbvOOuss7d69W0cccYTOPfdcHXXUUUlYJQCgLxpXLhUXJzZUclCxVD42SQsCACCJuIgLAACyTYrmZMfvggsuSNrAx40bN+qDDz6QJL399tu65ZZbdOGFFybl2ACAvsfvN5pcKTlx/vR0HGlSpXccAAAyTeQibiK4iAsAAHpTxoXbRx55ZNKONXr0aA0fPlzWWvl8Pn3nO9/Rueeem7TjAwD6nsqJRvn5sQfcjiMVFHj7AwCQibiICwAAsk1GtSVZvny5jjvuuKQdb9CgQfq///s/vf766zrqqKM0ePDgpB0bANA3BQJG1QukmbOtHEdy3Z73cRzJGKl6gVEgwC/8AIDMVTnRaOUqq9bW6H7GRXARFwAApENGVW5/9rOfVWFhYVKPWVhYqBNPPJFgGwCQNGWlRosWGhUU9FzdFvllf/FNRqUn8Qs/ACCzeRdxjYyJvoKbi7gAACBdMqpyGwCAVAuFrNbXSVu2Ss3NVoWFRiNLvD6jsdxGXVZqtGK5VLvWanWtN2TS50jGkazrDdQaVOzdnl05kV/2AQDZw7uIK82db9XS0n0Fd+QibvUCLuICAIDeR7gNAOgTGhttxyDa51WZWWsVDnsDtCZX2piC6EDAaPo0o6lVVnUbvMC8qcmqqMgLzMvH0ncUAJCduIgLAACyAeE2ACDn1TdYzZnXsX9oONzxOcGgtKxGWrnKqnqB90t9tPx+o4rxUoUkiV/uAQC5gYu4AAAg0xFuAwByWn2D1czZVtb2PBjLdaXWVm9Y5KKFsQXcAADkKi7iAgCATJVRAyUBAEimxkavYtt1ew62I1xXstbrM9rYaFO7QAAAAAAAEDfCbQBAzqpd67UisTFm1K4rtbR4+wMAAAAAgMxEuA0AyEmhkDcAK9qK7QO5rrSm1jsOAAAAAADIPPTcBgDkpPV13pDIROwKSnUbpIrxyVgRAAC5LRSyWl/nDZ5sbrYqLPQGT44rZ/AkAABIjYwMt/fu3at+/fol/BwAQN+1Zavk80nhcPzH8DnecSqStywAAHJOY6NV7Vrvjqlg0Pv5a4xkrVU4LBUXS5MrrSonGgUChNwAACB5MrItySmnnKJ33nmn2+d88Ytf1LZt23ppRQCAbNPcbGUS/P3ZOFJTE21JAADoSn2D1ZQqq2U1++6YCoelUGjfBeZgUFpWI02psqpv4OcqAABInowMtxsbG/X+++93+5x3331XwUTvNwcA5KzCQhPzIMkDuWHp1dekO5e6qrnH6qmnLT24AQD4j/oGq5mzveHNPc24cF2ptVWaOZuAGwAAJE9GtiUBACBRI0sSa0kiSa6Vnn9B+ks9t1YDALC/xkarOfOsXFdRX0x2XclxpLnzrVYsFz9HAQBAwjKychsAgESNK/eC6ES5LrdWAwBwoNq1XsV2rHdJua7U0uLtDwAAkCjCbQBATvL7jSZXehViycat1QCAviwU8oZH9tSKpCuuK62pFa2+AABAwgi3AQA5q3KiUX5+6gJua71bqxsb+eUcANB3rK/bNzwyXruCUt2GZKwGAAD0ZYTbAICsFwp5wx5r7rEdhj8WF0vVC4yMSV3Aza3VAIC+ZstWyedL7Bg+xzsOAABAIhgoCQDIWo2NVrVrvVujg0HvF21jDhz+KF37Y+mGG70gOt5bqLsSubV6apWV389gLABA7mtutjKJ/sgz0iuvWtXc4x2vsNBoZIk3M4OfpwAAIFqE2wCArFTfYDVnnjfMKhJYR4Y+RkSGP+bnS/PmSJs2a18Q7kjGkdyw5CZYeB25tbpifGLHAQAgGxQWGtlYJ0keIByWnvyz9PQztpML01aVE40CAUJuAADQPdqSAACyTn2D1czZHYPtrkSGP157nVR6ktGaB4xuuN7ouzOMLjhfGjMm8ZYl3FoNAOhLRpYcfEE5XuGwFArtO17kwvSUKoY2AwCAnhFuAwCySmOjV7HtutG3GNl/+GMwKFWMN/rWBUYXzXD08Y8lHm4bR2pq4hdwAEDfMK7cq7BOlciF6ZmzCbgBAED3CLcBAFmldq1XsR3r3dBdDX/0bq1ObE3WlYqKuHUaANA3+P1GkytTM6w5Yv8L042NBNwAAKBzhNsAgKwRCnnDI+MdChkZ/hgK7fslORm3Vodd7zgAAPQVlRON8vNTH3B3dmEaAAAggnAbAJA11td5vTgTERn+GJGMW6sHFUvlYxM7BgAA2SQQMKpeYGRM6gPuAy9MAwAARBBuAwCyxpatks+X2DEOHP6Y6K3VjiNNqvSOAwBAX1JWarRooVFBQWoD7gMvTAMAAEQQbgMAskZzs5VJMEPubPhjvLdWO45UUODtDwBAX1RWarRiudHUqn13Qvkcye/3/kyGAy9MAwAARPjTvQAAAKLlDX9M7LbkzoY/erdWSzNnWzlOdD29HUcyRqpeYBQIEG4DAPquQMBo+jSjqVVWdRu8ILqpyaqoyOjVV62eflYKheI//r4L0/y8BQAAHRFu55impia98cYb+ve//62dO3eqqalJkjRgwAANHz5cn/zkJ3XYYYcl5bXC4bAaGhr05ptvaufOne2vUVZWpuJEG9gCQCdSOfzRu7VamjvfqqWl+4A7UrFdvcCo9CR+0QYAQPJadFWMlyokRYLomnukp55J/oVpAAAAiXA7J2zYsEG1tbWqr6/Xli1beqxqPP7443X++efrnHPOkd8f+z+BtrY23X777Vq1apV27tx50Mf79eunU045RbNmzdJHPvKRmI8PAF2JDH9MZKhkd8MfvVurpdq1VqtrvdfxOV7FmHW9YHxQsddju3IiFdsAAPQklRemAQAACLdzwMMPP6wHH3ww6ue/8soruvbaa3Xffffp5ptv1siRI6Pe980339QVV1yhl19+ucvn7N27Vw8//LCeeeYZ/exnP9PEiROjPj4AdMcb/mi1rCa61iEHimb4Y3e3Vo8s8YJxhkcCABCdVF+YBgAAfRvhdo5xHEdHH320jjnmGB1++OEaMGCA2tratG3bNtXX1+utt95qf+7LL7+sb33rW7r33nt11FFH9Xjs3bt366KLLtKmTZvaHyssLNQpp5yiESNGKBgMqq6uTlu3etNempqaNGfOHBUXF6uioiL5nyyAPqlyotHKVVatrbEF3LEOf+zs1moAABCb3rgwDQAA+i7C7RwwcOBAVVZW6ktf+pLGjBmjQw89tNPnWWv1xBNP6JprrmlvJ7Jjxw5dc801+u1vf9vj68yfP79DsH3yySdr8eLFGjx4cPtj4XBYd999t375y1/KWqtwOKyZM2fqoYceUiAQSPAzBQCGPwIAkG1668I0AADoe5x0LwCJu+qqq3TjjTfqtNNO6zLYliRjjCZMmKDly5eroKCg/fFnn31Wr7zySrevsXHjRq1bt659+9hjj9XSpUs7BNuS5PP5NH36dF1++eXtj+3evVt33HFHrJ8WAHTJG/5oVFDg/eLbncgvxotvYvgjAADp4F2YNjKm55/bEVyYBgAA0SDc7oOOPvponXPOOR0ee/rpp7vd57bbbuuw/eMf/1h5eXldPv/iiy9WScm+qS8rV67Ue++9F8dqAaBz3vBHo6lVXi9PyRv+6Pd7f0pej86pVdKK5QTbAACkExemAQBAKtCWpI8aPXq0ampq2re3bdvW5XP37NmjZ555pn37mGOO0dix3U906devn8455xzddNNNkqS2tjY9/vjjOvvssxNcOQDsw/BHAACyh3dhWqpda7W61hsy6XMk40jWlcKud2F6UqXXioSKbQAA0BPC7T5qwIABHbbdbprfPf3002pra2vfPuOMM6J6jS9/+cvt4bYkPfbYY4TbAFKC4Y8AAGQHLkwDAIBkyshw2xgjp4d71aJ5Drr273//u8P2iBEjunzuCy+80GG7tLQ0qtcoKSnRkCFD9O6773Z6HAAAAAB9ExemAQBAMmRkOjxnzhx99KMf7fY5V199tY4++uheWlHu+d///d8O21/4whe6fO6mTZs6bJ9wwglRv86oUaPa//7BBx9o586dUe8LAAAAAAAAAF3JyHD7wgsvVL9+/bp9zrRp0+T3Z2Theca744479Nxzz7VvT5w4Ucccc0yXz98/3M7Ly9OQIUOifq0jjjiiy2MBAAAAAAAAQLxIh/uAUCikxsZGNTQ06N577+0QbJ900km69tpru91/x44d7X8fPny4jIn+tsHDDjusw3Z3gysBAAAAAAAAIFqE2zlo0aJFuuuuu9q3w+HwQc/p37+/pk6dqksvvVR5eXldHqulpaXD/kVFRTGt5cDBlU1NTTHtHxFLoA7EYv9/W/w7A+LDeZRLOvv6Gb6uvYRzCThYKGS1vk7astWquVkqLJRGlhiNK+988CTnEZA4ziMgOTiXegfhdg4Kh8OdBtoRQ4cO1axZs/S1r32tx/YvB4bR+fn5Ma3lwOA83nC7uLg4rv2AWBx66KHpXgKQ9TiPspzPd9BDfp+Pn8NpwLmEvm7HDlerHmjRylUt2rXLyueTjJGslcJhq0GDjM4/N1/nnl2gYcM677bJeQQkjvMISA7OpdTJyJ7bSK2dO3dq7ty5Ov300/Xkk092+9zW1tYO2z2F4Qc6MNxuaWmJaX8AAAAAfcv/e36vvlq5S3fc1axdu6wkKRyWQiHvT0natcvqjrua9dXKXfp/z+9N42oBAEA6UbmdJBMmTNDbb7+dsuPPmjVLF110UVTPnT17tmbPnt2+/eGHH2r79u2qr6/XqlWrtHHjRknSO++8o0suuUTXXXedzjnnnE6PdWCl9t69sb1xbGtr67BdUFAQ0/4RwWAwrv2Anhhj2q+gvv/++7LWpnlFQPbhPModA8Lhg94chsJhfcjP4V7BuQRI9Q1WV81yZa3kut0/13WllhZpxsUfaPFNjspKDecRkAScR0BycC51Ltl3hRJu9wEDBgzQgAEDdMwxx+jss8/WsmXL9Itf/ELWWllr9dOf/lSf/vSn9bGPfeygfQ/ssX1gJXdPDgy3Y+3ZHcE3APSGyDkBIH6cR9mus68dX9N04FxCX9TYaHX1D61c12s/Eg3XlRxHmjPP1YrlRkOH7rs5mfMISBznEZAcnEupQ1uSPsYYowsvvLBDFfjevXt16623dvr8goIC+fbrv7lnz56YXu/DDz/ssB1vuA0AAAAgt9WutWptjT7YjohUcNeuJTQAAKCvoXI7SW6++eaYq5pjcdRRRyX1eJdccomWLVvW3gP7iSeeUFtb20E9siVp2LBheueddyRJ27dvl7U26imv27Zt67A9fPjwBFcOAAAAINeEQlara3tuRdIV15XW1EoXfpuAGwCAvoRwO0k+9alPpXsJMSkqKtJJJ52kDRs2SPLajWzZskXHHXfcQc895phj2sPttrY2NTY2aujQoVG9TmS//Y8FAAAAAPtbXycl2t5/V1Cq2yBN/FoyVgQAALIBbUn6sEAg0GF79+7dnT7v6KOP7rD90ksvRf0aL7/8cvvfBw4ceNBrAgAAAMCWrdJ+3RDj4nOkLVup3AYAoC8h3O7DDuyHHZngeqDPfOYzHbYbGhqiOv6WLVv07rvvtm+PHj06xhUCAAAA6Auam62i7HzYJeNITU3JWQ8AAMgOGdWW5N///reGDRsmv7/7ZZ111lnas2ePfD6fBg0apBNPPFGTJ0/WCSec0EsrzQ37V1U7jqPDDjus0+dVVFQoLy9PbW1tkqR169bpqquu6vH4Dz30UIftU089Nf7FAgAAAMhZhYVGNtZJkgewrsT8egAA+paMqtw+9dRT9cYbb/T4vIsuukiXX365LrroIp1yyil6++23df755+u6665L+A1RX/Hkk09q+/bt7dsnnniiBgwY0Olz+/fvr4qKivbtTZs2tffq7srevXv1wAMPtG/n5eVpwoQJCa4aAAAAQC4aWSKFw4kdI+xKI0sSLP8GAABZJaMqt6MNpr/2tYMnhOzYsUOXXnqpli5dqu9+97vJXlrG2rRpk4YNG9ZlMN2Zt956S9dee22HxyZNmtTtPpdccokee+yx9u3rrrtOq1evVl5eXqfPv+OOO7R169b27fPPP1+DBw+Oeo0AAAAA+o5x5VJxcWJDJQcVS+Vjk7QgAACQFTKqcjsRw4YN0/e//32tWrUq3UvpVU899ZROPfVULVq0SK+//nq3z21padH999+vs88+W++880774x//+Md17rnndrvviSeeqDPOOKN9+4033tCMGTP03nvvdXie67r67W9/qyVLlrQ/dsghh+jiiy+O5dMCAAAA0If4/UaTKyUnzt9QHUeaVOkdBwAA9B0ZVbmdqP79+3dotdFXBINB3X777br99ts1bNgwfeITn9CRRx6pQw45RJI3OHLTpk3661//qj179nTY98gjj9Rtt90mXxSjya+//nq99tpr2rx5syTpueee04QJEzRhwgSNGDFCu3btUl1dXYeKbZ/Pp0WLFikQCCTxMwYAAACQayonGq1cZdXaKrlu9Ps5jlRQ4O0PAAD6lpwJt621+v3vf68hQ4akeylptWPHDu3YsSOq537hC1/Qz372Mw0fPjyq5w8cOFB33XWXLr/8cr3yyiuSpObmZv3xj3/s9PlFRUX66U9/2qFfNwAAAAB0JhAwql4gzZxt5TjRBdyOIxkjVS8wCgQItwEA6Gt6Ldz+97//rbfffrvH5/3jH//Q7t27ozqm67ratWuXXnvtNT300EPavHlzj72jc80ZZ5yhtrY2Pf3003rxxRfV1NTU7fPz8/P1xS9+Ueeee67Gjx8f8+uNGDFC999/v2677Tbdf//92rlz50HP6devn774xS9q1qxZ+uhHPxrzawAAAADom8pKjRYtlObOt2pp6T7gjlRsVy8wKj2JYBsAgL7I2GinOCZoyZIlWrJkiYzp+k2Htbbbj3fHWquCggL94Q9/0DHHHBPvMrNaOBzW5s2b9a9//Uvbt2/Xhx9+KGutBgwYoIEDB+q4447TcccdJ78/Odc0wuGw6uvr9eabb6qxsVH9+/fX8OHDVVZWpkGDBiXlNSJ27dqV1OMBEcYYFRcXS/Ja/PTSt0REKRSyWl8nbdkqNTdbFRYajSzxhk7RUzNzcB7ljkPqviR/8IUOj4WKR2t3+cNpWlHfwrkE7NPYaFW71mp1rTdk0udIxpGsK4Vdb3jkpEqvFcn+FducR0DiOI+A5OBc6lyyM8NeC7clr/fzjh079Prrr+vZZ5/Vo48+etBAwngVFRVp4cKFmjBhQlKOh8xCuI1U4YdNZjroF1qfd8uxtVI4LBUXS5M7+YUW6cF5lDsIt9OLcwk4WChkVbfBu9Dd1GRVVORd6C4f2/mFbs4jIHGcR0BycC51LqvD7QPt3btXDz74oBYtWqT3339fknTCCSeoqKgoqv0dx9Ghhx6qE088UV//+tc1ePDgVC4XaUS4jVThh03mqW+wmjOv52FSjiPl53u3IpeVEnCnE+dR7iDcTi/OJSBxnEdA4jiPgOTgXOpcssPttA6U7Nevn8477zyVl5frggsu0Lvvvquf//znOv7449O5LABAmtQ3WM2cbWVtz0OkXFdqbfWGTi1aKAJuAAAAAAD6GCfdC5CkkpISXXnlleleBgAgjRobvYpt1+052I5wXa9Vydz5Vo2NXAUHAAAAAKAvSWvl9v5OOeUUyvMBoA+rXeu1Ion1R4HrSi0t3v7Tp1G9DQBAXxXpz719R7Oamq0c46pkBIOoAQDIZRkTbgcCAS1fvlwjR45M91IAAL0sFPKGR0ZbsX0g15XW1EpTqyy/vAIA0Md0HERt5fM1dTKI2jKIGgCAHJQRbUkiPvvZz6qwsDDu/d9//32tWbMmeQsCAPSK9XVSMJjYMXYFpboNyVgNAADIFvUNVlOqrJbV7HsvEQ5LoZD3p+Q9vqxGmlJlVd/A3cIAAOSSjAq3E7Vp0yb98Ic/TPcyAAAx2rJV8vkSO4bP8Y4DAAD6hsgg6tbW2AZRE3ADAJA7circfuedd9K9BABAHJqbrUyCdwkbR2pq4pdVAAD6AgZRAwAAKYN6bnfm/fffV1NTU1SDJpubm3Xvvff2wqoAAMlWWGgSHipsXamoiD6aAAD0BQyiBgAAUgaG2//617+0ZMkSPf300/rggw9i2tdaK5No6R8AoNeNLNnXFzNeYdc7DgAAyG0MogYAABEZFW5v3LhR06ZNU1NTkyQlXMUHAMgO48ql4uLEhkoOKpbKxyZpQQAAIGMlcxB1xfhkrAgAAKRLRoXbc+fO1Z49e9q3i4qKVFxcHNW+zc3N2rVrV4pWBgBIJb/faHKl1bKa+KqwHEeaVCmqrwAA6AMig6gTuesrMoi6InnLAgAAaZAx4fbGjRu1adMmnXDCCbr44ov1uc99TgMGDIjpGPPnz9eDDz6YohUCAFKpcqLRylVe/8xYAm7HkQoKvP0BAEDuS+4gat4/AACQzZx0LyDiH//4hw455BAtX75cZ5xxRszBtiSddtppKVgZAKA3BAJG1QuMjPEC62g4jmSMVL3AKBDgl1MAAPoCbxB1YsdgEDUAALkhY8LtDz74QCeeeGJcoXbEkCFD6NMNAFmsrNRo0UKjgoKeA+5Ixfbim4xKT+KXUwAA+goGUQMAgIiMCbcHDBigvXv3JnSMUaNG6bHHHkvSigAA6VBWarRiudHUKm/IpOT1xfT7vT8lb3jk1CppxXKCbQAA+prIIOpEMIgaAIDckDE9tz/96U/r17/+tUKhkPz++JbVr18/HXnkkUleGQCgtwUCRtOnGU2tsqrb4A18amqyKioyGlni/TLK8EgAAPomBlEDAICIjKnc/uQnP6mPfvSjeuCBB+I+xubNm/Xtb387iasCAKST329UMd7oWxcYXTTD0bcu8Lb5ZRQAgL6tcqJRfn70czoiGEQNAEBuyZhwW5Kuv/563X777Xr++efj2n/Hjh1x7wsAAAAAyA4MogYAAFKGhdvHHnusFi9erJkzZ2rJkiX68MMPY9r/5ZdfTtHKAAAAAACZhEHUAAAgY3pub9++XW+//bYk6dprr9WvfvUr/e53v9NnP/tZffSjH1VRUVG3+zc1NenBBx/sjaUCAAAAADKAN4haql1rtbpWCgYln8+r0LauFHa94ZGTKr1WJFRsAwCQWzIm3F63bp1uuOGGDo9Za/Xkk0/qySefjOoY1loZw5sVAAAAAOgr9h9EveE5o+07CrSnycrntKhkBIOoAQDIZRkTbg8ePFjW2oMe7+wxAAAAAAD2FxlEXVxcKEkKBtv4fRIAgByXUeG2JBlj9OlPf1qjR49WQUFB1Pvv2bNHq1ev1vvvv5+qJQIAAAAA+pBQyGp9nbRlq9TcbFVYaDSyRBpXTjU4AACZIOPC7RNPPFErV66M6xiHHXaYqqurk7ksAAAAAEAf09hoO+/jba3CYam4WJpcaenjDQBAmmVcuP2pT30q7mOMGjUqWcsBAKQIFVAAACDduns/svHv0px5Vq2tkut6zw+HO+4fDErLaqSVq6yqF3iDLQEAQO/LmHB70KBBGjNmjI477ri4jzFs2DCNHj06iasCACQLFVAAACDdeno/0r+/1NTkPbendt2uK7W2SjNnWy1aSMANAEA6GMuEDWSBXbt2pXsJyFHGGBUXF0uSgsEgQ4dSpL7BHlQB1RnHkfLzpeoFhl8QswjnUe44pO5L8gdf6PBYqHi0dpc/nKYV9S2cS0DiujuPon0/EivHkQoKpBXLuUCP3MDPIyA5OJc6N2jQoKQez0nq0dLs/fff15o1a9K9DADAfuobrGbOju4Xyf0roOob+MEPAACSI5b3I7FyXamlRapdy3sXAAB6W06F25s2bdIPf/jDdC8DAPAfjY1ehZTrRv+LpOt6twHPnW/V2MgviQAAIDHxvB+JletKa2q9Xt4AAKD35FS4vWXLlnQvAQCwn9q1XoVUrHdfUQEFAACSJd73I7HaFZTqNqT2NQAAQEcpHyhprdUf/vAHvfzyyyotLdXXvva1Tp+3bt06NTc3x/06TU1N+t3vfhf3/gCA5AqFvGFN8VZIRSqgplZZ+f30rwQAALFL9P1ILHyOtGWrVJH6lwIAAP+R8nD72muv1apVqyRJK1as0D/+8Q/NmTPnoOf9+te/1qZNmxJ6LWutjCEAAYBMsL5OCgYTO0akAqpifDJWBAAA+ppkvB+JlnGkpiYrid9JAQDoLSlvS/I///M/krzgOVLF3ZnBgwe3Pyfe/wAAmWPLVsnnS+wYkQooAACAeCTj/Ui03LC0fYdUc4/VnUtd1dxj9dTTlj7cAACkUMort0eNGqX6+noZY2St1bHHHtvp8wYNGiRJOuSQQ3TmmWcqEAjIcaLP3vfs2aMHH3xQH3zwQVLWDQBITHOzVaI301ABBQAAEpGM9yPRcq207mHJ5/Ne01qrcFgqLpYmV1pVTjQKBHhPAwBAMqU83F64cKHmzZunv/3tbzrppJN0/fXXd/q84uJiGWP005/+VF/5ylfieq3DDjtM1dXViSwXAJAkhYUm4btqrCsVFfFLIAAAiE8y3o/EKhzuuB0MSstqpJWrrKoXSGWlvLcBACBZUh5uH3HEEbr77rt7fF6kcvuTn/xk3K81atSouPcFACTXyJKDf7mLVdj1jgMAABCPZLwfSQbXlVpbpZmzrRYtJOAGACBZUh5uR6u8vFzNzc0aMmRI3McYNmyYRo8encRVAQDiNa7cuw03kSFOg4ql8rFJWhAAAOhzkvF+JFlcV3Icae58qxXLRYsSAACSIOUDJaM1duxYzZs3T/3794/7GB/96EdVU1OTxFUBAOLl9xtNrvR+iYuH40iTKr3jAAAAxCPR9yPJ5rpSS4tUu5YhkwAAJEOG/IgHAOSiyolG+fmx/0LpOFJBgbc/AABAIuJ9P5IqriutqZVCIQJuAAASlTFtSboSCoW0YcMGbdy4UTt27JDjOBo+fLhGjx6tsrKydC8PANCNQMCoeoHXX9JxvF/meuI4kjFS9QLD7boAACBh8bwfMf95C9K/v/Thh5LPkYzjDbsOR7F/T3YFpboNUsX4xI8FAEBflrHhdjgc1tKlS3X33Xcr2EWDtI985COaNWuWTjvttN5dHAAgamWlRosWev0lW1q6/4UyUrFdvcCo9CSCbQAAkBzxvh/51Ce9EHrLVqmpyaqoyGjzZqtHH09sUKXP8Y5ZEf8hAACAMjTcfuutt/SDH/xAf//73yVJ1loZ0zHksNZq8+bNuuKKK/Ttb39bV199tXw+XzqWCwDoQVmp0YrlXn/J1bXeUKcDK6AGFXs9tisnUrENAACSL973IxXjIyG0t33nUiuT4FsV43hheeSYAAAgPhkXbr/zzjs677zz9N5778nafT3I9v/7/qy1Wr58uXbt2qUbb7yxt5YJAIhRIGA0fZrR1Cp7UAXUyBKpfCzDIwEAQGol4/1IYaHp8vfTaFlXKirifQ8AAInKqHC7tbVV3/ve9/Tuu+9q5MiROvvsszV69GgdccQRGjBggPLy8tTa2qrdu3frzTff1MaNG/XnP/9ZL7zwgtauXasxY8bonHPOSfenAQDoht9vDqqAAgAA6E2JvB8ZWZJYSxLJqxIfWZLYMQAAQIaF2//93/+tl156SdOnT9cPfvCDTtuM9OvXTwMGDNDhhx+uz372s5oxY4ZeeeUVXX311frFL36hL33pSzr00EPTsHoAAAAAQK4bVy4VF3ttTeI1qNirEgcAAIlx0r2AiHA4rJqaGn3xi1/Uf/3Xf8XUP/v444/Xb3/7W+Xn52v16tUpXCUAAAAAoC/z+40mV3qDJ+PhOF5fb9qxAQCQuIwJtxsaGhQMBjVz5sy49g8EAjr77LP1xBNPJHllAAAAAADsUznRKD8/9oDbcaSCAm9/AACQuIwJt1977TUdd9xx+vjHPx73MT7zmc/otddeS+KqAAAAAADoKBAwql5gZEz0AbfjSMZI1QuMAgHCbQAAkiFjwu3du3fr8MMPT+gYgwcP1u7du5O0IgAAAAAAOldWarRooVFBQc8Bd6Rie/FNRqUnEWwDAJAsGRNuH3roodq1a1dCx2hublZhYWGSVgQAAAAAQNfKSo1WLDeaWuUNmZQknyP5/d6fkjc8cmqVtGI5wTYAAMnmT/cCIo488ki9/PLLCgaDKo68K4jR3//+d40cOTK5CwMAAAAAoAuBgNH0aUZTq6zqNkhbtkpNTVZFRUYjS6TysQyPBAAgVTIm3D755JPVr18//e53v4trqGRra6vuu+8+nXHGGSlYHQAAAAAAXfP7jSrGSxWSJMJsAAB6Q8a0JcnLy9PXvvY1/fd//7ceeeSRmPYNBoO67LLL9Pbbb+vrX/96ilYIAAAAAAAAAMgUGRNuS9KVV16pvLw8XXXVVfrhD3+ojRs3ylrb6XNd19U///lP3XrrrTrrrLO0fv16nXfeefroRz/ay6sGAAAAAAAAAPS2jGlLIklDhgzRTTfdpMsvv1xr1qzRmjVrlJ+fr8MOO0yHHHKI+vXrp9bWVu3Zs0fvvPOO9u7dK0my1uqEE07Q3Llz0/wZAAAAAADQtVDIan2d15u7udmqsNDrzT2unN7cAADEKqPCbUk65ZRTdOONN+pHP/qRmpub1dLSoq1bt3Z4zoHV3CeccIJ+85vfKC8vrzeXCgAAAABAVBobrWrXWq2ulYJByeeTjPF+vw2HpeJiaXKlVeVEo0CAkBsAgGhkVFuSiK9+9au67777VF5eLsn7YR/5b3+O4+i8887TypUrNXz48HQsFQAAAACAbtU3WE2pslpW4wXbkhQOS6GQ96fkPb6sRppSZVXf0Hl7TgAA0FHGVW5HfOxjH9Pvfvc7vfjii3r00Uf1t7/9TY2NjQqFQjr88MNVVlamiRMnauTIkeleKgAAAAAAnapvsJo528payXW7f67rSq2t0szZVosWSmWlVHADANCdjA23Iz75yU/qk5/8ZLqXAQAAAABATBobrebMs3JdyUZZjO26kuNIc+dbrVguWpQAANCNjGxLAgAAAABAtqtda9XaGn2wHeG6UkuLtz8AAOhaxlduv/LKK3riiSf06quvKhgMKi8vTyUlJTr55JP1hS98gSGSAAAAAICMEwp5wyN7akXSFdeV1tRKU6us/H6qtwEA6EzGhttvvPGGfvKTn6i+vr7Tj99zzz0aMmSIrrrqKp199tm9vDoAAAAAALq2vm7f8Mh47QpKdRukivHJWBEAALknI9uS/P73v9c3vvEN1dfXy3Zx/5a1Vo2Njfrxj3+s2bNnq7m5uZdXCQAAAABA57ZslXy+xI7hc7zjAACAzmVcuP3AAw/o+uuvV1tbW3uwba2Vz+dTIBDQwIEDOwTe1lr98Y9/1KxZs9K1ZAAAAAAAOmhutjIJdhMxjtTURN9tAAC6klFtSTZu3Khrr71Wkhdan3TSSZo8ebJOPvlkfeQjH2l/3u7du/XXv/5V69at09q1a9Xa2qonnnhCd955py666KL0LB4A+rhQyGp9nVdd1NxsVVhoNLJEGlcu+kQCAIA+p7DQdHkncrSsKxUV8T4KAICuZFS4feONNyoUCumoo45SdXW1PvOZz3T6vEMOOUQVFRWqqKjQlVdeqZ/97Gd65JFHdOutt2rSpEkaNmxYL68cAPquxkar2rXewKRg0Lv91hjvImU4LBUXS5MrrSonGgUC/HIGAAD6hpElUjic2DHCrnccAADQuYxpS7J161a98MILOumkk7RmzZoug+0DDR06VLfccoumTp2q1tZW/eEPf0jxSgEAEfUNVlOqrJbV7BuYFA5LodC+X+aCQWlZjTSlyqq+gdtqAQBA3zCu3LvIn4hBxVL52GSsBgCA3JQx4XZ9fb38fr8WLlyoAQMGxLz/D3/4Q33iE5/Q008/nYLVAQAOVN9gNXO2VWur5LrdP9d1pdZWaeZsAm4AANA3+P1GkyslJ87fuh1HmlRJezcAALqTMeH2jh079IlPfEJHHXVU3MeYMmWK/vnPfyZxVQCAzjQ2Ws2ZZ+W6PQfbEa4rWSvNnW/V2EjADQAAcl/lRKP8/NgDbseRCgq8/QEAQNcyJtwuKCjQIYccktAxjj76aDX9f/buPD6q+uz///vMTEISFgMMiAsBwQ3qlghKKKmCFWtriFi1Upsb+WFdKq2lchcUbbW2aCx+wd5aN6ySVEpRgUht1brUjWClyX3bKq5QoChLMMOWjZnz+f1xzMCEkMw+k+T1fDx4wJmc85nPJHwy51xzneuqr4/TjAAAh1O5ysnYjrRHkm1LjY3O8QAAAF2d12upbJ4lywo/wO1yOf1LyubRrwQAgI6kTXD76KOP1pYtW2Iaw+fzqX///nGaEQCgLX6/0zwy3Izt1mxbWlnpjAMAANDVFeRbWjDfUlZWxwHulozthfdayj+DwDYAAB3xpHoCLcaMGaMtW7bo3//+t4YOHRrVGFVVVe02otyyZYvuv/9+3XXXXVHOEgcLBAKqqanR5s2btWPHDvXq1UuDBg1SQUGBcmPtnAIgba2uOtA8Mlp1PqlqjVQ0Lh4zAgAASG8F+ZaWlDt3r62odM6l3C7JcknGlgK20zzy4hKnFAkZ2wAAhCdtgtu9evXSRRddpAceeEC//vWvIz5+06ZNeuqpp/T4448fdp8tW7Zo5cqV3TK4vXfvXn3rW9/S1q1bQx4vLy/X2WefHdFYzc3Neuihh7Rs2TLt2LHjkK9nZGRo/Pjxuummm6L+oAJA+tq4SXK7pUAg+jHcLmecovhNCwAAIK15vZamT7M0tdSoao1zLlRfb5STY2lInlQ4huaRAABEKm2C25L04x//WCUlJfr973+v733ve2Eft3XrVn3/+9/XFVdcofz8/MPu9+GHH8Zjmp3S/PnzDwlsR2Pz5s364Q9/qHXr1h12n/379+vFF1/Um2++qV/84hcqLi6O+XkBpI+GBiMrxusuy+VczElcwAEAgO7F47FUNK7lQ37OhQAAiEXaBLc///xz/ec//9G0adP0q1/9SuvWrdPo0aM7PG7nzp16+OGHlZubq5NOOkkrV65sc789e/bokUceifOsO4fq6motXbo05nH27Nmja665RuvXrw8+lp2drfHjx2vw4MHy+XyqqqrSpk2bJEn19fWaPXu2cnNzVVREfibQVWRnWzKRdpJsxdhSTg4XcwAAAAAAIHppE9x+4YUXVFZWJkkyxmj58uVavnx5WMcaY7Rnzx7dcsstHe5nxZpu2Mk0NzfrtttuCwaiBgwY0GYpkXDMnTs3JLB99tlna+HCherXr1/wsUAgoCeeeEK//vWvZYxRIBDQzJkz9fzzz8vr9cb2YgCkhSF5sZUkkZy6kkPy4jMfAAAAAADQPXXQqzl5cnNzQzIBjTFh/wl3/+7o4Ycf1ieffCJJ+trXvqZx46Lr3vbuu+/qhRdeCG4ff/zxWrRoUUhgW5LcbremT5+uGTNmBB/bs2ePHn744aieF0D6GVsoxdoztm+uU1cSAAAAAAAgWmmTuX3EEUcE/52fnx/3RoT79u3Ta6+9pubm5riOm84++eSTYFA5KytLP/vZz/TAAw9ENdaDDz4Ysn3bbbcpMzPzsPtfe+21qqysDJYoWbp0qa6//vpDguEAOh+Px9LkEqPFFZJtR368yyVdXELDJAAAgI74/Uarq5zmkw0NRtnZTvPJsYWcSwEAIKVhcLuoqChhtbF/85vfHBKk7aqMMbr11lu1f/9+SdINN9ygwYMHRzXWvn379Oabbwa3hw8frjFj2k+5zMjI0GWXXaZ7771XklMe5ZVXXtGll14a1RwApJeSYktLlxk1NUUW4Ha5pKws53gAAAC0rbbWqHKV0YpKyeeT3G7JsvRl6UfnLrrJJUYlxZa8Xs6rAADdV1qVJZGcOs6JcuaZZyZs7HSzZMkS1dTUSJJOPPFETZs2Leqx3njjjZCM9wsuuCCs477xjW+EbL/88stRzwFAavj9Rq+/YVTxpNEji2xVPOls5+ZKZfMsWZYTsA6Hy+VclJXN4yIMAADgcKprjKaUOnfJ+XzOY4GA5Pcf6Hvi80mLK6QppUbVNd2zBCcAAFIaZW737dtXRx99tI466qiEPYfX603o+Oli69atwYxpy7J0++23KyMjI+rx1q5dG7Kdn58f1nF5eXnq37+/du7c2eY4ANJXeNlC0u23SXfdIzU2tp/B3ZKxXTbPUv4ZBLYBAADaUl1jNHOWkTEd3x1n21JTkzRzltGC+VJBPudYAIDuJ62C26+88kpCn+Okk05K+HOkg9tvv1379u2TJF122WUxZ6yvX78+ZHvkyJFhHztixIhgSZPdu3drx44dGjBgQEzzAZBY1TVGs28JLTnSkiXUoiVbqEcP6ZbZ0voNOhAId0mWSzK2FLCd5pEXl4jbZgEAANpRW+ucg9m2ZMJMxrZtJ4lgzlyjJeXiXAsA0O2kTXA7Hnbt2qVXX31VF198caqnkjJ//vOf9eqrr0qS+vXrp1mzZsU85sHB7czMTPXv3z/sY48++uhDxiK4DaSvaLKFbr9TWjDf0tRSqWqN0/Covt4oJ8dpeFQ4hoZHAAAAHalc5SQXhBvYbmHbzl10lauMpk/jnAsA0L10qeD2+vXrdfPNN3fb4PauXbv0q1/9Krg9Z86cYKPOWGzfvj3470GDBsmywj9hOvLII0O2t27dGvN8ACRG7NlClorGWSqSJHFhBQAAEC6/3ykHF0mj7oPZtrSyUppaakgqAAB0K10quP3555+negopVVZWptraWklSYWGhSkpKYh6zsbFRgYPqEeTk5ER0fK9evUK26+vro5pHJAF1IBIH/9/q7v/PYs0WevZPIluom2IddSVt/fwsfq5JwloCYtdZ11HVGsnni60xZJ1PWvO2k2wAxKKzriMg3bCWkiOtg9u7du1SfX29TBiRloaGBv3hD39IwqzS05o1a/TMM89IckqH3H777XEZt3UwukePHhEdn5mZ2e544crNzY3qOCAS8bjTobPav99o5bN1sWULPSv9aMYRysjgTbs7687rqEtwuw95yON28z6cAqwlIHadaR1t294gt7v+kD4nkXC7pW3bs5Sbmx2/iaHb60zrCEhnrKXESbvg9r///W/df//9euONN7R79+6IjjXGdMtPQpqamvSzn/0suH3ttddq6NChcRv7YBkZGREd3zq43djYGPOcAMTf62/sV11dbNlCX3xh9Mab+zVhfGbHOwMAACCovsEo1ktZy5L21cd2PgcAQGeTVsHtd999V9OmTQtm94aTsZ0uJkyYoC1btiRs/JtuuknXXHNNm1/7n//5H23cuFGSdNxxxx12v2i0ztTev39/RMc3NzeHbGdlZUU1D5/PF9VxQEcsywp+grpr165O9Xsnnt5fZ8vtVmzZQi7p/XV7VZDvit/E0CmwjrqOXoHAISeH/kBAe3kfTgrWEhC7zrqOXJYdcWm41owtuV2N8vmaO94ZaEdnXUdAumEttS3ed4WmVXD75ptv1r59+4LbOTk5Yb/ghoYG1dXVJWhm6euDDz7Q448/Hty+/fbbD8mWjkXrGtutM7k70jq4HWnN7hb8AkAyGGO67f+1+vo4ZAu5pH37uu/3EI7uvI66hrZ+dvxMU4G1BMSuM62jvMGxJRlIUsB2xuksrxmdQ2daR0A6Yy0lTtoEt9999119+umnGjlypK699lp99atfPaQZYUfmzp2r5cuXJ2iG6ScQCGju3Lny+/2SpMmTJ2vMmDFxfY6srCy53e5gU8mDP3wIx969e0O2ow1uA0is7Gwr5jdaY0s5Od2vNBQAAECsxhZKublSLDfK9M2VCuN7OQgAQNpLm+D2e++9p969e6u8vDzioHaLr3/96ykLbt93330RZzVH4thjjz3ksT/96U/617/+JclJ6f/pT3+akOceOHCgPv/8c0nStm3bIqptvnXr1pDtQYMGxX1+AGI3JC8+2UJD8uIzHwAAgO7E47E0ucRocYWiavDtckkXlzjjAADQnaRNcHv37t067bTTog5sS1L//v1TluJ/6qmnJv05Dy7DsmvXLo0bN67DY+xWZ0pXXXVVSKD6iSee0FlnnRWyz/Dhw4PB7ebmZtXW1mrAgAFhzbHluIPHApB+yBYCAABIrZJiS0uXGTU1RRbgdrmkrCzneAAAupu06frVs2fPiJsVtjZixAi9/PLLcZpR52KMUSAQ6PBP6+C/bdvtfl2Shg0bFrL9/vvvhz2vdevWBf/dp08feb3eCF8ZgGRwsoWci6NokC0EAAAQG6/XUtk8S5YV/jmZyyVZllQ2z5LXy3kYAKD7SZvg9mmnnaYPP/wwWD86GhkZGTrmmGPiOCtI0plnnhmyXVNTE9ZxGzdu1M6dO4Pbo0aNiuu8AMRXSbGlHj0iD3CTLQQAABAfBfmWFsy3lJXV8TlZyznYwnst5Z/BeRgAoHtKm7Ikp512moYMGaKnn35aV1xxRVRjbNiwQT//+c9VXl4e59mlp6uuukpXXXVVRMfMmTNHK1asCG6Xl5fr7LPPbveYoqIiZWZmqrm5WZL0wgsv6Mc//nGHz/X888+HbJ933nkRzRVA4vj9RqurpI2bpIYGo+xsS0PypHl3SrNmOxdL4dwOS7YQAABAfBXkW1pSLlWuMlpR6ZSNc7sky+U08A7YTjm4i0uc5ALOwQAA3VnaBLcl6Ve/+pWuvvpqDR8+XKNHj474+O3bt+udd95JwMy6t549e6qoqChY8mX9+vVas2aNxow5fHHd/fv36+mnnw5uZ2ZmasKECQmfK4D21daa0AsltxOcdkobOXW3z/+69NprUlNz+wHulmyhsnlkCwEAAMST12tp+jRLU0uNqtY4CQn19UY5OU5CQuEYysEBACClWXD7hBNO0L333qubbrpJl112ma666qqIGkweXN8Z8XXdddeF1DO/8847tWLFCmVmZra5/8MPP6xNmzYFt6+44gr169cv4fMEcHjVNUazbwltUhQIhO7j80kv/lXKzJQmni+teZtsIQAAgFTxeCwVjZOKJEmccwEA0FpCg9uffvqp/vnPf0Z83FVXXaWHH35Yjz/+uM466ywdd9xxysnJafeY+vp6LV++PNqpogOnnXaaLrjgAr3wwguSpE8++URXX321Fi5cGBK0tm1bTzzxhO6///7gY71799a1116b9DkDOKC6xmjmLCNjOi43YttSc7P015ek+WVSY6NFthAAAAAAAEg7CQ1u/+///q9uvfXWqI83xuhvf/ub/va3v4W9v2URbEmUX/7yl/roo4+0YcMGSdLbb7+tCRMmaMKECRo8eLDq6upUVVUVkrHtdru1YMECeb3eVE0b6PZqa52MbduWjAnvGNt2yo7M/Zm0pFwqGmeJbCEAAAAAAJBOEhrcPuKII4IBZxNuRKWVaI9D/PXp00ePPvqoZsyYoQ8++ECS1NDQoOeee67N/XNycnTHHXeoqKgomdME0ErlKqcUSaS/Tm1bamx0jp8+jcA2AABAujpcs/CxhdxtBwDo2hIa3M7NzQ3+e/To0Tr99NOVlZWVkOfat2+fli9frt27dydkfDgGDx6sp556Sg8++KCeeuop7dix45B9MjIydO655+qmm27Scccdl4JZAmjh9zvNIzsqRXI4ti2trJSmlhoujAAAANJMOM3CJ5cY+qQAALqshAa3+/btK0k666yztHjx4kQ+lSTpyCOPVFlZWcKfpzO7++67dffdd8c0RmZmpm688UbNmDFD1dXV2rx5s2pra9WzZ08NGjRIBQUFwZ89gNRaXeVc6MSizidVrZGKxsVjRgAAAIiHcJuFL66Qli4zKpsnFeQT4AYAdC1Jydw+5ZRTEvk0QSNGjEjK88Dhdrs1evRojR49OtVTAXAYGzc5GTytL3Qi4XY541BgCAAAID1E2iy8qUmaOctowXwC3ACArsWVyMGPOOIIjR49Wscff3winyZo4MCBGjVqVFKeCwA6g4YGo1j77Fouqb6e/gcAAADp4OBm4eGWnmtpLD5nrlFtLed1AICuI6GZ2x6PRxUVFYl8ihDHHXdcUp8PANJddnb0DX1bGFvKySHDBwAAIB3QLBwAgAMSmrkNAEitIXmxlSSRpIDtjAMAAIDUilezcL+f7G0AQNfQqYPbH330kbZt25bqaQBA2hpbKH3Z/iBqfXOlwjHxmA0AAABiEc9m4QAAdAVpF9yurq7Wtddeq+LiYj300EPt7rtixQqNHz9eP/3pT1VXV5ekGQJA5+HxWJpcIrmi/G3vckkXlzjjAAAAILVamoXHoqVZOAAAXUFaBbfff/99XXXVVXr99df18ccf67777tPatWsPu//s2bO1dOlS7dixQ9/+9rfJ4gaANpQUW+rRI/IAt8slZWU5xwMAACD1aBZ+KL/f6PU3jCqeNHpkka2KJ51tSq8AQPeQ0IaSkXrggQfUr18/bd26VdaX79i7du1q95jTTjtNjz32mG699VbdcMMNeuqpp4LHAgAkr9dS2Txp5iwjlyu8Go0ul2RZUtk8S14vv1MBAADSQTyahdsBadt2qeJJo4YGo+xsS0PynHJ2neluvdpao8pVTg1yn8/JaLcsyRijQMApzTe5xKikmPNZAOjK0iZze9++fXrrrbf08MMPa+TIkTLGaMyYMTrnnHM6PNblcunOO+9UU1OT/vznPydhtgDQuRTkW1ow31JWVscZ3C0Z2wvvtZR/BhcCAAAA6SIezcJtI73worTod0ZLljp/33Kb0cWXGj32uK3a2vTPeK6uMZpSarS44kAN8kBA8vsPfH98PmlxhTSl1Ki6Jv1fEwAgOmkT3K6urtaAAQN00kknafny5aqqqtLjjz8ujye85HK3260rrrhCzz77bIJnCgCdU0G+pSXllqaWHmgy6XZJHo/zt+Q0j5xaKi0pJ7ANAACQbuLRLLxFZw0GV9cYzZxl1NTU8R2Jti01NTl3MKbzawIARC9typJs3bpVxx57bHC7b9++EY8xYsQI/fa3v43ntACgS/F6LU2fZmlqqVHVGqeZUH29UU6Ocztq4ZjOdTsqAABAd+I0C3cylsMpNRepg4PBC+Y7yRHppLbWaPYtRrYthVudxbadOxPnzDVaUi5KlABAF5M2we0vvvhCPXr0iGkMt9vdYY1uAIBzYVQ0TiqSJHGCDwAA0FmUFFtauiy8zOVopHMwuHKV87ojLTtu21Jjo3P89Gnp83oAALFLm7IkWVlZ2rlzZ0xjrF+/XtnZ2XGaEQAAAAAA6cVpFm7JsjrupRKtg4PB6cLvd5pHRhvQt21pZaUzDgCg60ib4PawYcO0bt06bdu2Leoxli9fruOOOy6OswIAAAAAIL1E0iw8WukWDF5ddaB5ZLTqfFLVmnjMBgCQLtImuD169GhlZmbqtttuk9/vj/j4Rx55RGvXrlVRUVECZgcAAAAAQPoIp1l4rNIpGLxxk+R2xzaG2+WMAwDoOtKm5nZWVpa+/e1vq6KiQldccYXuueceDRs2rMPjdu/erXvvvVd//OMflZmZqcsuuywJswUAAAAAILXaaxa+YYPRS69IgUD047cEg9MhhayhwciKsVy25XK+P/ScAYCuI22C25I0Y8YMvfLKK3rvvfd00UUX6ayzztL555+vkSNH6thjj1WfPn20f/9+ffHFF3r//fe1Zs0arVq1SvX19bIsSzfccIMGDRqU6pcBAAAAAEDStNUs/JFFXSsYnJ1tyUTaSbIVOyBt2y5VPGnU0GCUnW1pSJ40ttD5HgIAOp+0Cm4fccQRevDBB3XFFVeovr5eb7/9tt5+++12j2l5c5s4caKuvfbaZEwTAAAAAIC0Fq9g8IcfSY8sslMeCB6SF1sWuiTZRnrhRcntdgL/xhgFAk5Zl8klRiXFlrxegtwA0JmkTc3tFieeeKIqKio0dOjQ4BuxMeaQPy2PS9J3vvMdzZ8/P2VzBgAAAAAgncQrGPzOWmnJUmnR74xuuc3o4kuNHnvcVm1tchtNji08UFs8VoGA5Pcf+P74fNLiCmlKqVF1TXo00AQAhCftgtuS9JWvfEUrV67U9OnTlZOT0+Y+xhgdd9xxuv/++3XHHXcoMzMzybMEAAAAACA9xSsYbNvpEQj2eCxNLpFcCYpi2LbU1CTNnEWAGwA6E8vEep9SgjU2Nuqtt97Sv/71L+3cuVNut1vHHnusRo0apdNPPz3V00OS1NXVpXoK6KIsy1Lul2f9Pp8v5ls3ge6IddR19K6aKI9vbchj/txR2lP4Yopm1L2wloDYsY5CPfa4rcUVTuA23lwuybKkBfMtFeQnp5RHba3RlFKjpqbEvCbJeV1ZWdKS8u5booR1BMQHa6ltffv2jet4aVVzuy1ZWVk677zzdN5556V6KgAAAAAAdBolxZaWLktMMNi2nUDwnLlGS8oV90Cw32+0ukrauEkhzR/n3SnNmu08dyIC3LYtNTZKlauMpk/rnsFtAOhM0j64DQAAAAAAIuf1Wiqb55TaSEQwOBGB4Npao8pVRisqnRIobrcOaf54/tel116TmpoTF+BeWSlNLTUpaZ4JAAhfWtbcBgAAAAAAsSvIt7RgvqWsrMTUq24JBPv9sd9uX13jlB1ZXOEEtqW2mz+++FfJSJp4/oG64m6X5PE4f8dDnU+qWhOfsQAAiZNWmdufffaZBg4cKI+n/WlNmjRJ+/btk9vtVt++fXXaaadp8uTJGjlyZJJmCgAAAABA51CQb2lJuUIzol2S5ZLsgGTHGJduCQQXjYt+jOoao5mzjIzpOBvbtqXmZumvL0nzy6TGRksbN0n19UY5OZY2bDB66ZUDAfFouF1OSZSiDvY7XPmUsYUi6xsAkiCtgtvnnXeeVqxYoZNPPrnd/a655hrt379fgUBAtbW1evfdd3XFFVfosssu06233irL4g0EQHrjJBgAAADJ5PVamj7N0tRSo6o1CgaDP/xIemdtbOU9wg0EH05trdHsW4xsWwq331pLze+5P5OWlEtF4yxJznn0I4uMYg0LWC7n+9MyZltz7qh8yuQSo5Li7tuYEgCSIa2C2+F2Db3ooosOeWz79u26/vrrtWjRIn3/+9+P99QAIC44CQYAAEAqeTyWisa1BKItPbLI1j+qYwtudxQI7kjlKqfpZbiB7RaHq/mdnW2FHV84HGNLOTltv57qGicYf3CjztZZ4j6ftLhCWrrMqGyekz0PAIi/LlNze+DAgfrRj36kZcuWpXoqANCmcGsILq6QppQaVdfEXrcQAAAAaI8TCI5tjPYCwR3x+53Ej2iD623V/B6SF1tJEkkK2NKGDUaPLLJV8aTR628Y+f0mWD7l4MB2e3NranIaenJuDwCJkVaZ27Hq2bOntm3bluppAMAhIq0h2HISvGA+WR4AAABInHgFgofkRXfs6qoDiR/Ral3ze2yhc0dkrOO+9EroXZZ9+kj19YqqfMqcuUZLysXdmQAQZ10mc9sYo9///vfq379/qqcCACEOriEYbkZKywnznLlGtbVkeQAAACAxWgLBseibKxWOie7YjZucUn2xaKn53cLjsTS5xAkqx6L1XZa7dzvbsZRPAQDEV9Iytz/77DNt2bKlw/3ee+897dmzJ6wxbdtWXV2dPvroIz3//PPasGGDLr744hhnCgDxFe8aggAAAEC8OIFgp3ReNKVBXC7p4pLom6I3NCSm+WNJsaWly8IrH5IMLeVTppYaGsgDQBwlLbi9fPly3X///bI6eNe69dZboxrfGKOsrCxdffXVUR0PAIkQrxqCnAQDAAAgUaINBLtcUlaWc3y0EtX80eu1VDbPKfXncqVHgLt1+ZTuxO83Wl3lZNg3NBhlZ1sakufcOcB1DoBYJC24PWPGDF111VXavn27Pv74Y7311lt66aWX9MUXX4TsF+2bWk5OjubPn6/hw4fHY7oAEBeJqCEIAAAAxFM0gWCXy6lHXTbPiqmOdCJrfhfkW1ow3yn119iY+gB3S/mUotROI6lqa40qVzkJPz6fU4Lm4DrmubnS5BKjkuLY/h8B6L6S2lCyV69e6tWrl4YNG6YLLrhAt912m5YvX64FCxZo165dkqSRI0cqJycnrPFcLpeOOOIInXbaabrkkkvUr1+/RE4fACLWUkMwlhP27ngSDAAAgOSKJBDckrFdNs9S/hmxBSTj0fyxvZrfBfmWlpQrNMDqckqZ2AHJTmIZ7LbKp3Rl1TVO76GD7whofV3k80mLK6Sly4zK5jk/LwCIRFKD261lZGToO9/5jgoLC/Xd735XO3fu1K9+9SudfPLJqZwWAMRNomoIAgAAAPHWXiDY2E6GdN9cp8Z2vDJtk1Hz2+u1NH2apamlRlVrnMSR+nqjbdulF16MYfIRsgPShx9Jjyyyu0RZjvZKjbz7T+dOAGM6/rnattTU5Oy/YD4BbgCRSWlwu0VeXp5uvPFG/exnP0v1VAAgrhJVQxAAAABIhMMFgnNynMBl4Zj4B2OTVfPb47FUNK7ljkhLFU8aud0m5rIo4bKN9M5a6R/VnbssR0elRvr0kerrnZ9luJdCtu38POfMNVpSrk7zvQCQemkR3Jak8ePHxxwAAoB0k8gaggAAAECitA4Ex0N7mb5l86yk1/yOx12WkbLt0NfX2cpyhFNqZPfu6Ma2bamx0blzYPq09P4+AEgfaRPc9nq9Ki8v15AhQ1I9FQCIm0TXEAQAAADSXXhNBaXbb5PuukdJq/kdj7ss46GzlOWorjFhlxqJlm1LKyulqaWm05ZrAZBcrlRP4GBnnXWWsrOzUz0NAIgbp4agcwIejXBqCAIAAADpqrrGaEqpU1O7JeEjEJD8/gMZvy3Zy/PKpJt/Kk0tdQLeklPz2+Nx/pacxI+ppdKS8tibWcbjLst4aSnhMWeuUW1t6gPurdXWOhnbrTPPE6HOJ1WtSexzAOg60iZzOx527dqlV199VRdffHGqpwIAQcmqIQgAAACkwuHKjWRnG82arYiaCt5+p7RgvqWppUp4ze943GUZT+lclqNylXM9k4xEd7fL+bkXJf6pAHQBXSq4vX79et18880EtwGkFa/XUtk8Jb2GIAAAAJBIHZUbiVRoU0FLReOsuNb8bs25y9LJKk90NnK40rEsh9/v/IyT9T2yXM4HGon6uQPoWtKqLEmsNm7cmOopAECbCvItLZhvKSur4xIlLRnbC++N/VZLAAAAIBHCKTcSjYOzl5OhpNhSjx6RlxG0LKdcSp8+znZL+RRXHE7f060sx+qq5Ga3G1vKyeE6CEB4Ep65bYzRM888o3Xr1ik/P18XXXRRm/u98MILamhoiPp56uvr9fjjj0d9PAAkWkG+pSXlCs1ucTmZCcaWArZTQ/DiEuckm4xtAAAApKNENxZMZvZyLHdZLphv6dRTQsunfPiR9M7a2L4v6VaWY+MmJys/WfXJA7ZTDx0AwpHw4Pbtt9+uZcuWSZKWLFmi9957T7Nnzz5kv9/85jdav359TM9ljJFlEQwCkL68XkvTp1maWmoSXkMQAAAAiLeDGwsmsv5yS/Zy0bjEPUcL5y5LpxxKY2P7gemWuyzL5h24y7JonILlUx5ZZOsf1bEFt9OtLEdDg1EyQy19c53rIgAIR8KD288++6wkJ/AsSc8880ybwe1+/frp008/TfR0ACAteDxWyEkwAAAA0Bkkq7FgsrOX43WXZXa2FYx/RMsOSNu2SxVPmpAGnWMLU5MIE4/XFC6Xy/kek/ADIFwJD26PGDFC1dXVsiznl+Hxxx/f5n59+/aVJPXu3VsXXnihvF6vXBEUvdq3b5+WL1+u3bt3x2XeANDZHK5LfapOggEAANC1JLOxYCqyl+Nxl+WQvNjLd9hGeuFFye02IQ06c3OlySUm6SUM4/GawtGSFV9SzLULgPAlPLg9f/583XLLLfq///s/nXHGGfrlL3/Z5n65ubmyLEt33HGHvvnNb0b1XEceeaTKyspimS4AdDoddalP1UkwAAAAupZkNhZMZVPBWO6yHFvonH/H4/vUOqDs80mLK6Sly4zK5jnZ5skQz9d0OC11zMvmcc0CIDIJD24fffTReuKJJzrcryVz+5RTTon6uUaMGBH1sQCQrtrLyH73n9LsW5xbQ1syaNLlJBgAAABdSzIbC3bWpoIej6XJJUaLKxLXbLOpyWmAuWB+cs7tE/2a2qpjDgDhSnhwO1yFhYVqaGhQ//79ox5j4MCBGjVqVBxnBQCp01FGds+eUn29s29HJfBScRIMAACAriWZjQU7c1PBkmJLS5eFJqDEk207AeE5c42WlCspmc7RvibLcq5jcnKk3bujq2MOAO1Jm+D2mDFjNGZMbO9cxx13nCoqKuI0IwBIneoa02FG9r59kY2ZipNgAAAAdB3JaizY2ZsKer2WyuY5iSUuV+IC3I2NTgPM6dMS/32K5jW1lBpZMN/Sqaco6jrmANCe8Ds2JsHKlSvlS1YBLwBIU9U1RjNnJSbT4+CTYAAAACASyWgs2FWaChbkW1ow31JWlvOaEsG2pZWVThnDZIjkNbX8HBfe65QaceqYW/redy1dc7VL3/uus01gG0Cs0iq4ffPNN+sf//hHqqcBAClTW+tkbNt24rrQJ/skGAAAAF1DS2PBROlqTQUL8i0tKbc0tfTA983tkjwe5+94qPM5GdHJEs5r6psrTS2VlpRTQxtA4qVNWRLJqSP7zDPP6Lzzzkv1VAAgJSpXORnbib7bs+UkuGhcYp8HAAAAXUciGwt21aaCXq+l6dMsTS01h5Tl2LDB6KVXYsuGd7ucMYviN+UOtfeaKDUCINnSKrgtSa+++qrKyso0c+ZMZWZmpno6ABARv99odZVzgtfQYJSd7ZzgjS3s+ATP73eaRyYqY/tgqTgJBgAAQOcXj2aJ3bGpoFOWo+X823mNjyyKvUGn5XICyy1jJlNbrwkAki3tgtuS9Pjjj2vVqlWaNGmSSkpKdNJJJ6V6SgDQrtpao8pVTnDa53M6gluWc0dKIODcsje5xLR7wr66yjk2GVJ5EgwAAIDOK5bGgvfeIzU0WGT6fikeDTrtgPThR9Iji+yIEmvSVSzJQgC6p7QLbmdkZOj6669Xbm6uXnzxRT3xxBMaPny4SkpKdNFFF2nQoEGpniIAhKiucepkH5y90vrWQp9PWlwhLV1mVDbPqVXX2sZNTlA80U16JCdLJieHk0MAAABEzmksKM2Za9TY2H6Au61yI2T6OuLRoNM20jtrpX9UR5ZYk27ikSwEoHtKq4aSknTdddfp+uuv15QpU/T444/r1VdfVUlJiZ599llNmDBB//Vf/6VnnnlGe/fuTfVUAUDVNUYzZ4V3W6ZtS01NTpZLdc2hGRoNDbHflhiugO2cTAMAAADRoLFg7OLVoNO2Jb//QKC8JbFmSmnb1x3pprrGaEqpU8u95U7WQKBzvyYAyWOZWO+BiaPS0lLddtttOvHEE9v8+gcffKDKyko999xz2rVrl84991xNmjRJ55xzjjyetEtCRxzV1dWlegrooizLUu6XZ5Q+ny+i2wJra52TsMbGyBpAtmSvLCkPzTqoeNJo0e9MUjK3++ZKK562uLUPcRHLOkJ66V01UR7f2pDH/LmjtKfwxRTNqHthLQGxYx2lht9PY8FoPfa4nZAGndKBcjAL5ltt3jl6OMlcRy3JQsZEVuIm0tcEpALvSW3r27dvXMdLq4hwRUVFu18/+eSTdfLJJ+unP/2p3nrrLa1atUr//d//rczMTF144YUqLi5WQUFBkmYLoLurXOVkbEf6/mTbUmOjc/z0aQdOyOJxW2I4XC6nYQ8XGgAAAIgHGgtGLx4NOg/Htp1z/zlzjZaUK+3KedTWOuUdbTv8a6pEvyZqfgOdT1oFt8NlWZbGjRuno446Sr1799aSJUu0dOlSLV26VCeddJJWrlyZ6ikC6OL8fqceXLQnoLYtrayUppaa4ElSy22JiWwq2ZI1XlLMiRkAAACQatE06IzE4RJr0kG8k4ViQc1voPNKu5rbHdm5c6cWL16sSy65RBdddJGefPJJGWOCfwYOHJjqKQLoBlZXxR6ErvNJVWsObHs8liaXOAHoRGi5ha9sHidkAAAAQLpwGnRayspKzLVAS2KN358+JRHilSwUj9dEzW+gc0urzO0RI0boj3/8o0477bSQxxsbG/XXv/5Vzz77rKqqqhT48rdLS62a4447TsXFxZo0aZKOPfbYpM8bQPezcZPzaX4sZUTcLmecooMeS9RtiW11qQcAAACQHpwGnQrNHnZJlkuyA5IdYzy1JbGmaFz7+7XUT9+2vUH1DUYuy1be4PiX5YhnslBHr6k9kdT8tm2pqcnJsl8wX9T8BtJEWgW3jTHauHGjTjvtNBljtHr1aj377LP661//qoaGhuA+kuT1enXhhRdq0qRJOvXUU1M5bQDdUEODkRXjuYzlchruHFyXMJrbElvm0bOntHfvgZNgY0sB22keeXGJuIUOAAAASGNer6Xp0yxNLQ1t0PnhR9I7a2NLfmkrseZgoWU5jNzu+i/LcighZTkSlSwUiXSs+Q0gcmkV3JakBQsWaO3atXrllVdUW1sr6UBAOzs7W+edd54mTZqkcePGyZWoe/cBoAPZ2VbMnY6NLeXkHHoy5NyW6JwwNTa2fxJ7cEb2qaeILvUAAABAJ9e6Qecji2z9ozq24HZbiTUtqmucIO/Bd4+2Djq3lOVYusyobF7sWcuJShaKRDrV/AYQvbQLbn/++edatmxZMGjk8Xg0ZswYFRcXa+LEicrOzk7xDAFAGpIXW5aB5GRVD8lr+2vt3ZbYXkY2XeoBAACAriUeiTV2QNq2Xap40qihwSg720mEyc42mjVbSS/LkchkoXDEq+b31FJDIhGQYmkX3JacTO2TTz5Z+/fv1/r169Xc3Kzm5uZgrW0ASLWxhc6tebHUieub62RVH87hbkskIxsAAADoPuKRWGMb6YUXJbfbfFluxEQ1ZrzKciQ6Wagj6VLzG0Ds0i64nZeXp7vvvlv5+fmSpPfff1/PPvusfvOb3+jOO+/Uueeeq0mTJumcc85RRkZGimcLoLvyeCxNLnE6akfzab/L5WRdhxOcbn1bIgAAAIDuIx6JNS3ikTMYj7IcyUgWak861PwGEB9pV7T6Bz/4QTCwLUkjR47UnDlz9Prrr+vBBx9UTk6OZs+era9+9au67bbb9Pe//z2FswXQnZUUW+rRwwlUR6KlTnZJMYFqAAAAAO1zEmsiv+5IpJayHH5/dKVFYn1NkSQLtSW+Nb8BpFIa/Wp0DB06tM3HLcvSV7/6Vd19991avXq1fv7zn2vHjh2aPn26xo8fr3vvvVcffvhhcicLoFvw+41ef8Oo4kmjRxbZqnjS2c7NdRo5Wlb4J2Uul2RZznF01gYAAAAQjmgTaxKppSxHtFKZLOTU/I76cEmx1fwGED9pVZakvLxcJ554Yof79ejRQ2eccYY2b96sjz/+WFu2bNGiRYu0aNEinXnmmfr973+fhNkC6Opqa01oQ0e3QurT5eZKk0uk22+T7rrHuTWvvRIlLSdhZfMs5Z/BSRAAAACA8Hi9lsrmOc0cXa7oGyHGU6xlOaJ5TfFKFkp1zW8A8ZNWwe3PPvtMJ510krKzs9v8us/n01/+8hetWrVKNTU1wcct60CXXSvW+0oAQFJ1jdHsW4yamg6cZLU++fH5pMUVUo8e0i2zpfUbdCAQ7nJuUzO2c9LTN9e5ba6kmIxtAAAAAJEryLe0YL7TzLGjxJpkOFCWI/rrm0heUzyThVJd8xtA/KRVcPvmm29WRUWFRo0aFXysqalJL7/8sp599lm9+eabCnwZXTIH3T9y1FFH6Vvf+pZKSkp0wgknJH3eALqW6hqjmbOMjOn4hNG2paYm6fY7pQXzLU0tdW7N27jJOdHLybE0JM856Ym2HhwAAAAASE4weEm5Qu8wbZVYkyzxKssRzmuKd7KQU/PbaHFFdB8SxFrzG0D8pFVw2xij1atXq6CgQG+99ZZWrVqll156SQ0NDcGvt+jdu7cuuOACTZo0SWeddVaqpgygi6mtdTK2bVth12CzbefkZs5coyXllorGWV/emseJDgAAAID48notTZ9maWqpOSSxZsMGo5deib3kRjjiWZajvdeUqGShkmJLS5eF3q0bjnjU/AYQP2kV3JakBx98UI8//rgaGxslhQa0MzIy9LWvfU2TJk3S+PHjlZmZmappQlIgEFBNTY02b96sHTt2qFevXho0aJAKCgqUm5ub6ukBUalc5ZzcRNpcxLadmtuVq4ymT+MkBwAAAEBieTyWisYpJLHmkUVGyarWmoiyHG29pkRJZc1vAPGTdsFtScFMbcmpoZ2fn69Jkybpwgsv1BFHHJHCmaWnt99+W//1X/8V1bEFBQX6wx/+ENExzc3Neuihh7Rs2TLt2LHjkK9nZGRo/PjxuummmzR06NCo5gWkgt/v3AYXbe0625ZWVkpTSw23pwEAAABIuuxsKyRJMFG6SlmOVNX8BhA/aRnclqRhw4apuLhYkyZN0jHHHJPq6eBLmzdv1g9/+EOtW7fusPvs379fL774ot5880394he/UHFxcRJnCERvdVVsDUUkqc7n1NwuGhePGQEAAABA+IbkJb4kSVcry5GKmt8A4iftgtuDBw/W3XffrYKCglRPpdNyuVyywrwPyeMJ/7/Anj17dM0112j9+vXBx7KzszV+/HgNHjxYPp9PVVVV2rRpkySpvr5es2fPVm5uroqKiiJ7EUAKbNxk5HbHdjLodjn14fgfDwAAACDZxhZKubmxJ+0cTjqV5fD7jVZXOddfDQ1G2dlOfe6xhZFnlKei5jeA+Ei74PYNN9xAYDtGTzzxhM4+++y4jzt37tyQwPbZZ5+thQsXql+/fsHHAoGAnnjiCf3617+WMUaBQEAzZ87U888/L6/XG/c5AfHU0KCY69NZLuckiGaSAAAAAJLN47E0ucRocUX05RYPJ13KctTWmtAsa7dzHefEIJzg/uQSE1WWdTJrfgOID1eqJ9AaNZrT07vvvqsXXnghuH388cdr0aJFIYFtSXK73Zo+fbpmzJgRfGzPnj16+OGHkzZXIFrZ2ZE3kmzN2FJODidBAAAAAFKjpNhSjx5OMDpabrfk8Th3pkpOWY6ppdKS8tQGtqtrjKaUOsH7luz0QEDy+w/cgevzSYsrpCmlRtU1ia8/DiC10ipzu7y8XCeeeGKqp4E2PPjggyHbt912mzIzMw+7/7XXXqvKyspgiZKlS5fq+uuvPyQYDqSTIXmWAoHYTn4CtlPnDgAAAABSweu1VDZPmjnLyOUKL4O7pdzIvfdIjY0ubduepX31Rm5Xo/IGp0dZjuoao5mzjIzp+DXZttTU5HwPFsx36moD6JrSKnP7rLPOUnZ2dqqngVb27dunN998M7g9fPhwjRkzpt1jMjIydNlllwW3m5ub9corryRsjkA8tNSni0XfXOfEDwAAAABSpSDf0oL5lrKyOs7gbik3svBeS6POdKlonKWr/79s3TgjR9/7rrOd6sB2ba3R7FuMbDv8ciu27dyZO2euUW0tGdxAV5VWwe1w1NXV6e6779bXv/51nX766ZowYYJ+9rOf6bPPPkv11LqsN954Q83NzcHtCy64IKzjvvGNb4Rsv/zyy3GdFxBvTn266G/fc7mcDtqpPvEDAAAAgIJ8S0vKLU0tPZDE43alZ7mRjlSuMmpqiryMpG1LjY3O8fHk9xu9/oZRxZNGjyyyVfGks+33E0QHki1typI8+eST+uUvf3nI41deeaVuvfVWSdLGjRs1bdo0ff755zJf/kb77LPPtGzZMj333HNatGiR8vPzkzrv7mDt2rUh2+F+j/Py8tS/f3/t3LmzzXGAdFRSbGnpMufEKZIGLC3ZDiXF6XtCCAAAAKB78XotTZ9maWqpUdUaaeMmqb7eKCfH0pC89Cg30hG/32keGW2DTNuWVlZKU0tNzK81kc0sAUQnbYLbl112mf72t7/pjTfeUJ8+fXTppZeqoKBAI0eOlCTt379fP/zhD4MZ2qeddppmzpypI488Uh988IH+3//7f7rxxhv1l7/8RT179kzlS+ly1q9fH7Ld8jMJx4gRI4IlTXbv3q0dO3ZowIABcZ0fEC2/3znB27a9QfUNRi7LVt5gad6d0qzZirg+Xdk8TmAAAAAApB+Px1LROKlIktS5rllWVx1oHhmtOp9UtUYqGhf9GNU1TmmUgxOhWppYtmhpZrl0mVHZPGp9A8mQNsHtzMxMjR07Vps3b9bixYt15JFHhnx95cqV+uijj2RZloYOHary8nJlZWVJkoYNG6b8/HxdeOGFWrFihb73ve+l4iWkjT/+8Y964IEH9O9//1u7du1STk6O+vbtqxEjRmj06NH65je/qT59+oQ93sHB7czMTPXv3z/sY48++uhDxiK4jVQL/bTdyO2u//LTdgU/bT//69Jrr0lNze0HuFsytsvmpfdtfAAAAADQGW3c5GRItw4kR8LtcsYpivJ4mlkC6Sttam7v2bNHDzzwgH79618fEtiWpGXLlgX/fcsttwQD2y2OOuooTZo0Sa+++mrC55runnvuOb399tvatm2bGhsb9cUXX+jTTz/Vn/70J/385z/X+PHjdd9992n//v1hjbd9+/bgvwcNGiTLCv8Xc+uf5datW8M+FkiE6hqjKaVGiysOfPofCEh+/4GTJZ9PevGvkpE08fzOX58OAAAAADqrhgajCMIQbbJcTjmWaNDMEkhvaZO5/eabb8rr9erUU0895Gu7du3Sv/71L1mWpf79+2vcuLbvIyksLNSvfvWrRE+109u7d69++9vfqqqqSr/97W/Vr1+/w+7b2NiowEEfj+bk5ET0XL169QrZrq+vj2yyX4okoA4cTqSftjc3S399Sbr3HkuNjZY2bjKqr5dycqQheVanqE8HJMPBv6P5fd3ZtfXzs/i5JglrCYgd6wiIXbqto5wcK9h3LVp2QPrwI+nRx4yys53rubGF4V3PxdrM8tk/SdOnpf77iORLt7XUVaVNcHvz5s3Ky8tr82sfffSRjDGyLEunnXbaYf9DHHXUUdq1a1cip5nW8vPzNWHCBJ1xxhkaNmyY+vTpo/3792vHjh2qrq7WU089perq6uD+NTU1+sEPfqDFixerR48ebY7ZOhh9uP0OJzMzs93xwpXbkjoLRGn7dluzb6kLK7DdwradsiNzbzP6U2Wuii9Km5tdgLR1xBFHpHoKiIXbfchDHreb9+EUYC0BsWMdAbFLh3U0ckSzAoE9MY1hG+mdtdI/qs2X5SiN+va1dMXlPXT5pVkaOLDta739+41WPlsXWzPLZ6UfzThCGRkEN7uzdFhLXVXaRGoyMzPV2NjY5tc++uij4L9HjBhx2DH2799/SLmS7mDo0KH605/+pKVLl+qaa67RWWedJa/Xq8zMTPXs2VNDhw7VJZdcoj/84Q+6++67QwLUNTU1+u1vf3vYsZuamkK2MzIyIppb6+D24X7GQKIte7pRjY2Rd9i2bamhUXrqGf7vAgAAAECyfa0oQ337xh4Ytu3QcpR1dUYPP9qgb5XU6e/vtF229fU39quuLras8S++MHrjzfDKwgKIXNpkbvfv31/btm1r82sHZxufcsophx3j3Xff1QknnBD3uYVjwoQJ2rJlS8LGv+mmm3TNNde0+bUjjzyyzTrlbZk8ebIyMzP1k5/8JPhYeXm5pk6d2mZ5ktaZ2uHW6W7R3Nwcsh3thw++WFsjo1vz+43+8Ec7pk/b/7C0Qd+5rIkyJEAbLMsKZiLs2rUr5ttGkTq9AoFDTg79gYD28j6cFKwlIHasIyB26biOLp4kLa6IPFmpIy2lQ66+drcW3us6pPnj++vsuDSzfH/dXhXkp01+KZIkHddSOoj3XaFpE9w+9dRTtWnTJm3evFmDBw8OPr579+5gk0iPx6PRo0e3eXxTU5OWLFmi73//+0mZb2f2rW99S8uXL9ebb74pySkV8sorr+jSSy89ZN/WNbZbZ3J3pHVwO9Ka3S34BYBYvLXaKNa4TJ1PWl1lVNR2yX8AXzLG8Du7U2vrZ8fPNBVYS0DsWEdA7NJlHZUUS0uXSU1NiQlwu1zS7FtsLSm35PUeCHDX18enmeW+fenxfUTqpMta6orS5mOjoUOH6vjjj9ejjz4a8vg999yj+vp6WZaliRMnHtKgUHICqDNnztQRRxzRZoAWh2r9faqqqmpzv6ysLLkPqr+5b9++iJ5n7969IdvRBreBWGzc1GYZ2Yi4Xc44AAAAAIDk8notlc2zZFlOIDreWjK4K1eFBh+zs62IG0m2ZmynKSaAxEibzG1J+sEPfqCZM2dq48aNOvXUU/V///d/Wrt2rSzLUlZWln784x+H7G/btl566SUtXLhQGzZs0HXXXSePJzUv6b777os4qzkSxx57bFzHy8/PD9n+7LPPDrvvwIED9fnnn0uStm3bFmzuGY6tW7eGbA8aNCjCmQKxa2iIz6ft9fVGEiclAAAAAJBsBfmWFsyX5sw1UfVT6ohtSysrpamlJliOckhebCVJJClgO+MASIy0Cm5feOGF2rBhgx544AG9/fbbwcezs7N13333BcuVfPHFF/rFL36ht99+Wz6fL5jW/9BDD6mxsVGzZ89O+txPPfXUpD9nLFrX166rqzvsvsOHDw8Gt5ubm1VbW6sBAwaE9Twtxx08FpBszqftsX3czqftAAAAAJBaBfmWlpQ7GdYrKiWfz7nL1nJJdkCyY8yyrvNJVWsULEc5tlDKzVVMZS775kqFY2KbF4DDS6vgtuRkb0+cOFEvv/yytm7dqqOPPlqTJ0+W1+sN7hMIBJSdna1zzz33kOMbGhqSONvOq7GxMWS7dePIgw0bNixYn1uS3n//fZ1zzjlhPc+6deuC/+7Tp0/IzxFIFj5tBwAAAICuweu1NH2apamlRlVrnPKR9fVGH34kvbM2tozulnKURV9uezyWJpeYqJtZulzSxSUKZoIDiL+0C25L0vHHH6/jjz/+sF8fMGCA7rrrriTOqOvZvHlzyHb//v0Pu++ZZ56p8vLy4HZNTU1Ywe2NGzdq586dwe1Ro0ZFMVMgdnzaDgAAAABdi8djqWhcSyDa0iOLbP2jOrbgdlvlKEuKLS1dZiJuZulySVlZzvEAEidtGkoiuV577bWQ7ZNPPvmw+xYVFSkzMzO4/cILL4T1HM8//3zI9nnnnRfBDIH4cT5tj77xCJ+2AwAAAEB6S1Tzx2iaWbpckmVJZfMseb1cRwKJRHC7G9qzZ48qKipCHisqKjrM3lLPnj1Dvr5+/XqtWbOm3efYv3+/nn766eB2ZmamJkyYEOWMgdiVFFvq0SPyADeftgMAAABA+ktkOUqnmaWlrKyOrylbriEX3msp/wyuI4FES0hw+4033tD//M//JGLouNm2bZtuuOGGVE8jZps2bYqoznhTU5N+/OMf64svvgg+dvLJJ2vMmPbrLVx33XUh23feeaeam5sPu//DDz+sTZs2BbevuOKKQ5pYAsnEp+0AAAAA0HW1lKOMRXvlKJ1mlpamlh54HrdL8nicv1uOn1oqLSknsA0kS0KC21/5ylf03HPPac6cOQrE+rFZAnz66ae64oorNHTo0FRPJWavvPKKzjvvPN1///3asGFDu/u+8847+s53vhPSHNLlcmnOnDmyrPZ/6Z522mm64IILgtuffPKJrr766pAguSTZtq3f/e53uv/++4OP9e7dW9dee20kLwtICD5tBwAAAICuKRnlKJ1mli6tfNrSXb+09P2rLX33Cun7VzvbK552vk5yFJA8ljGxViRq25YtW/Td735XxxxzjMrKyjR48OBEPE3EnnnmGc2bN08TJ07sEk0pn3jiiZDXccwxx2jEiBE66qij1Lt3bwUCAe3YsUPV1dX697//fcjxP/vZz3TllVeG9Vy7d+/W5ZdfHhJEz87O1oQJEzR48GDV1dWpqqoqJGPb7Xbr4YcfbrfsSTjq6upiOh44WG2tUeUqoxWVTpNJt9vJ0Da2cxta31znpKakmIxtIByWZSn3y/QVn8+nBJ1aIAl6V02Ux7c25DF/7ijtKXwxRTPqXlhLQOxYR0DsOvM6qq01mlIaffPHJeVcAyJ+OvNaSqS+ffvGdTxPXEc7yDHHHKPFixfruuuu06RJk3TTTTdpypQpcrvdiXrKdm3atEl33XWX/va3v+nSSy/VHXfckZJ5JNqWLVu0ZcuWDvfLzc3VL3/5S51//vlhj92nTx89+uijmjFjhj744ANJUkNDg5577rk298/JydEdd9wRc2AbiDfn03ZLU0uN1rxtadv2LO2rN3K7GpU32LkNjeaRAAAAANC5OOUopZmzjFyu8ALclKMEOreEZW632Lt3r2666Sa99tprGjx4sG644QYVFxcnLci9efNm/e53v9NTTz0lSbr55pvDzlTuDNatW6eKigq98847IRnTh3Psscfq8ssv1+WXXx71JyXNzc168MEH9dRTT2nHjh2HfD0jI0PnnnuubrrpJh133HFRPUdrZG4jUfgkFYgd66jrIHM7tVhLQOxYR0DsusI6qq4xmjPXqLGx/QB3S8Z22TzKUSL+usJaSoR4Z24nPLgtScYY/eEPf9DChQu1Z88e9evXT5MmTdKkSZM0YsSIuD/fnj179Prrr2v58uWqqqqSbdsaOXKkbr/9dp122mlxf750sWfPHn388cf67LPPVFtbq4aGBrndbvXp00der1ennnqqjjzyyLg9XyAQUHV1tTZv3qza2lr17NlTgwYNUkFBQdz/oxLcRqLwZgPEjnXUdRDcTi3WEhA71hEQu66yjg4pR+mSLFfyy1H6/Uarq6SNm6SGBqPsbEtD8pwGmNwx3LV1lbUUb50yuN1i586dmj9/vlatWhVsNNm/f3+dffbZGjVqlE488USdeOKJ6t27d0Tj/uc//9G6dev0/vvva+3ataqpqVEgEJAxRv369dP111+vK6+8Uq5ouwog5QhuI1F4swFixzrqOghupxZrCYgd6wiIXVdbR36/UdUaJ7hcX2+Uk+MElxNdjvKwvZ6MFAhIubnSZHo9dWldbS3FS6cObrf4/PPP9dhjj2nFihXat2+fMxHrwELu06ePBgwYIK/Xq549e6pHjx7KzMxUIBBQU1OTmpqatGvXLm3btk07duwIBsolBf+jDBkyRFOnTtW3v/1t9ejRI7kvEHFHcBuJwpsNEDvWUddBcDu1WEtA7FhHQOxYR7GrrjGafUvHjS1dLqlHD6csSkE+Ae6uhrXUti4R3G7R3Nysv/3tb/rLX/6i1atXa9euXSFfPzjg3Vpb0x46dKgmTJigCy+8UKeeemrc54vUIbiNROHNBogd66jrILidWqwlIHasIyB2rKPYVNcYzZxlZExkDS0XzCfA3dWwltoW7+C2J66jRSgzM1MTJ07UxIkTJUkff/yxampq9PHHH2vz5s3asmWLfD6fGhoagvWjs7Oz1bNnTw0cOFDHHnus8vLy9JWvfEX5+fnq169fKl8OAAAAAAAAuqnaWidj27ad8iPhsG0nwD1nrtGSclGiBIhQSoPbrZ1wwgk64YQTUj0NAAAAAAAAICKVq5xSJJEm6Nq21NjoHD99GsFtIBJ0WAQAAAAAAABi4Pc7zSPDKUXSFtuWVlY64wAIH8FtAAAAAAAAIAarqySfL7Yx6nxS1Zp4zAboPghuAwAAAAAAADHYuElyu2Mbw+1yxgEQvrSquX2wjz76SO+9955qa2uVkZGho446SqeccoqOOeaYVE8NAAAAAAAACGpoMLJiLJdtuaT6eiOJuttAuNIuuP3aa6/pnnvu0fr169v8+vHHH69LLrlEl156qXr37p3k2QFIFb/faHWV8yl2Q4NRdralIXnS2ELJ4+GNHwAAAACQOtnZlkyknSRbMbaUk8P1LRCJtApuP/bYY5o/f/4hvwws68AviE8++UT33HOPHnnkEf30pz/V5MmTUzFVAElSW2tUucppzOHzObd5WZZkjFEgIOXmSpNLjEqKLXm9nAQAAAAAAJJvSJ4UCMQ2RsB2xgEQvrSpub127Vr9+te/liSdcsop+ta3vqWJEyfq9NNPV05OTnA/Y4yMMaqrq9Mtt9yi0tJS1dbWpmraABKousZoSqnR4ooDjTkCAcnvP3DS4PNJiyukKaVG1TV0lQYAAAAAJN/YQif5KhZ9c6XCMfGYDdB9pE3m9qOPPqphw4bpf/7nfzR8+PBDvv7RRx/pnXfe0dtvv623335bu3btkjFGa9eu1X/9139p8eLFGjBgQApmDiARqmuMZs4yMkay7fb3tW2pqUmaOctowXypIJ8MbgAAAABA8ng8liaXOMlZHV3DtsXlki4uoewmEKm0ydx+7733dNttt7UZ2JakE088UVdeeaV+85vfaPXq1Xr44Yd17rnnSpLWr1+v733ve9q5c2cSZwwgUWprjWbfYmTb4Z8U2LZkjDRnrlFtLRncAAAAAIDkKim21KOHE6iOhMslZWU5xwOITNoEtxsbG3XssceGta/b7dY555yjhx56SOXl5RoyZIg2btyouXPnJniWAJKhcpVRU5MTrI6EbUuNjc7xAAAAAAAkk9drqWyeJcsKP8Dtcjl9pcrm0UcKiEbaBLePP/54ffjhhxEfN3r0aD3zzDMaPXq0XnvtNb399tsJmB2AZPH7neaR0dzGJTnHrax0xgEAAAAAIJkK8i0tmG8pK6vjAHdLxvbCey3ln0FgG4hG2gS3v/Od7+ixxx6L6thevXrp0Ucf1fHHH6+nnnoqzjMDkEyrqw40j4xWnU+qWhOP2QAAAAAAEJmCfEtLyi1NLT3QZNLtkjwe52/JaR45tVRaUk5gG4hF2jSUnDRpkpYtW6b58+dr1qxZER+flZWlGTNm6O67707A7AAky8ZNktstBQLRj+F2OeMUxW9aAAAAAACEzeu1NH2apamlRlVrnGvU+nqjnBxLQ/KkwjE0jwTiIW2C2263W/fee6+uvPJKuVwu/eQnP4l4jJEjR9JUEujkGhqMrBjf3y2Xc9IgcaIAAAAAAEgdj8dS0biW5CuuUYF4S5uyJJJ09NFH68Ybb9Qjjzyi6dOn69VXX9WePXvCPv4///mPBgwYkMAZAki07Gwr4kaSrRlbysnhpAEAAAAAAKArS5vM7ebmZs2aNUt//etfZVmWVq9erdWrV8vlcumkk07S6NGjddZZZ2n06NHq06fPIcd/8cUXuueee/Ttb387BbMHEC9D8mIrSSJJAdsZBwAAAAAAAF1X2gS3H3/8cb344ouHPB4IBLRu3TqtW7dO5eXlsixLJ554okaPHq2zzz5bgwYN0muvvaby8nKNGjVK11577WGfY+/evbrrrrv0q1/9KpEvBUAMxhY6DTdiaSrZN9epXwYAAAAAQGfg9xutrnJqczc0GGVnO7W5xxZSmxtoT9oEt5cvX66vf/3ruvTSS+VyubR582a98847Wrt2rWpra4P7GWP04Ycf6sMPP9Tvf//74ONHHXWULrzwQu3YsUODBg1q8znq6uq0fPlygttAGvN4LE0uMVpcIdl25Me7XNLFJbz5AwAAAADSX22tUeUqoxWVTpKX2y1ZlhP/CgSc5K/JJUYlxZa8Xq5zgdbSJri9detWPfTQQzruuOOCj1155ZWSpA0bNmjt2rXBYPdnn30WcqxlWfr888/13//935KcQHdBQYHOPPNMnXnmmTrxxBMlSdu3b0/SqwEQi5JiS0uXGTU1RRbgdrmkrCzneAAAAAAA0ll1jdHsW0KvfVuX6fT5pMUV0tJlRmXzpIJ8rneBg6VNcPsrX/mKXnzxxTbLihx33HE67rjjdNlll0mSPv/8c/39738PBrz//e9/h+z/+eef67nnntNzzz0nSerTp49OP/107d69O+GvA0DsvF5LZfOkmbOMXK7wAtwul/Ppdtk8Ps0GAAAAAKS36hqjmbOMjOn4mte2paYm5xp5wXwC3MDBLGOMSfUkJOmTTz7R97//fY0cOVKXX365vvrVr8rjCS/2vnPnzmBW9zvvvKOPP/5YdqvfDJZlyRgjy7K0bt26RLwEJFBdXV2qp4AUqK4xmjPXqLGx/Tf7loztsnmW8s+I7E3esizl5uZKknw+n9LkVyLQqbCOuo7eVRPl8a0NecyfO0p7Cg/ti4L4Yy0BsWMdAbFjHSVeba3RlFLnWjeSb2/Lte+ScpK6OgPWUtv69u0b1/HSJnP7+OOP17PPPqsHHnhAs2bNkiQVFhbq/PPPV3FxcbvH9u/fX9/4xjf0jW98Q5K0Z8+ekDIm77//vvx+f8JfA4D4Ksi3tKRcofXHXJLlkowtBWyneeTFJaL+GAAAAACgU6hc5ZQiiTTWadtSY6Nz/PRpXP8CUhplbh9s//79WrNmjVavXi2fz6e77rorpvEaGhpUVVWlBQsW6JNPPiFzuxMicxt+v1HVGqdzdH29UU6O0zm6cExszSP5JBWIHeuo6yBzO7VYS0DsWEdA7FhHieX3G118qZHPF/0YfXOlFU9bMV0LI/FYS23rspnbB8vIyFBRUZGKioriMl52drYmTJigPn36qLS0NC5jAkguj8dS0TjJ+a3AGzgAAAAAoPNZXaWYAtuSVOeTqtZIRePiMSOgc3OlegLJdPTRR/MpCQAAAAAAAFJi4ybJ7Y5tDLfLGQdANwxuP/DAA6meBgAAAAAAALqhhgYjK8abkS2XU64TQJqWJUmk8847L9VTAJBAfr/R6irnU+yGBqPsbKc299jC2GpzAwAAAAAQq+xsK+aqAnZA2rZdqnjScN2Lbq/bBbcBdE21tUaVq4xWVDr1y9xuybIkY4wCASk3V5pcYlRSbMnr5c0eAAAAAJB8Q/KkQCC2MWwjvfCi5HYbrnvR7XWrsiQAuqbqGqMppUaLKw405ggEJL//wEmDzyctrpCmlBpV13D7FgAAAAAg+cYWOkHoeOC6FyC4DaCTq64xmjnLqKlJsu3297VtqalJmjmLN3oAAAAAQPJ5PJYml0iuBEXkuO5Fd5N2we29e/emegoAOonaWqPZtxjZdseB7Ra2LRkjzZlrVFvLGz0AAAAAILlKii316JHYADfXvegu0ia4vWvXLl100UUaO3as/vWvf8U01meffaYnnnhCd9xxh+655x7985//jNMsAaSTylVOxnakvThsW2psdI4HAAAAACCZvF5LZfMsWVZiA9xc96I7SJuGkqtWrdInn3wiSdq4caNOOeWUqMZZsmSJ7rrrLvn9/uBjixcv1q233qopU6bEZa4A4sPvN1pdJW3cpIg7PPv9TvPIcDO2W7NtaWWldNV/8UYPAAAAAEiugnxLC+Y72dWNjdFf27an5bp3aqnp8Bob6KzSJri9f/9+jRw5Ut/+9rd1/vnnRzXG3//+d/3yl7+U/eVvhOHDhysjI0MffPCBfvWrX+mss87S8OHD4zltAFGorTWqXOUEp30+ye1WxB2eV1cdaB4ZrTqfVLVGKr4otnEAAAAAAIhUQb6lJeUKvT52SZZLMrYUiEPAu+W6t2hc7GMB6Shtgtt5eXnau3evrrzyyqjH+PnPfy7btuXxeLRw4UJ9/etflyRVVVXp+uuvV1lZmR555JF4TRlAFKprnDrZBzeAbOns3KKlw/PSZUZl85w3/NY2bnKC4q2PjYTbJW3cROY2AAAAACA1vF5L06dZmlpqVLXGudatrzfKybG0YYPRS6/E47pXKorflIG0kjbB7bPOOks7duzQ5s2blZmZqUceeUSvvvqq6urqdOyxx+qiiy5SaWmpcnJy2jz+X//6lzZs2CDLsjR+/PhgYFuSCgsLdf311+u+++7Ttm3bdOSRRybrZQE4SHWN0cxZRsZ0fMvVwR2eF8w/NMDd0GBkxXhXleWS6utjGwMAAAAAgFh5PJaKxrUEoZ2L3UcWxeu61wTHBLqatGko2bt3b1166aW6/fbbddFFF2nJkiX6/PPP1dDQoE8++UQLFy7U5Zdfru3bt7d5/OrVq4P/Pvvssw/5+rRp05STk6O//vWvCXsNAA6vttbJ2Lbt8GuJtdfhOTvbiriRZGvGlg7zeRkAAAAAACkVv+teAtvoutImuC1Jl1xyid566y3t2bNHxhiZL1dwy78//fRT/eAHPwg+frANGzYE//2Vr3zlkK9nZmZq/Pjx+t///d+EzR/A4VWuckqRRPrGfLgOz0PyYrs1S3Lqlw3J400eAAAAAJB+4nfdG5/5AOkobcqSSNLChQslSSeccIKKi4s1ePBg5ebmateuXXr//fe1YsUKvffee3r66ad12WWXhRz72WefBf999NFHtzl+fn6+/vCHPyRs/gDa5vc7zTGi7f7cVofnsYVO48lYmkr2zZUKx0R/PAAAAAAAicJ1L9CxtMnc3rJli15//XX95Cc/0apVq3TNNdfowgsvVGFhob7xjW/oJz/5if7yl7/o1FNP1dNPP33I8fv27Qv+u2fPnm0+x3HHHacdO3Yk7DUAaNvqqtjejKUDHZ5beDyWJpdIrih/i7lc0sUlCgbLAQAAAABIJ1z3Ah1Lm+D2O++8o6OOOkrXXHPNYffp1auXbr75Zr377rtqbGwM+VpDQ0PIfm3p3bu39u7dG58JAwjbxk2S2x3bGC0dng9WUmypR4/I3+hdLikryzkeAAAAAIB0xXUv0L60CW5v375dw4cP73C/r3zlKzLGaNu2bSGP22HUO2hoaFB2dnbUcwQQnYaGeHZ4PsDrtVQ2z5Jlhf9G73JJliWVzbPk9fImDwAAAABIX1z3Au1Lm+B2jx49DsnGbsvevXtlWZZcUdyTsWXLFvXt2zea6QGdit9v9PobRhVPGj2yyFbFk8623x9jm+UoJbLDc0G+pQXzLWVldfxG3/LJ9cJ7LeWfwRs8AAAAACD9cd0LHF7aNJQcPny4Fi5cqN27d6tPnz6H3e9vf/ubsrOzdcwxx0T8HP/61780bNiwWKYJpLXaWqPKVU7zRp/PKQViWZIxRoGA04hicolRSXFyP71NdIfngnxLS8oV+tpdTra3sZ1j++Y6tcaS/doBAAAAAIgV171A29ImuD1q1Ch5PB7dcMMNuu2223TiiScess9LL72ku+++W+PHjw/J3A4EAtq6dWtwe+/evW3W3X755Zc1efLkxLwAIMWqa4xm32LU1CS1VOlpHVD2+aTFFdLSZUZl85w3x2RIRodnr9fS9GmWppYaVa1x6nPX1xvl5FgakuccSxMNAAAAAEBnxXUvcKi0CW5nZWXpiiuu0KOPPqqSkhINGzZMgwcPVp8+fbR79259+OGH2rp1q9xut6677rqQY+fPnx/SUHL16tWaOHFiyD4vvPCCtm7dqnPPPTcZLwdIquoao5mzjIw5ENg+HNuWmpqkmbOMFsxPToDb6fBstLii4/m1JZIOzx6PpaJxUpEkiTd1AAAAAEDXwnUvcIBlTKyVcOOnsbFRl112mT7++GNZrbrPtUxz2LBhysnJ0ahRoxQIBFRVVaVPP/1UxhiNGDFC/fv314YNG7RkyRIdeeSRkqSdO3fq0ksvlcfj0V//+tekvy7Erq6uLtVTSFu1tUZTSo0aGxVRXeuWOlxLypNzu1LLPA/OLA9HoudpWZZyc3MlST6fT2n0KxHoNFhHXUfvqony+NaGPObPHaU9hS+maEbdC2sJiB3rCIgd6wiID9ZS2+LdDzFtMrclJ3v7iSee0I033qi1a0MvrLKzs3Xrrbfq29/+tl588UX95S9/0SeffCLbtjVu3Dh9/etf1yWXXKL33ntPU6ZM0UUXXaQLL7xQ2dnZeu6557Rz507dc889KXplQOJUrnICxpH+jrRtqbHROX76tPgFjf1+o9VVzu1RDQ1G2dnO7VFjC51OzTNnGblc4QW46fAMAAAAAACAw0mrzO2DvfXWW6qqqtLevXt13HHH6Zvf/KYGDBgQ1rH/7//9Pz3yyCPB7G9jjL72ta/pkUceSeSUkUBkbrfN7ze6+FITcy3rFU9bMdflOnwzSx3UzFIadpx01z1OYL29AHdLxnbZvMR2eOaTVCB2rKOug8zt1GItAbFjHQGxYx0B8cFaaluXztw+2Fe/+lV99atfjerYn/zkJxo4cKBWrFih/fv3a8KECfrBD34Q5xkCqbe6KrYmjZJU55Oq1khF46IfI5Jmlj16SLfMltZvEB2eAQAAAABIkPburKbxJLqKtA1ux+p73/uevve976V6GkBCbdzkZEi3DiRHwu1yximK8vhomlnefqe0YL6lqaWiwzMAAAAAAHF0+DurzUF3VhsSytAldNngNtAdNDQYWTG+D1kuJ7AcTYfl2lonY9u2w6/5bdtOyZE5c42WlFsqGmfR4RkAAAAAgDiI5M7qpcuMyuZJBflcj6PzSvvgtt/v15o1a/Tuu+9q+/btcrlcGjRokEaNGqWCgoJUTw9IqexsK+aaTcaWcnKieyNLt2aWAAAAAAB0V9HcWT1zltGC+QS40XmlbXA7EAho0aJFeuKJJ+Q7TFHhoUOH6qabbtLXv/715E4OSBND8mIrSSI5Na6H5EV+nN/v3OLU0Rvm4di2tLJSmlpqKEECAAAAAEAMYr+zWpQoQafkSvUE2vKf//xHU6ZM0cKFCw/bTdQYow0bNuiHP/yh7rrrLgVijfABndDYQqdWViz65jo1riMVz2aWAAAAAAAgevG4sxrojNIuuP3555/rO9/5jv75z3/KGBMMbLf8++DHWh4vLy/XzTffnKopAynj8ViaXOJ80hoNl0u6uCS65o0tzSxj0dLMEgAAAAAARCded1b7/QS40fmkVVmSpqYm3XDDDdq5c6eGDBmiSy+9VKNGjdLRRx+tXr16KTMzU01NTdqzZ482b96sd999V6+99prWrl2rVatWafTo0brssstS/TKApCoptrR0WWiziHC4XFJWlnN8NFLdzBIAAAAAAMT3zuqicfGYEZA8aRXcfuyxx/T+++9r+vTp+slPfiJ3G2mhGRkZ6tWrl4466iidddZZuvrqq/XBBx/opz/9qe6++25NnDhRRxxxRApmD6SG12upbJ7TBMLlCi/A7XJJliWVzbOirqmV6maWAAAAAADgwJ3VsVTsbbmzuih+0wKSIm3KkgQCAVVUVOjcc8/Vf//3f7cZ2D6ck08+Wb/73e/Uo0cPrVixIoGzBNJTQb6lBfMtZWV1XKKkJWN74b2W8s+IPrCcymaWAAAAAADAEd87q4HOJW2C2zU1NfL5fJo5c2ZUx3u9Xl166aV69dVX4zwzoHMoyLe0pNzS1NIDTSbdLsnjcf6WnOaRU0ulJeWxBbal1DazBAAAAAAADufO6tjG4M5qdFZpU5bko48+0gknnKCTTjop6jHOPPNMPfXUU3GcFdC5eL2Wpk+zNLXUqGqNc0tRfb1RTo6lIXlOIDma5pFtcZpZGi2uiK5pRSzNLAEAAAAAgIM7q9GdpU1we8+ePTrqqKNiGqNfv37as2dPnGYEdF4ej6WicS21shIXPE5VM0sAAAAAAOBoubM6lqaS3FmNziptypIcccQRqquri2mMhoYGZWdnx2lGADriNLO0ZFkd1/puEY9mlgAAAAAAwOHcWR3+dXlr3FmNzixtgtvHHHOM1q1bJ18MHzP985//1JAhQ+I3KQAdSkUzSwAAAAAAcEBJsaUePSIPcHNnNTq7tAlun3322crIyNDjjz8e1fFNTU364x//qMLCwjjPDOi6/H6j198wqnjS6JFFtiqedLb9/sg6USS7mSUAAAAAADiAO6vRXaVNze3MzExddNFFeuyxx3TKKafo/PPPD/tYn8+nm266SVu2bNEll1ySwFkCXUNtrVHlKqMVlU5NLrfbeUMzxigQcALUk0uMSorDf4NLZjNLAAAAAAAQyrmzWpoz16ixsf3eWC0Z22XzSEBD52YZYyJL0UygnTt36vzzz1dTU5MmTZqkKVOm6NRTT5VlHbrIbNvWhg0b9Pzzz+uPf/yjduzYoSlTpuhnP/tZCmaORIu1HjsOqK4xmn1Lx00gXS6pRw/nja4gv+u+0VmWpdwv0819Pp/S6Fci0GmwjrqO3lUT5fGtDXnMnztKewpfTNGMuhfWEhA71hEQO9ZR53dIQptLslySsaWA7dxZfXGJIkpoQ+RYS23r27dvXMdLq+C2JL366quaMWOG7C+jbj169NCRRx6p3r17KyMjQ01NTdq3b58+//xz7d+/X5KTbTpy5EgtXbpUmZmZqZw+EoTgdnxU1xjNnGVkTPuB7RYttygtmN91A9y82QCxYx11HQS3U4u1BMSOdQTEjnXUdfj93FmdSqyltsU7uJ02ZUlajB8/Xvfcc49uvfVWNTQ0qLGxUZs2bQrZp/V/hpEjR+q3v/0tge02BAIBvf/++/r4449VW1urQCCgnj176uijj9YJJ5wQUwPOQCCgmpoabd68WTt27FCvXr00aNAgFRQUBBcv0kdtrZOxbdtSuL9PbdsJcM+Za7SkXHyiCwAAAABAJ+HxWCoaJxVJkrieR9eUdsFtSfrWt76lE044QXfddZeqqqpCgtkHlyhxuVy67LLLNHfuXALbrXzxxRd69NFHtXz5cvl8vsPu17dvX40bN0633npr2AHp5uZmPfTQQ1q2bJl27NhxyNczMjI0fvx43XTTTRo6dGh0LwBxV7nKKUUS6QeFti01NjrHT5/GmyEAAAAAAADSQ9qVJWntX//6l1566SX93//9n2pra+X3+3XUUUepoKBAxcXFMWUed1V//vOf9bOf/Ux79uyJ6Jjhw4d3uN/mzZv1wx/+UOvWretw35ycHP3iF79QcXFx2PM4HMqSOLcTra5ybidqaDDKznZuJxpb2PHtRH6/0cWXGrXzOUeH+uZKK562utytS9wmBMSOddR1UJYktVhLQOxYR0DsWEdAfLCW2tbly5K0dsopp+iUU05J9TQ6jccee0z33HNPyGM5OTkqLCzUMccco969e2v37t369NNP9e6772rv3r1hj71nzx5dc801Wr9+ffCx7OxsjR8/XoMHD5bP51NVVVWwjEx9fb1mz56t3NxcFRUVxecFdkOHNIJwO3WwjTEKBKTcXGlyiWm3EcTqKsUU2JakOp9UtUYqGhfbOAAAAAAAIL3EklAHpFLaB7cjsWXLFt1///266667Uj2VlPjTn/4UEtjOycnRj370I333u99Vjx49Dtm/ublZb731ln7/+9+HlHs5nLlz54YEts8++2wtXLhQ/fr1Cz4WCAT0xBNP6Ne//vWXwdeAZs6cqeeff15erzfGV9j9VNc4dbKbmg40gAwEQvfx+aTFFdLSZUZl89Rm48eNm5ygeOtjI+F2OePwMQUAAAAAAF1DPBLqgFRypXoC8fT5559r5cqVqZ5GSuzcuVO/+MUvgtu9evVSRUWFpk2b1mZgW5IyMzM1fvx4PfbYYxo2bFi747/77rt64YUXgtvHH3+8Fi1aFBLYliS3263p06drxowZwcf27Nmjhx9+OJqX1a1V1xjNnBUa2D4c25aamqSZs4yqaw69zaWhwSiMzy/aZbmc7soAAAAAAKDzq64xmlJqtLjiwN3egYDk9x9IjmtJqJtS2na8AUi1LhXc/vTTT1M9hZS56667tGvXruD23XffHddyLg8++GDI9m233dZuE89rr71WeXl5we2lS5fqiy++iNt8urraWidj27Y7Dmy3sG2nWeScuUa1taFvONnZVsSNJA8ZPyBt2y5VPGn0yCJbFU8avf6Gkd/PmxsAAAAAAJ1JPBPqgFRKaFmSTz/9VP/85z8T+RRB+/bt02OPPZaU50o3n332mZ577rng9tixY3X++efHbfx9+/bpzTffDG4PHz5cY8aMafeYjIwMXXbZZbr33nslOSVQXnnlFV166aVxm1dXVrnKeYOJNCBt21Jjo3P89GkHUrWH5MVWkkSSbCO98KLkdhtuUQIAAAAAoJM6OKEu3LiDbUsul5NQt6RcXP8jbSQ0uP2///u/uvXWWxP5FCGMMWHVju5qnnnmGdkHfcx25ZVXxnX8N954Q83NzcHtCy64IKzjvvGNbwSD25L08ssvE9wOg9/v1LoKN2O7NduWVlZKU0tNsOnD2EInCB1rU0kpuprfAAAAAAAgPcQ7oQ5IpYSWJTniiCNkvlwpxpiE/+mu/vSnPwX/3bt3b33ta1+L6/hr164N2c7Pzw/ruLy8PPXv3/+w46Btq6tiD0LX+aSqNQe2PR5Lk0ucT1kTgVuUAAAAAABIf/FKqKNEKdJFQjO3c3Nzg/8ePXq0Tj/9dGVlZSXkufbt26fly5dr9+7dCRk/Xe3atUv//ve/g9unn356u7Wwo7F+/fqQ7ZEjR4Z97IgRI4IlTXbv3q0dO3ZowIABcZ1fV7Nxk9OdOJYyIm6XM07RQY+VFFtauiy8elrR4BYlAAAAAADSWzwT6orGxWNGQGwSGtzu27evJOmss87S4sWLE/lUkqQjjzxSZWVlCX+edPKvf/0rZLuliaQxRq+//rqeffZZvf/++9q6dasyMzPVv39/nX766Tr33HN1/vnnyxVGKu/Bwe2WMcJ19NFHHzIWwe32NTQ4Na1jYbmk+noj6cBAXq+lsnlOdrXLlbgAN7coAQAAAACQnhKVUAekSlIyt1sCrok2YsSIpDxPOvnkk09CtgcPHqwtW7Zozpw5+vvf/x7ytfr6evl8Pn366adavny5hg8frl/84hcaNWpUu8+xffv24L8HDRoUUV3zI488MmR769atYR/bXWVnWzGX2TG2lJNz6M+pIN/SgvlOdnVjY+IC3K1rfgMAAAAAgNRLVEIdkCoJr7k9evRoHX/88Yl8mqCBAwd2GKjtanbt2hWy7ff7dcUVVxwS2G7Lp59+qquuukrPPffcYfdpbGxU4KCP83JyciKaX69evUK26+vrIzq+OxqSF9snqJIUsJ1x2lKQb2lJuaWppU6TScn51NXjcf6Oh9Y1vwEAAAAAQOo5CXWxjXG4hDogFRKaue3xeFRRUZHIpwhx3HHHJfX50kHrGuPz58/Xnj17JEnDhg3TddddpzFjxqhv377y+Xx6++239dBDDwUzvvfv3685c+Zo6NCh+spXvnLI+K2D0T169Ihofq3rf0cb3I4kW7yz++pYKTfXxFQDq2+uNLbQOuz3bcAAS1f/f9JV/2VUtUbauMmovl7KyZE2bJD++rKJ+RalTZs7x8/t4Dl2hvkC6Yh11JW09fM7/PsJ4ou1BMSOdQTEjnXUtQ0dIgUCsUW3A7Y0dAjniB1hLSVHQoPbSLzWweKWwPY555yj+++/PyS4PHDgQBUXF+uCCy7Qj370I7366quSpObmZt12221avnz5IeM3NTWFbGdkZEQ0v9bB7cbGxoiOb3Fwc9LuYMp36vXwow1RlQ1xuaQpV2TL6w0vy774otDt++6vl2U1RP7EB7FcUsDOUm5uZJn+qXbEEUekegpAp8c66uTc7kMe8rjd3e59OB2wloDYsY6A2LGOup4Lv2F0z711qquLPsDdr5+lb1yQq4wMArbhYi0lDsHtOJkwYYK2bNmSsPFvuukmXXPNNYc83lYm9ZFHHql77733kMByi8zMTM2fP18XXXSRPv/8c0nSe++9p6qqKhUWFrY7/v79+yOad3Nzc8h2VlZWRMd3V5dfmqXFFQ0R18V2uaTsLOmyb0f/fc6Jxy1KRurJLUoAAAAAAKSVjAxLV1yeFVNC3RWXZxHYRtoguN3JtVUDu7S0VL179273uF69eumqq67SXXfdFXzslVdeOSS43Xr81pncHWkd3I60ZncLXyw1OjqhzEypbJ5LP77JlssVXoDb5ZIsSyq7y6XMzN1RlzU5cmBsJUkkp2b4kQMb5fNF9v8lFSzLCn6CumvXrpibeQLdEeuo6+gVCBxycugPBLS3m70PpwprCYgd6wiIHeuo67tgotET5VJTU+QJdVlZ0sTzm+TzNXd8QDfHWmpbvO8KJbjdyfXs2fOQxyZMmBDWsRMmTAgJbv/jH/84ZJ+srCy53e5gU8l9+/ZFNL+9e/eGbEcb3O6OvwDyz5AWzLc0Z67pMIO75Q2mbJ6lM06P7ftVOMYoN1cx1/wec7aJOQM82Ywx3fL/GhBPrKPOrq2fHT/TVGAtAbFjHQGxYx11Td7+Tvxg5iwTeULdPEve/t0zThML1lLiENyOk/vuuy/irOZIHHvssW0+PmjQoJBtj8ejYcOGhTVmXl6esrKygnWwt2/f3uZ+AwcODJYv2bZtm4wxYRfC37p1a7vzRfsK8i0tKZcqVxmtqHQCzm6XU9Pa2E4Th7650sUlUkmxJa839tuCPB5Lk0uMFldE9gluC5fLmY/Hwy1KAAAAAACko4J8SwvmK+KEuvwzuNZHeiG4HSennnpqSp73+OOPD9nu1atXRB1Y+/TpEwxuH670x/Dhw4PB7ebmZtXW1mrAgAFhjd9y3MFjITJer6Xp0yxNLTWqWiNt3CTV1xvl5FgakicVjol/ILmk2NLSZSbqW5RKinmzAwAAAAAgnaUioQ6IN4Lbndzw4cNlWVbw1obWNa47cvD+bTWnlKRhw4bpzTffDG6///77Ouecc8Iaf926dcF/9+nTR16vN6L54QCPx1LROKlIkpTYNxSv11LZPEV/ixJveAAAAAAApL1UJNQB8eRK9QQQm549e2rkyJHB7fr6eu3ZsyesYxsaGrR79+7gdr9+/drc78wzzwzZrqmpCWv8jRs3aufOncHtUaNGhXUc0oNzi5KlrCwncN2elozthfdyixIAAAAAAJ2Nk1Bn6XvftXTN1S5977vONoFtpDuC213A+eefH7JdXV0d1nH/+7//K/uglNwRI0a0uV9RUZEyMzOD2y+88EJY4z///PMh2+edd15YxyF9OLcoWZpaKrU0s3W7JI/H+VtyblGaWiotKSewDQAAAAAAgOShLEkXcOGFF+o3v/lNMFD9zDPPhFU25KmnngrZ/upXv9rmfj179lRRUZFefvllSdL69eu1Zs0ajRkz5rBj79+/X08//XRwOzMzUxMmTOhwTkg/3KIEAAAAAACAdERwuwsYOnSoiouLVVlZKcnJrH7ttdfaDXC/+eab+vOf/xzczs3N1UUXXXTY/a+77rpgcFuS7rzzTq1YsSIko/tgDz/8sDZt2hTcvuKKKw5b9gSdQzJrfgMAAAAAgPTj9xutrnIS3xoajLKzncS3sYUkviE1KEvSRfzoRz9STk5OcPvGG2/UqlWr2tz3z3/+s374wx8Gm1BK0owZM9SzZ8/Djn/aaafpggsuCG5/8sknuvrqq/XFF1+E7Gfbtn73u9/p/vvvDz7Wu3dvXXvttRG/JgAAAAAAAKReba3RY4/buvhSo1tuM1r0O6MlS6VFv3O2L77U+Xptrel4MCCOLHNwhBOd2iuvvKIbbrghpI72sGHDdPbZZ6tfv37y+Xxas2aNPv3005DjvvnNb2rBggUdjr97925dfvnl2rBhQ/Cx7OxsTZgwQYMHD1ZdXZ2qqqpCMrbdbrcefvhhFRUVxfTa6urqYjoeOBzLspT7ZUFxn88nfiUCkWMddR29qybK41sb8pg/d5T2FL6Yohl1L6wlIHasIyB2rCO0Vl1jNPsWo6Ym6aCQ0yFcLqlHD6lsnqWCfLK4WUtt69u3b1zHI7jdxaxatUo///nPtW/fvrD2nzJlim699VZ5POFVqNm8ebNmzJihDz74oMN9c3JydMcdd2jSpElhjd0egttIFN5sgNixjroOgtupxVoCYsc6AmLHOsLBqmuMZs4yMqb9wHYLl0uyLGnBfALcrKW2xTu4TVmSLqal9vZFF12krKysNvexLEujRo3S448/rttvvz3swLYkDR48WE899ZR+8IMfaMCAAW3uk5GRofPPP1/Lly+PS2AbAAAAAAAAyVVb62Rs23Z4gW3J2c8Yac5cQ4kSJAUNJbugwYMH695779XevXv1j3/8Q1u3blVdXZ169eqlgQMHatSoUTE1d8zMzNSNN96oGTNmqLq6Wps3b1Ztba169uypQYMGqaCgIO6fwgAAAAAAACB5Klc5pUgiTTi2bamx0Tl++rTunb2NxCO43YX16tVL55xzTsLGd7vdGj16tEaPHp2w5wAAAAAAAEBy+f1GKyrDz9huzballZXS1FIjj4cANxKHsiQAAAAAAAAAglZXST5fbGPU+aSqNfGYDXB4BLcBAAAAAAAABG3cJLndsY3hdjnjAIlEcBsAAAAAAABAUEODkRVjNRHLJdXX01QSiUVwGwAAAAAAAEBQdrYVcSPJ1owt5eRQbxuJRXAbAAAAAAAAQNCQPCkQiG2MgO2MAyQSwW0AAAAAAAAAQWMLpdzc2MbomysVjonHbIDDI7gNAAAAAAAAIMjjsTS5RHJFGTl0uaSLS5xxgEQiuA0AAAAAAAAgREmxpR49Ig9wu1xSVpZzPJBoBLcBAAAAAAAAhPB6LZXNs2RZ4Qe4XS7JsqSyeZa8XoLbSDyC2wAAAAAAAAAOUZBvacF8S1lZHQe4WzK2F95rKf8MAttIDk+qJwB0d36/0eoqaeMmqaHBKDvb0pA8p3kDtakAAAAAAEAqFeRbWlIuVa4yWlEp+XyS2yVZLsnYUsB2mkdeXOKUIiFjG8lEcBtIkdpaE/rG4HZu3THGKBBwuhJPLjG8MQAAAAAAgJTyei1Nn2ZpaqlR1RonQa++3ignx0nQKxxDgh5Sg+A2kALVNUazbzFqapJs23ksEAjdx+eTFldIS5cZlc1zPikFAAAAAABIFY/HUtE4qUiSRJwCqUfNbSDJqmuMZs4KDWwfjm1LTU3SzFlG1TUmORMEAAAAAAAAOgGC20AS1dY6Gdu23XFgu4VtS8ZIc+Ya1dYS4AYAAAAAAAAkgttAUlWucjK2TYQxatuWGhud4wEAAAAAAABQcxtIGr/faR4ZbsZ2a7YtrayUppYamjQAAAAAAIC05vcbra5ymk82NBhlZzvNJ8cW0nwS8UNwG0iS1VVOk8hY1PmkqjVS0bh4zAgAAAAAACC+amuNKlc5CX4+n+R2S5YlGWMUCEi5udLkEqOSYkteL0FuxIayJECSbNzk/EKPhdvljAMAAAAAAJBuqmuMppQaLa44kOAXCEh+v/O35Dy+uEKaUmpUXUP5VcSG4DaQJA0NRlaMH0haLqm+nl/8AAAAAAAgvVTXGM2c5fQa66gkq21LTU3SzFkEuBEbgttAkmRnWxE3kmzN2FJODrfsAAAAAACA9FFbazT7FiPbDr/XmG1Lxkhz5hrV1hLgRnQIbgNJMiTvwC040QrYzjgAAAAAAADponKVk7EdaVKfbUuNjc7xQDQIbgNJMrbQaZoQi765UuGYeMwGAAAAAAAgdn6/0zwy3Izt1mxbWlnpjANEiuA2kCQej6XJJZIrylXnckkXlzjjAAAAAAAApIPVVQeaR0arzidVrYnHbNDdENwGkqik2FKPHpEHuF0uKSvLOR4AAAAAACBdbNwkud2xjeF2OeMAkSK4DSSR12upbJ4lywo/wO1ySZYllc2z5PUS3AYAAAAAAOmjocHIijFcYbmk+nrKkiByBLeBJCvIt7RgvqWsrI4D3C0Z2wvvtZR/BoFtAAAAAACQXrKzrYgbSbZmbCknh7gHIkdwG0iBgnxLS8otTS090GTS7ZI8HudvyWkeObVUWlJOYBsAAAAAAKSnIXlSIBDbGAHbGQeIlCfVEwC6K6/X0vRplqaWGlWtcWpL1dcb5eRYGpInFY6heSQAAAAAAEhvYwudxL1Ymkr2zXXiIECkCG4DKebxWCoaJxVJkghmAwAAAACAzsPjsTS5xGhxhWTbkR/vckkXl5Dgh+hQlgQAAAAAAABA1EqKLfXo0XFvsdZaeo2VFBPYRnQIbgMAAAAAAACImtdrqWyeJcsKP8DtckmWJZXNs+T1EtxGdAhuAwAAAAAAAIhJQb6lBfMtZWV1HOBuydheeK+l/DMIbCN6BLcBAAAAAAAAxKwg39KScktTS50mk5Lkdkkej/O35DSPnFoqLSknsI3Y0VASAAAAAAAAQFx4vZamT7M0tdSoao20cZNUX2+Uk2NpSJ5UOIbmkYgfgtsAAAAAAAAA4srjsVQ0TiqSJBHMRmJQlgQAAAAAAAAA0OkQ3AYAAAAAAAAAdDqUJQEAAAAAAACQEn6/0eoqpzZ3Q4NRdrZTm3tsIbW50TGC2wAAAAAAAACSqrbWqHKV0YpKyeeT3G7JsiRjjAIBKTdXmlxiVFJsyeslyI22UZYEAAAAAAAAQNJU1xhNKTVaXOEEtiUpEJD8fudvyXl8cYU0pdSousakaqpIcwS3AQAAAAAAACRFdY3RzFlGTU2Sbbe/r21LTU3SzFkEuNE2gtsAAAAAAAAAEq621mj2LUa23XFgu4VtS8ZIc+Ya1dYS4EYogtsAAAAAAAAAEq5ylZOxbSKMUdu21NjoHA8cjOA2AAAAAAAAgITy+53mkeFmbLdm29LKSmccoAXBbQAAAAAAAAAJtbrqQPPIaNX5pKo18ZgNugqC2wAAAAAAAAASauMmye2ObQy3yxkHaEFwGwAAAAAAAEBCNTQYWVZsY1guqb6esiQ4wJPqCQAAAAAAAADo2rKzLZlIO0m2YgekbduliieNGhqMsrMtDcmTxhZKHk+MkXN0SgS3AQAAAAAAACTUkDwpEIhtDNtIL7woud1OFrgxRoGAlJsrTS4xKim25PUS5O5OKEsCAAAAAAAAIKHGFjpB6HgIBCS//0Cw3OeTFldIU0qNqmsoW9KdENwGAAAAAAAAkFAej6XJJZIrQdFI25aamqSZswhwdycEtwEAAAAAAAAkXEmxpR49EhvgNkaaM9eotpYAd3dAcBsAAAAAAABAwnm9lsrmWbKsxAa4GxulylUEt7sDgtsAAAAAAAAAkqIg39KC+ZayshIb4F5ZKfn9BLi7OoLbAAAAAAAAAJKmIN/SknJLU0sPNJl0uySPx/k7Hup8UtWa+IyF9OVJ9QQAAAAAAAAAdC9er6Xp0yxNLTWqWiNt3CTV1xvl5FjasMHopVekQCD68d0uZ8yi+E0ZaYjgNgAAAAAAAICU8HgsFY1rCUJbkqRHFhlZVmzjWi4nWN4yJromypIAAAAAAAAASBvZ2ZZMjOWyjS3l5BDY7uoIbgMAAAAAAABIG0PyYitJIkkB2xkHXRvBbQAAAAAAAABpY2zhgUaT0eqbKxWOicdskM4IbgMAAAAAAABIGx6PpcklkivKyKXLJV1c4oyDro3gNgAAAAAAAIC0UlJsqUePyAPcLpeUleUcj66P4DYAAAAAAACAtOL1WiqbZ8mywg9wu1ySZUll8yx5vQS3uwOC2wAAAAAAAADSTkG+pQXzLWVldRzgbsnYXnivpfwzCGx3FwS3AQAAAAAAAKSlgnxLS8otTS090GTS7ZI8HudvyWkeObVUWlJOYLu78aR6AgAAAAAAAABwOF6vpenTLE0tNapaI23cJNXXG+XkWBqSJxWOoXlkd0VwGwAAAAAAAEDa83gsFY2TiiRJBLNBWRIAAAAAAAAAQCdEcBsAAAAAAAAA0OlQlgQAAAAAAABAl+H3G62ucmpzNzQYZWc7tbnHFlKbu6shuA0AAAAAAACg06utNapcZbSiUvL5JLdbsizJGKNAQMrNlSaXGJUUW/J6CXJ3BZQlAQAAAAAAANCpVdcYTSk1WlzhBLYlKRCQ/H7nb8l5fHGFNKXUqLrGpGqqiCMytxG1QCCgmpoabd68WTt27FCvXr00aNAgFRQUKDc3N9XTAwAAAAAAQDdQXWM0c5aRMZJtt7+vbUtNTdLMWUYL5ksF+WRwd2YEtzu5//znPzrvvPPiMtbLL7+sY489tsP9mpub9dBDD2nZsmXasWPHIV/PyMjQ+PHjddNNN2no0KFxmRsAAAAAAADQWm2t0exbjGxbMmEmY9u25HJJc+YaLSkXJUo6McqSQJJkWZZycnI63G/z5s26/PLL9cADD7QZ2Jak/fv368UXX9TkyZO1atWqeE8VAAAAAAAAkCRVrjJqago/sN3CtqXGRud4dF5kbndylmXJ7XZHfJxt2zIHrfpRo0apX79+7R6zZ88eXXPNNVq/fn3wsezsbI0fP16DBw+Wz+dTVVWVNm3aJEmqr6/X7NmzlZubq6KioojnCAAAAAAAAByO3+80j+yoFMnh2La0slKaWmrk8ZC93RkR3O7kjjnmGL3//vsRH3f99dfrlVdeCW5Pnjy5w2Pmzp0bEtg+++yztXDhwpCgeCAQ0BNPPKFf//rXX3aiDWjmzJl6/vnn5fV6I54nAAAAAAAA0JbVVQeaR0arzidVrZGKxsVjRkg2ypJ0Q1988YXeeOON4HZOTo6+8Y1vtHvMu+++qxdeeCG4ffzxx2vRokWHZHu73W5Nnz5dM2bMCD62Z88ePfzww3GaPQAAAAAAACBt3CRFUdAghNvljIPOieB2N/Tss89q//79we2JEyeqZ8+e7R7z4IMPhmzfdtttyszMPOz+1157rfLy8oLbS5cu1RdffBHljAEAAAAAAIBQDQ1GVozVRCyXVF9P3e3OiuB2N7Ry5cqQ7Y5Kkuzbt09vvvlmcHv48OEaM2ZMu8dkZGTosssuC243NzeHlEEBAAAAAAAAYpGdbUXcSLI1Y0s5OdTb7qwIbnczH3zwgdatWxfcPuaYY3T22We3e8wbb7yh5ubm4PYFF1wQ1nO1LnXy8ssvRzBTAAAAAAAA4PCG5EmBQGxjBGxnHHROBLe7mRUrVoRsl5SUyOrg/o21a9eGbOfn54f1XHl5eerfv/9hxwEAAAAAAACiNbZQys2NbYy+uVJh+wUKkMYIbncjfr9ff/rTn0Ie66gkiSStX78+ZHvkyJFhP+eIESOC/969e7d27NgR9rEAAAAAAADA4Xg8liaXSK4oI5wul3RxiTMOOieC293I66+/rtra2uD2qFGjQpo+Hs7Bwe3MzMyQbOyOHH300YcdCwAAAAAAAIhFSbGlHj0iD3C7XFJWlnM8Oi+C291IpI0kW2zfvj3470GDBnVYxuRgRx55ZMj21q1bwz4WAAAAAAAAaI/Xa6lsniXLCj/A7XJJliWVzbPk9RLc7sw8qZ4AksPn8+mVV14JbmdnZx/S8LEtjY2NChxUmT8nJyei5+3Vq1fIdn19fUTHt4gkoA5E4uD/W/w/A6LDOupK2vr5Wfxck4S1BMSOdQTEjnWEzujMAksL7zWafYutxkbJtg+/b0vG9j13uZR/RuL+j7OWkoPgdjfx3HPPaf/+/cHtiRMnHhJ4bkvrYHSPHj0iet7MzMx2xwtXbqzdAYAwHHHEEameAtDpsY46Obf7kIc8bjfvwynAWgJixzoCYsc6QmcyYbz0XKWtp55p1B/+2Ki6OiO328nQNkYKBKR+/SxdcXmWLvt2lgYOTF5BC9ZS4hDc7iZWrFgRsh1uSZKmpqaQ7YyMjIiet3Vwu7GxMaLjAQAAAAAAgHAMHOjSDdfn6Jqrs/XGm/u1fkNA++qNeuZYGnacW0XjMpSRQRZ1V0JwO04mTJigLVu2JGz8m266Sddcc01Ux3766af65z//Gdw+5phjNGbMmLCObZ2pfXD2dziam5tDtrOysiI6voXP54vqOKAjlmUFP0HdtWuXjDEpnhHQ+bCOuo5egcAhJ4f+QEB7eR9OCtYSEDvWERA71hG6ioJ858/B9u1L3vOzltoW77tCCW53A8uXLw/ZLikpCbvWT+sa260zuTvSOrgdac3uFvwCQDIYY/i/BsSIddTZtfWz42eaCqwlIHasIyB2rCMgPlhLiZO84jJICdu29eyzz4Y8Fm5JEsnJtHYfVH9zX4Qfce3duzdkO9rgNgAAAAAAAAAcjMztOLnvvvsizmqOxLHHHhvVcW+99Za2b98e3B41apTy8vIiGmPgwIH6/PPPJUnbtm2TMSbszO+tW7eGbA8aNCiiP9f9fgAAORZJREFU5wYAAAAAAACAthDcjpNTTz011VNoU+tGkhdffHHEYwwfPjwY3G5ublZtba0GDBgQ1rEtxx08FgAAAAAAAJAO/H6j1VXSxk1SQ4NRdralIXnS2ELJ46H5ZLojuN2F7dmzRy+//HJwOzs7WxdeeGHE4wwbNkxvvvlmcPv999/XOeecE9ax69atC/67T58+8nq9ET8/AAAAAAAAEE+1tUaVq4xWVEo+n+R2S5bl1McOBKTcXGlyiVFJsSWvlyB3uqLmdhf2l7/8RY2NjcHt888/X7169Yp4nDPPPDNku6amJqzjNm7cqJ07dwa3R40aFfFzAwAAAAAAAPFUXWM0pdRocYUT2JakQEDy+52/JefxxRXSlFKj6hqaQaYrgttd2PLly0O2L7nkkqjGKSoqUmZmZnD7hRdeCOu4559/PmT7vPPOi+r5AQAAAAAAgHiorjGaOcuoqUmy7fb3tW2pqUmaOYsAd7oiuN1Fbdy4MSTD+uijj9aYMWOiGqtnz54qKioKbq9fv15r1qxp95j9+/fr6aefDm5nZmZqwoQJUT0/AAAAAAAAEKvaWqPZtxjZdseB7Ra2LRkjzZlrVFtLgDvdENzuolo3kiwpKZFlRV8f6LrrrgvZvvPOO9Xc3HzY/R9++GFt2rQpuH3FFVeoX79+UT8/AAAAAAAAEIvKVU7GtokwRm3bUmOjczzSC8HtLsgYo2effTbkscmTJ8c05mmnnaYLLrgguP3JJ5/o6quv1hdffBGyn23b+t3vfqf7778/+Fjv3r117bXXxvT8AAAAAAAAQLT8fqd5ZLgZ263ZtrSy0hkH6cOT6gkg/tasWaMtW7YEt88880wNGTIk5nF/+ctf6qOPPtKGDRskSW+//bYmTJigCRMmaPDgwaqrq1NVVVVIxrbb7daCBQvk9Xpjfn4AAAAAAAAgGqurDjSPjFadT6paIxWNi8eMEA8Et7uglStXhmzHmrXdok+fPnr00Uc1Y8YMffDBB5KkhoYGPffcc23un5OTozvuuCOkXjcAAAAAAACQbBs3SW63FAhEP4bb5YxDpCt9UJaki9m3b59efPHF4HZ2drYuvPDCuI0/ePBgPfXUU/rBD36gAQMGtLlPRkaGzj//fC1fvlyTJk2K23MDAAAAAAAA0WhoMIqhHZ0kyXJJ9fWUJUknZG53MT179lRNTU1CnyMzM1M33nijZsyYoerqam3evFm1tbXq2bOnBg0apIKCAvXt2zehcwAAAAAAAADClZ1tyUTaSbIVOyB9+JH0yCJb2dmWhuRJYwsljyfGqDmiRnAbUXO73Ro9erRGjx6d6qkAAAAAAAAAhzUkL7aSJJJkG+mdtdI/qiVjjAIBKTdXmlxiVFJsyeslyJ1slCUBAAAAAAAA0KWNLXQC0bGybcnvPxAo9/mkxRXSlFKj6hpKliQbwW0AAAAAAAAAXZrHY2lyieRKQDTUtqWmJmnmLALcyUZwGwAAAAAAAECXV1JsqUePxAW4jZHmzDWqrSXAnSwEtwEAAAAAAAB0eV6vpbJ5liwrcQHuxkapchXB7WQhuA0AAAAAAACgWyjIt7RgvqWsrMQFuFdWSn4/Ae5kILgNAAAAAAAAoNsoyLe0pNzS1NIDTSbdLsnjkVxW7OPX+aSqNbGPg455Uj0BAAAAAAAAAEgmr9fS9GmWppYaVa2RNm6S6uuNPvxIemetk4EdLbdL2riJzO1kILgNAAAAAAAAoFvyeCwVjZOKJEmWHllk6x/VsQW3LZdUXx+nCaJdlCUBAAAAAAAAAEnZ2ZZMjEnXxpZycuIzH7SP4DYAAAAAAAAASBqSJwUCsY0RsKUheXEo3o0OEdwGAAAAAAAAAEljCw80mYxW31ypcEw8ZoOOENwGAAAAAAAAADk1uCeXSK4oo6Yul3RxiTMOEo/gNgAAAAAAAAB8qaTYUo8ekQe4XS4pK8s5HslBcBsAAAAAAAAAvuT1WiqbZ8mywg9wu1ySZUll8yx5vQS3k4XgNgAAAAAAAAAcpCDf0oL5lrKyOg5wt2RsL7zXUv4ZBLaTieA2AAAAAAAAALRSkG9pSbmlqaUHmky6XZLH4/wtOc0jp5ZKS8oJbKeCJ9UTAAAAAAAAAIB05PVamj7N0tRSo6o10sZNUn29UU6OpSF5UuEYmkemEsFtAAAAAAAAAGiHx2OpaJxUJEkimJ0uKEsCAAAAAAAAAOh0CG4DAAAAAAAAADodypIAAAAAAAAAQJz4/U597m3bG1TfYOSybOUNlsYWUp873ghuAwAAAAAAAECMamuNKlcZraiUfD4jt7teliUZIwUCUm6uNLnE/P/t3XmcjXX/x/H3mY3BMMYww+AWZaeUYrQIlZSduCXuqBQile7olixDdKfFktLdMhGyRrLFj5Qt6z2DiAiNdYaxjTHb+f0xj7nuuc6cc+bMPpdez8ejx32+1/ley9yP83bNfM73+n7VqYNNwcEUufMD05IAAAAAAAAAQB7s3mNXrz52Rc6W4uPTt6WmSikp6f8rpW+PnC316mPX7j32orrUmwrFbQAAAAAAAADIpd177Hp5uF03bkhpae77pqVJN25ILw+nwJ0fKG4DAAAAAAAAQC7Extr1+ht2paVlX9jOkJaWPlXJiH/ZFRtLgTsvKG4DAAAAAAAAQC4s+y59xLY9hzXqtDQpMTF9f+QexW0AAAAAAAAAyKGUlPTFIz0dse0oLU36dln6cZA7FLcBAAAAAAAAIIe2bP3f4pG5dTFe2rotP67mr4niNgAAAAAAAADk0PETkrd33o7h7ZV+HOQOxW0AAAAAAAAAyKHr1+2y2fJ2DJuXlJDAtCS55VPUFwAAAAAAAAAAVuPvb5M9pytJOkhLlQ79Js36T5r8/W36W3WpRbjk45PHqvlfBMVtAAAAAAAAAMihv1WXUlPzdow0u7Rjp7Rrt2S325WaKgUGSl062dWpg03BwRS53WFaEgAAAAAAAADIoRbh6YXovEpLk1JS/lcoj4+XImdLvfrYtXsPU5a4Q3EbAAAAAAAAAHLIx8emLp0krwKosKalSTduSC8Pp8DtDsVtAAAAAAAAAMiFTh1sKlGi4Arcdrs04l92xcZS4HaG4jYAAAAAAAAA5EJwsE2TJ9pksxVcgTsxUVr2HcVtZyhuAwAAAAAAAEAu3dnEpvfftalkyYIrcH+7TEpJocDtiOI2AAAAAAAAAOTBnU1smvuVTf/o879FJr29JR8fycuW9+NfjJe2bsv7cW42PkV9AQAAAAAAAABgdcHBNj3Tz6Z/9LFr23abzp4rqWsJdv33v9e1Y2f6COzc8vaSjp+Q7s+/y70pUNwGAAAAAAAAgHzi42PT/ffZFBjoL0l6591E7dptz1Nx2+YlJSTYJeXDMPCbCNOSAAAAAAAAAEAB8feX7HmcLtueJpUqRWHbEcVtAAAAAAAAACggf6tuU2pq3o6Rmib9rXr+XM/NhOI2AAAAAAAAABSQFuH/W2Qyt8oHSuHN8+Nqbi4UtwEAAAAAAACggPj42NSlk+SVy0qsl5fUuVP6cWBGcRsAAAAAAAAAClCnDjaVKJHzAreXl1SyZPr+yIriNgAAAAAAAAAUoOBgmyZPtMlm87zA7eUl2WzS5Ik2BQdT3HaG4jYAAAAAAAAAFLA7m9j0/rs2lSyZfYE7Y8T2B1NsanIHhW1XKG4DAAAAAAAAQCG4s4lNc7+y6R99/rfIpLeX5OOT/r9S+uKR/+gjzf2KwnZ2fIr6AgAAAAAAAADgryI42KZn+tn0jz52bd0mHT8hJSTYVaqUTX+rLoU3Z/FIT1HcBgAAAAAAAIBC5uNj0/33SfdLkihm5wbTkgAAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsx2a32+1FfREAAAAAAAAAAOQEI7cBAAAAAAAAAJZDcRsAAAAAAAAAYDkUtwEAAAAAAAAAlkNxGwAAAAAAAABgORS3AQAAAAAAAACWQ3EbAAAAAAAAAGA5FLcBAAAAAAAAAJZDcRsAAAAAAAAAYDkUtwEAAAAAAAAAluNT1BcAAHlx7do17du3T8ePH9elS5dkt9sVEBCgsLAwNW7cWIGBgfl2rqSkJEVHR+v3339XfHy80tLSFBAQoKpVq6p27dqqXLlyno69a9cuxcTE6MKFCwoMDFRoaKiaNm2qUqVK5dvPALhSGFmKjY1VVFSUTp8+ratXr8rHx0dly5ZVrVq1VL9+fZUsWTLP5yBLKErXr183Pn/x8fEqU6aMQkJC1LhxY1WqVCnfzhMVFaU//vhDZ8+elb+/v3GOkJCQfDk+OUJRK8gspaam6o8//tDhw4d17tw5Xbt2TaVKlVJgYKDq16+vW2+9VTabLV9+DrKEolRY96SCRo5Q1AozS9QccofiNoACce3aNR04cEBRUVGKiopSdHS0YmJijPfDwsL0f//3f7k+fnR0tD799FOtX79eKSkpTvvYbDaFh4erf//+uv/++3N9rpMnT2rWrFlasWKFEhISXPYLCQnRAw88oLFjx8rb29ujY1+9elUffPCBli9frkuXLmV5v1SpUmrbtq1effVVVaxYMdc/A6zrZsjSqlWrFBkZqT179rjsU6JECbVr104DBgxQrVq1cnwOsgR3CjpHx44d0/Tp07V27VolJSVled/b21vNmzfX4MGDddddd+XqHGlpaZo9e7Zmz56tkydPZnnfy8tL4eHhGjZsmBo3bpyrc5AjZMeqWYqNjdXatWu1adMm7dixQ1evXnXZNygoSD169NA//vEPBQUF5ernIEtwx6o58sSpU6f0+OOPZ/mbaf369apatWqOjkWOkJ2bKUvUHPLGZrfb7UV9EQBuHl988YWWLFmiI0eOKC0tzWW/vNxopk2bppkzZyo1NdXjfbp27arx48fLxydn3+lFRkbq3XffdXozcyUqKkolSpTItt/+/fs1ZMgQ0w3YlaCgIE2ZMkUtWrTw+DpgbTdDlhISEvTKK69ow4YNHh/fz89PI0aMUO/evT3ehyzBlcLI0cKFCzV27FglJydn29fb21sDBgzQsGHDcnSOixcvatiwYdq2bVu2fX19ffXKK6+of//+OToHOYI7Vs7St99+qzfeeCNH9zpJqlChgiZOnKgHH3wwR/uRJbhi5Rx5asCAAfrxxx+zbM9pcZscwZ2bLUvUHPKOkdsA8tWOHTv022+/Fdjxp06dqhkzZpi2lS1bVi1atFD16tXl7e2tM2fOaNu2bTp9+rTRZ8mSJUpKStKUKVM8Ptf48eM1Z84c07bAwEA1b95clStXlr+/v+Lj4/Xbb79p3759SkxM9PjYp06d0oABAxQbG2tsK1eunFq1aqXQ0FCdP39emzZt0vnz5yVJFy5c0ODBgzVv3jzVrVvX4/PAuqyepdTUVL3wwgvavn27aXtYWJiaN2+uSpUqKSUlRSdOnNDmzZuNUXRJSUkaN26cfHx81LNnz2x/DrIEdwo6R3PmzNH48eNN2ypWrKj77rtPoaGhun79uv773/9q7969stvtSk1N1cyZM+Xr66vBgwd7dI7k5GQNGTJEO3bsMLb5+PioZcuWqlWrlq5du6adO3fq0KFDRv/JkycrICBATzzxhEfnIEfIjpWzFB8fn6WwXapUKTVp0kTVq1dX+fLldf36df3666/asWOH0TcuLk6DBw/W1KlT1aZNG49+DrIEd6ycI0+sWLHCaWE7p8gRsnMzZYmaQ/6guA2gwJUqVUoNGjTQ/v373T5ik51Dhw7p448/Nm3r3bu3hg8fnmWOqNTUVM2fP19vv/228W3rihUr1K5dOz300EPZnuuTTz4x3WQCAwM1YsQIdejQwemI1YSEBG3YsEGzZ8/O9th2u11Dhw413WTat2+vcePGqXTp0sa2jALil19+aZxj0KBBWrVqlUff0uLmY6UszZ8/31TY9vX11VtvvaVu3brJy8u8nvXVq1c1adIkLVy40Ng2adIkPfjgg27nECZLyI38ylF0dLQmTZpk2jZw4EANGjRIfn5+pu179uzRyy+/bHxRNHXqVDVq1EgPPPBAtud57733TIXt2rVra+bMmVlGwC1fvlxvvPGGkdOxY8eqcePGqlOnjtvjkyPkltWy5OPjo1atWqlnz55q3ry5fH19s/Q5efKk3njjDf3yyy+SpJSUFA0fPlxr1qzJdl5VsoTcsFqOXImPj9fEiRMlpU+TFRQUZMqCp8gRcsuKWaLmkH+8su8CAJ4rUaKEGjdurN69e+vtt9/WihUrtGvXLs2ZM0fly5fP07Hnzp1rGnnTvn17jR492uniB97e3urdu7dGjhxp2j5v3rxsz3PkyBFNmzbNaIeEhGjx4sXq0qWLy6kYSpUqpccff1zz58/P9iawevVqRUdHG+0WLVro3XffNd1kpPTpGUaOHKmuXbsa22JiYjz6GWB9Vs+S4wiEN998U0888USWwrYklSlTRhEREWrbtq2xLSEhQd9++63bc5AlZKcgc/T++++bHlUdPHiwhg0bluUPH0lq0qSJvvrqK9Nn89///rfbR2kl6cyZM6YsVahQQV999ZXTR7s7duyoiIgIo52cnKwPP/ww25+DHMETVs6St7e32rdvr9WrV2v69Om6//77nRa2JalatWr67LPPdPfddxvbEhISNHPmzGx/DrKE7Fg5R9mZNGmS4uLiJEk9e/ZUzZo1c3UccgRP3AxZouaQv5hzG0Chad26tTHXU27mv2rbtq3++OMPo71y5cpsF55LTU1Vy5YtjUdtfH19FRUV5bTAlqFXr17avXu3pPSRBwsXLlTDhg1zdK3udOzY0Xh83MvLS6tXr9bf/vY3l/0vXbqk1q1bG9M2BAcH68cff8zx/OG4eRT3LJ09e9Y0YqFixYratGmT29xJ0uHDh9W+fXuj3aJFC33xxRcu+5Ml5EVecnT06FG1a9fOaIeFhWnt2rXZfpZmzZplmtLnww8/1KOPPuqyf0REhGl0zsSJE9WtWze353jqqadMI72XLVvm9tFScoS8Ku5ZSklJyfHn89ixY2rXrp0y/lQODg7Wzz//LJvN5nIfsoS8KO45cmfLli3q16+fpPTf+VatWqVBgwYZT0BIns+5TY6QV1bJEjWH/MXIbQCWcfbsWeN1QEBAtsU4KX20TqNGjYx2cnKy4uPjXfbfuXOncZORpG7duuXrTeaPP/4wbjKSdN9997m9yUjp82I9/vjjRjs2NtZUuAByqqCzlPn4ktS4ceNsC9uSdNttt6lMmTJG+9y5cy77kiUUpa1bt5ranTt39uiX/+7du5uKYytXrnTZ1263a+3atUa7XLlypi9/XOnVq5epvWbNGpd9yRGKWmFkKTd/mN9yyy2qX7++0Y6NjdWpU6dc9idLKEqFkSNXrl+/rtGjRxvtkSNHKiAgIMfHkcgRil5hZYmaQ/6juA3AMjI/3lOyZEmP93M21YIrixYtMrWfeuopj/f1xPr1603tzNMwuJP5G2RnxwFyoqCz5PhQmL+/v8fnyNzX3Qg5soSitH//flO7SZMmHu0XFBSkGjVqGO2ffvpJN27ccNp33759pi+KHnzwQY/mPmzTpo1pygV3n3FyhKJWGFnKLcdCQMaUC86QJRSloszR1KlTdfLkSUnpBbTMxbGcIkcoaoWVJWoO+Y/iNgDLyPwoW3x8vMcrBWc8liSlfyPpah6ulJQU0wi3WrVq5fsqwTt37jS1Pb1hNm7cWN7e3i6PA+REQWfJ8bFTd6PdMrt+/bouXrxotKtXr+6yL1lCUcr8OZXkduFTR5n7JiQkaN++fU777dq1y9T29DNesmRJ1atXz2gfOnRIly9fdtqXHKGoFUaWcuvatWumtrvRe2QJRamocrR//35FRkZKSr/3jBkzxuN9nSFHKGqFkSVqDgWD4jYAy7j//vuN18nJyfrhhx+y3efkyZOmhRRatmzpcjTob7/9ZlpZuWnTpnm4WueOHj1qvC5ZsqTHi62ULl3aVOg7duxYltGxgKcKOksVKlQwPc4dFRXlUYF7zZo1SklJMdqtWrVy2ZcsoSg5jsZxtsiQK46jr3///Xen/Ry3Z85UdjIXtyVzXlxtJ0coCoWRpdyw2+06fPiwaVtoaKjL/mQJRakocpSamqpRo0YZC5QPHDhQ1apV8/i8zpAjFLXCyBI1h4JBcRuAZfTt29c0LcLkyZONx+CcSUhI0Ouvv24Uy/z8/PTCCy+47O/47WrG/MLJyclatWqVBg8erEceeURNmjRRixYt1LFjR40ZM0Y//fSTR9efnJysP//802iHhoa6nXbBUZUqVYzXiYmJplG0QE4UdJYk6fnnnzdep6SkaMSIEW5HiB87dkzvvPOO0a5Ro4Y6duzotC9ZQlFznE/U1choZxz7uvrjx7EgXblyZY/Pkfkz7uxYEjlC8VAYWcqNHTt2mL6UrV27toKCgpz2JUsoakWRo88//1wHDhyQJN1666165plnPD6nM+QIxUFhZImaQ8GguA3AMsLCwhQREWEsTHf+/Hl169ZNn3zyiX7//XclJSUpNTVVp06d0sKFC9WpUyfjsW5vb29NmDDB7cJ5R44cMbWrVq2qQ4cOqXv37ho2bJjWrVun48ePKyEhQXFxcTp06JDmzZunZ599Vj169MgywsdRbGysaVRqTgoVUtbHos6cOZOj/YEMBZ0lSXr00UdNC9tt375dXbp00dKlS3XmzBmlpqYqKSlJhw8f1owZM9StWzdjPtPy5ctr2rRpLucXJksoapUqVTK1He8frtjt9ix9T58+7bRv5vm2fXx8VLFiRY+vz3GEqbPPODlCcVAYWcqN6dOnm9qPPvqoy75kCUWtsHN04sQJIyM2m01jx441rfWQG+QIxUFhZImaQ8GguA3AUh5//HH95z//MR57u3Tpkt577z099thjatSokerXr69WrVpp1KhROnHihCSpTp06ioyMdDkKNMOlS5dM7djYWPXq1UsHDx7M9rr++9//6u9//7u2b9/usk/mx4+knC10KaU/JuTueEBOFGSWMrz11lsaOXKkypQpIyl99OiIESPUsmVL1a9fX40aNVL79u01depUY27TVq1aacmSJapdu7bL45IlFLU777zT1N64caNH++3cuVNXrlwxbXP1+cu83d/fP0ejbjz5jJMjFAeFkaWcWrhwoen3ucDAQLeLfZElFLXCztHo0aONp/G6deuWL9MqkCMUB4WRJWoOBYPiNgDLuffee7Vy5Ur179/ftOCBM+3atdOsWbN09913Z3tcx0eJxo4daxTcbr/9dk2fPl1btmxRdHS0NmzYoHHjxpm+Cb169aqGDh3q8ltax4WJXI1KdcWxv1VuNCi+CipLGWw2m55++mmtXLnS7fzZkuTr66shQ4bovffeyzKlgiOyhKIWHh6ukiVLGu3169dnO5JGkmbOnJllmyfF7Zx+xh3niHR2DnKE4qAwspQThw8f1oQJE0zbXn/9dZUrV87lPmQJRa0wc7R48WJt3bpVUvqTdq+99loOr9Y5coTioDCyRM2hYFDcBmA5GzduVKdOnfT5558bi5i4smrVKj300EOaOHFilgUiHDn+w53x7WuPHj30zTff6OGHH1aFChXk5+enKlWqqGfPnlq+fLluv/12Y5/4+HhNnDjR6fGTkpJM7Zw+vudYrHA3fzHgiYLKUoa0tDR9/vnn6tixozZs2OC2b3JysqZNm6bWrVvrm2++cduXLKGoBQYGqlu3bkY7JSVFw4YNU2xsrMt9pk2bps2bN2fZ7urzlzlnBfEZJ0coDgojS566ePGiBg8erOvXrxvb2rZtq65du7rdjyyhqBVWjuLi4kzro4wYMUKBgYG5u2gH5AjFQWFkiZpDwaC4DcBSPvroIz3//PPG4lhBQUF65ZVXtHz5cu3evVtRUVFat26dJkyYoNtuu01SetEsMjJSffv2zfJNZmbOvtWsV6+e3nrrLZePg5ctW1Yffvih6fGddevW6Y8//sjS1/FGkZycnO3Pm5njjSrzt8pAThVklqT0z+vAgQM1efJkxcfHS0pfkGvChAlat26doqOjtXv3bi1btkwvv/yysVDXxYsXNXr0aI0fP97lsckSioMhQ4aYRtIcOXJEnTp10pw5c3Tq1Cmlpqbq6tWr2rJli5577jljflLHxz0d2xky35MK4jNOjlBcFHSWPHH9+nW98MILOn78uLGtbt26LosHmZElFAeFkaOIiAjjd7p77rlHnTt3zrfrJ0coLgrz97sM1BzyjuI2AMtYuXKlPvzwQ6Ndr149LV++XM8//7zq1Kmj0qVLq0SJEqpWrZq6d++uJUuWmH7p2rt3r0aPHu3y+M7moxowYIB8fHzcXlflypVN3/CmpaU5nZ/L8Qbn6ehXV/1zOn8WkKGgsyRJEyZMMOWgc+fOWrJkibp3765q1arJz89PpUuXVt26dfXCCy9o+fLlqlevntF/zpw5WrBggdNjkyUUB+XLl9f06dNVvnx5Y1tsbKzGjx+vVq1aqX79+rrrrrvUr18/bdq0SVL66Jlx48aZjhMQEOD0+Jk/lzn9jDv+YeLsM06OUFwUdJayk5ycrCFDhmjv3r3GtqpVq+rTTz811oxwhyyhOCjoHG3cuFErV66UlF48Gzt2bL5ePzlCcVGYv99loOaQdxS3AVhCcnKyafRMiRIl9NFHH6lixYou9/Hz81NERITq1KljbFuxYoWio6Od9ne8EXh5eally5YeXV/r1q1N7d27d2fp43hjyG7kqyPH/la50aB4KYwsHTp0yDS1SN26dRUREeH2sbiKFStqxowZptEM7733ntNfyMgSiouGDRtq4cKFHs1FX6VKFX322We69dZbTdtdzeWb+XN5/fp1paWleXxdnnzGyRGKk4LMkjtpaWn65z//qZ9++snYVrFiRX3xxReqVKmSR8cgSyguCipH165d05gxY4z2gAEDVLNmzTxfb2bkCMVJQd6TqDkUDIrbACzh559/1vnz5412+/bts110Tkr/FrV///6mbcuWLXPaNzQ01NQOCwvz+BHX2rVrm9pnz57N0ic4ONj0jeyZM2c8Orar/o7XC3iiMLL07bffym63G+1+/fp5NN9bWFiY2rdvb7QvXrxojIjIjCyhOKlWrZrmzJmjyMhIPfnkk6pdu7YCAwPl6+ur0NBQhYeHa/z48VqxYoWaNWumP//807R/rVq1nB43JCTEeJ2SkuJ2vkdHjosMOfuMkyMUNwWVJXfGjBljjEaV0osR//nPf1S9enWPj0GWUJwURI4iIyON+0qNGjX0/PPP5/t1kyMUNwV1T6LmUDDcj3sHgGIi86OiUvo8b55y7Ltv3z6n/RxvQGXLlvX4HI59M+ajy8zX11dVq1Y15sY6c+aM7Ha7y7m1HGUuVvj7+yssLMzj6wMyFEaWHM/RrFmzHJ1j8eLFRjs6OloPP/ywqQ9ZQnHUvHlzNW/ePNt+UVFRpnajRo2c9qtVq5Z27txptE+dOuXxSFLH4razP7DIEYqr/M6SK++8847pKaNSpUpp1qxZqlu3bo6OQ5ZQHOVnji5evGi8Pn78uO64445sj+u4UPkjjzxiav/www+mzzo5QnFVEL/fZUbNIX8wchuAJVy4cMHUdjeFgqPg4GBTO/MvaJllLJqXISeLLzjOb+psoQjJfDNLTEw0FvPLztWrV02LHNWoUcPjGxSQWWFkyfEcjvvlxznIEqwq8yOkPj4+atCggdN+jo98HzhwwONzOPZ19fg4OYKVeZolZ2bOnKnPPvvMaPv5+emjjz7yqGjnDFmCVeU0R3a7Xampqdn+58jx/cxP+GUgR7AyT7NEzaFgUNwGYAmO/3AnJiZ6vK9jX39/f6f9atWqpQoVKhhtZ4/5uOL4+E5QUJDTfnfddZep7WyeLGeioqJM8602bdrU42sDMiuMLDmu0p2ThUw8PQdZghWdPn1au3btMtoPPvigywXrHD/je/bs8egciYmJOnjwoNGuU6eOy0WNyBGsKidZcvT111/rgw8+MNo+Pj764IMPFB4enuvrIUuworzkqCCQI1hVTrJEzaFgUNwGYAmO/3D//vvvHu975MgRUzvzzSQzLy8v0yINly5d8vg8jkWHevXqOe3Xpk0bU3vNmjUeHX/16tVujwN4qjCy5Li9IM5BlmBF8+bNM/3R8MQTT7js27BhQ9O82xs3bvToi6J169aZRgG5+4yTI1hVTrKU2bJlyzR+/Hij7eXlpcmTJ+f5M0yWYEWe5uhf//qXDh06lKP/HKeyW79+ven9qlWrZjkPOYJV5eSeRM2hYFDcBmAJjRs3NrVXrVrl8b4rVqwwtd09cvr444+b2osWLfLoHI797r33Xqf9atSoYZrLcfPmzaZHf5y5dOmSabGj4OBgj1ZuBpwpjCw5nuP777/36Ph2uz1LX1fnIEuwmhMnTujLL7802nXq1NH999/vsr/NZlPbtm2N9uXLl7Nk0Jn58+eb2pmP4YgcwYpymqUM69ev1xtvvGGaDmHcuHGmhYxziyzBanKbo4JEjmBFuckSNYf8R3EbgCXcfffdpgUUDhw4oK+//jrb/fbs2aMFCxaYtrVq1cpl//DwcNPjN7Nnz9avv/7q9hwLFiwwfYtaq1YttWjRwmX/gQMHGq/T0tI0ZswYp/POZZg0aZKuXLlitJ977jnTCshAThRGljKPRpDSi22uFp/M7Msvv9Rvv/1mtAMDA9WkSROX/ckSrCIuLk4DBgwwRl57eXlp/Pjx8vb2drvfM888Y5rmZ8qUKS7noZekb7/9Vjt27DDabdq0yXZxPHIEK8ltlrZt26aXX35ZKSkpxraRI0d6POLbE2QJVpHbHBUGcgQryW2WqDnkP4rbACyhRIkSeuaZZ0zbIiIiNGPGDKdzBtvtdn333Xd69tlnTY9nt2rVSg0bNnR7rtdee824ISUnJ6t///7avHlzln5paWmaPXu2xowZY9r+6quvysvL9T+vbdu2Na2evGXLFg0fPlzXrl0z9UtKStLbb7+tJUuWGNvCwsLUq1cvt9cPuFMYWbrjjjtMIwlu3Lih/v37a/Xq1U5/qUpISND777+vyZMnm7Y///zzWebvzowsoaj17dtXCxcu1OXLl52+n5aWprVr16pr1646duyYsb1///66/fbbsz1+aGionnrqKaMdFxenvn376s8//8zSd/ny5Ro1apTR9vX11UsvvZTtOcgRioOCzNK+ffs0aNAg07Q+Q4cO1dNPP50v156BLKGoFfQ9qTCQIxQHhZElag75y2Z3V7oHgByKiYnRww8/7PQ9x5WzXX2j+eWXX2aZp01K/4f3mWee0S+//GLaHhgYqBYtWqhq1ary9vbWuXPntG3bNsXExJj6Va5cWd98841pDlNXvv76a40bN860rUGDBrrzzjsVEBCg2NhYbd68Ocs5nnvuOQ0fPjzb4586dUrdu3dXXFycsa1cuXJq3bq1QkJCFBsbqx9//FHnz5833i9VqpTmzZuX7Sg83BysnqWYmBj17NnT9BmWpOrVq+uee+5RpUqVlJKSouPHj2vbtm26dOmSqd99992nTz75JNsRA2QJ7hRkjiSpWbNmio+Pl6+vrxo2bKg6deooKChIN27cMPLjmIGOHTtq8uTJbv8gySwpKUn9+vXTzp07jW2+vr5q2bKlatasqYSEBO3YsUOHDh0y7RcREeHxqFRyhOxYOUsjR440/dHu7hrdmThxojp37uy2D1mCO1bOUU716dPH9Hvm+vXrnc6z7Qw5QnZulixRc8g/1hljDsAS7HZ7lhuKK676ufrOzc/PTx999JFGjhypH374wdgeHx9vmh/KmXr16umDDz7wqLAtSb1799aNGzf03nvvGaNV9+/fr/379zvtb7PZNHToUA0aNMij41epUkWzZs3S0KFDjZvVpUuXtHTpUqf9y5cvrylTpljuJoPcs3qWwsLCFBkZqWHDhpmmGjlx4oROnDjhdt/HHntMERERHj0KR5bgTkHmKLPk5GTt2bMny0I/mXl7e2vQoEEaPHiwbDabR9ckped12rRpeumll4xCQXJystatW+e0v4+Pj15++eUcTbdAjpAdK2fJ2Xk9/Vkyy7xYmCtkCe5YOUeFiRwhOzdLlqg55B+mJQFgKQEBAZo+fbpmzJihZs2aZXsDufXWWzV69GgtWLBANWrUyNG5+vfvr0WLFqlVq1by9fV12sfHx0cPPvigFi1a5PFNJkPDhg21bNky9enTR+XKlXPax9/fX507d9Z3333ncsEIIDcKI0u1atXS4sWLNWrUKNWsWdNtXy8vL4WHh+vjjz/W+++/r9KlS3v6o5AlFJmePXuqbt26bvNTokQJdejQQcuXL9eLL76YqyJCUFCQIiMjNXLkSFWrVs1pHy8vL7Vo0ULz5s3Ts88+m+NzkCMUpcLKUmEgSygq5AjIH4WZJWoO+YNpSQBY2pUrVxQVFaU///xTly9fVlpamsqUKaOQkBA1atTI45Ha2blw4YL27Nmjs2fP6vLlyypbtqxCQ0N19913KyAgIM/HT0pK0s6dOxUTE6MLFy6oXLlyqly5spo2bZqjIh+QW4WRpTNnzig6Olrnzp3T1atX5eXlpbJly6patWpq3LixypQpk+dzkCUUhYsXL2rfvn06efKkMT9j2bJldcstt+iOO+6Qv79/vp3LbrcrOjpax44d07lz51SyZEmFhITo9ttvz7d7HjlCUSnMLBUGsoSiQI6A/FHYWaLmkHsUtwEAAAAAAAAAlsO0JAAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcn6K+AAAAAAA3r8OHD2vv3r2Ki4uTv7+/QkND1axZMwUGBuboODExMdq/f7/OnTunhIQEVapUSXfeeaeqV6/u0f5JSUmKi4tTXFycLly4YPzXp08f+fr6SpL27NmjPXv2yM/PT+Hh4apVq1ZOf1wAAAAUIpvdbrcX9UUAAAAAKBzbt29X37593fZ58cUXNWTIENO2Pn366JdffnHaf/369apatapp2+bNm/Xuu+/qwIEDCgsL0y233KLz58/r6NGjSktL02OPPabXXntNISEhbq9l+fLl+v777xUbG6uyZcuqRIkSSk5O1uHDh3X27Fk1aNBAL730klq2bOn2OK1bt1ZMTEyW7bt375YkDRs2TDt27FCjRo20b98+3bhxQ//85z/19NNPuz0uAAAAig7FbQAAAOAv5Nq1azp8+LBOnTqluXPnaseOHcZ7bdu2Vc+ePXXrrbdmKTrv27dPc+bM0dKlSyVJAQEB6t27t5o1a6amTZvKz8/P6Dtz5kx9+OGHCggI0IQJE/TII48Y7x09elTDhw/X/v37FRISoi+//FI1a9Z0eq1Tp07VjBkzFBYWpilTpqhJkybGe2lpaVq1apXGjBmjy5cv6+9//7vGjBkjm83m9Fgff/yxTp8+rZ07d+rIkSPG9l27dun111+XzWbThAkTtHv3br3wwguSJC8vL23evFlBQUGe/t8LAACAQkRxGwAAAPiLSkxMVNu2bXXmzBlJ6QXgVq1aud3n4Ycf1uXLlzV37lyn03a88847+uyzz2Sz2fTZZ5/p3nvvzdInNjZWnTt31vnz51W7dm0tXrzYVByXpBs3bqhp06ZKSkqSJDVp0kTz58/PcqxffvlFffv2ld1uV79+/TRixAi315+UlKRHH33UGMU9duxYzZ49W0uXLpWfn5+++OILTZo0yei/dOlS1a9f3+0xAQAAUDRYUBIAAAD4iypZsqR69OhhtBcuXOi2f2pqqq5evaphw4Y5LWxv3bpVn3/+uSTp0UcfdVrYlqTg4GD169dPkvTbb79pyZIlWfrcuHFDycnJRtvb29vpse655x7jPJGRkTp58qTbn8HPz0+NGzc22p9++qlGjRplFNfbtWunSpUqSZLuu+8+1a1b1+3xAAAAUHQobgMAAAB/YT169DAWVNy4caNOnTrlsu+GDRuUmpqqLl26ZHkvNTVVb775pjIeDO3du7fb87Zv3954vXjx4izvly1bViNGjFC5cuVUo0YNvfHGGy6PlTGyOi0tTT///LPb80rpRf0MaWlpat68udEODQ3VDz/8oNWrV+vTTz+Vlxd/MgEAABRX/KYGAAAA/IVVrFhRDz30kKT0AvU333zjsu+8efPUpUsXU3E4w8aNG41R0/7+/qb5sZ0JCQlRaGioJOnAgQNKSEjI0ufpp5/WL7/8ojVr1qhBgwYuj5V5SpO4uDi353XUokWLLPN0lyxZUrfccguFbQAAgGLOp6gvAAAAAEDRevLJJ7Vq1SpJ6VOTDB48OMsc2MePH9eWLVs0atQop8fYuHGj8To0NFQ+Ptn/qVGxYkWdOXNGKSkpiomJ0W233ea2f3x8vH788UcdOHBAv/76q06dOqXLly/rypUrRp+cLilUr169HPUHAABA8UFxGwAAAPiLu+eee3Tbbbfp8OHDiouL05o1a9ShQwdTn3nz5ql58+a65ZZbnB7j4MGDxutjx46pTp06OboGZyO3M2zfvl2RkZHatGmTkpOTVaVKFbVo0UKdOnVSaGioVq9erQULFuTofBkyRo8DAADAeihuAwAAAFCvXr00btw4SdLcuXNNxe3ExEQtXbpU48ePd7n/pUuXjNd169bVpEmTPD63zWZzOmr78uXLmjx5shYtWiRJqlmzpoYOHapHHnnEtMDk7t27PT6Xo9KlS+d6XwAAABQtitsAAAAA1KlTJ02ZMkXXrl3T7t27dfDgQdWtW1eS9P3336tEiRJq3bq1y/1LlChhvLbZbHme7uPChQt66qmn9Pvvv0uSWrdurX//+98qU6ZMno7riHm1AQAArIvf5AAAAACoTJky6tixo9GeO3eu6XWPHj3czqNdrVo143VOF3V0ZsyYMUZhu0GDBpo6dWq+F7YBAABgbRS3AQAAAEhKX1gyw3fffacrV64oKipKBw8e1BNPPOF23+bNmxuvz507p/j4+Fxfx9mzZ7V27VqjPWjQIPn6+rrs72oRyblz5+rnn3/O9XUAAACgeKO4DQAAAECSVLt2bTVt2lRS+gKPS5cu1dy5c9WmTRuFhIS43bd9+/YqWbKk0d68ebNH50xNTdXQoUN18uRJY9u+fftMBeu7777b7THOnz/vdPuqVau0Z88ej64DAAAA1kNxGwAAAIAh8+jtr776SitXrlSvXr2y3S8oKEjPPfec0V6yZIlH59uwYYN++uknBQcHG9uuX79u6uPv7+9yf7vdri1btnh0LgAAANxcKG4DAAAAMDzyyCNGofnkyZOqUqWKwsPDPdp34MCBuueeeyRJP//8s7Zv3+62/9WrVzV58mQ9/fTTpgL2bbfdZuq3d+9el8dYunSpYmJijHbmEd8pKSmm0eQAAAC4uVDcBgAAAGDw9fVV9+7djbYno7YzeHt764MPPlCTJk0kSa+++qoOHTrktG9sbKyeffZZVapUSQMHDjS9V6dOHbVu3dpoT5o0SdeuXctyjK1btyoiIkJvvvmmURz/888/JaUXuU+cOKHbb789y34JCQnG68TERI9/PgAAABQvNrur1VcAAAAA/CWdPn1abdq0kZ+fnzZt2qSyZcvmaP/k5GRNnjxZX3/9tXx9fdW5c2c98MADqlixoq5cuaLt27drwYIFuu+++xQREeF02pHExESNHj1ay5YtkyTVqFFDzz33nGrXrq3z58/rhx9+0MqVK/Xiiy9qwIABmjx5sj7//HP5+/vr7bff1uHDhxUdHa1PP/1UknTw4EHFxcVp7969mjVrllHUDg0N1ZNPPqm6deuqfPnyql69ugIDA/P2fyAAAAAKBcVtAAAAAFl06dJF9evX14QJE3J9jKNHj2rRokXaunWrjh8/rhs3bqhChQpq2rSpevbsqWbNmmV7jP3792vJkiXatWuXYmJilJiYqMqVK6t58+Z66qmnVLt2bUnpBfX3339f3377rdLS0tShQwe9+uqrxrQkrVu3Nk1f4srbb7+trl275vpnBgAAQOGhuA0AAADA5Pjx42rbtq0WLVqkhg0bFvXlAAAAAE4x5zYAAAAAk/nz56tRo0YUtgEAAFCsUdwGAAAA/mIuXLigtWvX6syZM1neu3HjhpYsWZKjhSQBAACAouBT1BcAAAAAoPAkJCSoa9euOn36tAICArR8+XJVqVLFeH/evHkqXbq02rdvX4RXCQAAAGSPkdsAAADAX8jhw4d1+vRpSdKVK1e0d+9e4734+Hh98sknGjZsmPz8/IroCgEAAADPUNwGAAAA/kKqVq0qb29vSVJYWJjCw8MlSUlJSXrppZdUo0YNdejQoSgvEQAAAPAIxW0AAADgL6RChQp65pln5O3trSeeeEJHjx7V0qVL1blzZ8XHx2v69Omy2WxFfZkAAABAtmx2u91e1BcBAAAAoHDNnz9fkZGROnnypCpXrqyOHTvq2Weflb+/f1FfGgAAAOARitsAAAAAAAAAAMthWhIAAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5VDcBgAAAAAAAABYDsVtAAAAAAAAAIDlUNwGAAAAAAAAAFgOxW0AAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5VDcBgAAAAAAAABYDsVtAAAAAAAAAIDlUNwGAAAAAAAAAFgOxW0AAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5VDcBgAAAAAAAABYDsVtAAAAAAAAAIDlUNwGAAAAAAAAAFgOxW0AAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5fw/aVWfzwxojKIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 491, + "width": 731 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "lp_switchpoint = after_marg.posterior.lp_switchpoint.mean(dim=[\"chain\", \"draw\"])\n", + "x_max = years[lp_switchpoint.argmax()]\n", + "\n", + "plt.scatter(years, lp_switchpoint)\n", + "plt.axvline(x=x_max, c=\"orange\")\n", + "plt.xlabel(r\"$\\mathrm{year}$\")\n", + "plt.ylabel(r\"$\\log p(\\mathrm{switchpoint}=\\mathrm{year})$\");" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "798d9cbf-5eda-4625-8c9b-84995318bb15", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AABwhUlEQVR4nOz9e5jVdb03/r/mwHBQDiI4eE4IUNRRMNtiFri5u0TzIq0o2roVEy1NQ/C2tK/k1tgeMrTUpCt0p2JqcW9vIytUSKw8JAgKMTHcKYqiw0FAFBgYmPX7wx9rs4Y5rIEZZt7weFxX1zXvz7xPa/VyMes5n3mvgkwmkwkAAAAAAEhIYWtvAAAAAAAAmkq4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJKe4tTdAw9auXdvaW6ANKygoiG7dukVExLp16yKTybTuhtinqUfaCrVIW6IeaSvUIm2JeqStUIu0JftKPR5wwAHNOp87twEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhOcWtvAAAAYFecNrSmtbfQ5v11tvuZAIC9l590AAAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhOcWtvoKUsW7YsysvLo7KyMmpqaqK0tDT69u0b/fr1a7Y1FixYEG+++WasWLEiOnbsGKWlpVFWVhalpaXNtgYAAAAAADtrM+H2xIkTY+rUqTnXzj333Lj11lubNM9zzz0XkydPjvnz59f5/f79+8eYMWNixIgRu7TPmpqamDp1akydOjXefvvtnb5fWFgYgwcPjquuuirKysp2aQ0AAAAAABrWJo4lefXVV+NXv/rVbs2RyWTiP//zP+PSSy+tN9iOiKioqIhrrrkmxo8fH1u2bGnSGmvXro2LLroobr755jqD7YiPw+/nn38+/u3f/i3+67/+q0nzAwAAAACQn1a/c7u6ujomTJgQNTU1uzXPpEmT4qGHHsq5NmjQoDj++OOjqKgoKioq4oUXXohMJhMREb///e+jqKgobr/99rz3eeWVV8acOXOy14qLi2PIkCHRp0+f2LBhQ8ydOzcqKiqy/W+77bbo3LlzjBw5crceGwAAAAAAuVo93P7FL34RS5YsiYiInj17xqpVq5o8x7PPPhtTpkzJtrt06RJ33XVXDB48OKdfeXl5XHbZZVFZWRkREdOnT4+TTjopRo0a1egad9xxR06w3a9fv5g8eXIcdthhOf2mT58e3//+96O6ujoiIm688cYoKyuL/v37N/lxAQAAAABQt1Y9luSNN96In//85xER0bFjxxg/fnyT58hkMnHHHXdk2wUFBXHvvffuFGxHRAwYMCAeeOCBaN++ffbaPffcE1VVVQ2uUVlZGQ8//HC2feCBB8ZDDz20U7AdETFixIiYOHFitl1dXR0//elPm/SYAAAAAABoWKuF25lMJiZMmJA99/ryyy+PQw89tMnzzJw5M3vnd0TEF7/4xTj55JPr7X/UUUfFxRdfnG2vWrUqpk2b1uAa9913X8753FdffXUccMAB9fY/55xzcvYwa9asWLx4cYNrAAAAAACQv1YLtx977LGYO3duRHx8xMdFF120S/PMmDEjp33eeec1OmbUqFFRVFRU7xw7ymQy8fTTT2fbXbt2jbPPPrvRNb7+9a/ntJ966qlGxwAAAAAAkJ9WCbdXrFgRkyZNioiPjxG58cYbo127dk2eZ+vWrfHnP/852z744IOjrKys0XGlpaVx4oknZtvz58+PNWvW1Nn373//e6xYsSLbHjp0aM6xJvUZNmxYzmOaNWtWo2MAAAAAAMhPq4TbP/zhD+PDDz+MiIivfvWrMWjQoF2aZ8mSJbF+/fpse+DAgXmP3bHvtm3bYt68eXX2e+WVV+od15AOHTrEMccck21XVFTk7BUAAAAAgF23x8Ptp59+Op555pmI+PiDGa+++updnuv111/Pae8YJjdmwIABOe033ngjrzVqj2tI7f3UtwYAAAAAAE2zR8PtDz/8MH74wx9m29dee2107dp1l+erHRYfcsgheY89+OCDG5yrvuu1xzWk9n6E2wAAAAAAzWOPhts/+tGPYuXKlRERceqpp8aIESN2a74dz8KOiOjVq1feY2v3raysbHSN4uLi6NmzZ7OvAQAAAABA0+yxcHvOnDkxbdq0iIgoKSmJG264Ybfn3LhxY057v/32y3ts7b6156rreseOHaOgoKDZ1wAAAAAAoGmK98QiW7ZsiQkTJkQmk4mIiG9961vxiU98YrfnrR0Wl5SU5D22ffv2Dc5V1/XaYxpTez+7Em43JUxn37NjfagVWpt6pK1Qi7Ql6pHWtr3u1CJtiXqkrVCLtCXqcdfskXD7Zz/7WSxdujQiIo466qi45JJLmmXezZs357SbEm7X7ltVVdXoGu3atWvC7vJfoyHdunVr8hj2Tbtzfj00N/VIW6EWaUvUY0t4v7U30ObV9X5CLdKWqEfaCrVIW6Ie89fix5JUVFTE/fffn23feOONTQqhG1L7TuotW7bkPbZ23w4dOjS6RnV1dRN2l/8aAAAAAAA0TYveuV1TUxMTJkzIhsLnnntu/Mu//Euzzd+pU6ecdlPC7dp3fdeea8frmzZtqnNMY2rvp741GrJu3bomj2HfUVBQkP1t3gcffJA9+gdag3qkrVCLtCXqkda2/f2EWqQtUY+0FWqRtmRfqcfmPqWiRcPtqVOnxmuvvRYRH2/8u9/9brPOXzss3rBhQ95ja/dtKNx+//2P/9xx06ZNUVNTE4WF+d3wnu8aDdlbC5nml8lk1AtthnqkrVCLtCXqkdZQV82pRdoS9UhboRZpS9Rj/lrsWJKqqqr4yU9+km1/97vfje7duzfrGqWlpTntysrKvMe+9957Oe1evXo1usbWrVtj9erVzb4GAAAAAABN02J3bm/ZsiU2btyYbU+YMCEmTJjQ4Jjav5F44oknYvr06dn2OeecEzfffHO23adPn5z+7777bt77qx2E9+7du85+ffr0iblz5+ascdBBB+W1Ru1wu/Z+AQAAAADYNS3+gZLbbdu2rdH/1dTU5IzJZDINfr92WFxeXp73fhYtWpTTri/crn29KWvU7lvfGgAAAAAANM0eC7dbQt++faNLly7Z9quvvpr32Pnz52e/LioqikGDBtXZ76STTqp3XEOqqqpi8eLF2Xb//v2jc+fOee8PAAAAAID6tdixJF26dImKioomjfnb3/4WF1xwQbZ97rnnxq233lpv/+Li4vjc5z4XTz75ZER8fAzIa6+9FieccEKD66xYsSL7QZcREQMHDqz3PPDjjjsuSktLY8WKFRERMXv27Ni8eXO0b9++wTVmzpwZ1dXV2fawYcMa7A8AAAAAQP6SvnM7IuLMM8/MaT/yyCONjnnsscdi27Zt2fbw4cPr7VtQUBBnnHFGtr1+/fpsmN7YGjvacQ4AAAAAAHZP8uH2sGHDol+/ftn2b3/725gzZ069/ZcuXRr3339/tt2zZ88YOXJkg2tcfPHFUVJSkm1PmjQp1q5dW2//J554ImcPw4YNi6OPPrrBNQAAAAAAyF/y4XZBQUGMHz8+285kMnH55ZfHiy++uFPf8vLyGD16dGzevDl77YorrogOHTo0uEavXr3i/PPPz7bff//9uOCCC+Kdd97Zqe/06dPj+uuvz7bbtWsXY8eObdJjAgAAAACgYS125vaedPrpp8cll1wSU6ZMiYiPjw4ZPXp0DBo0KMrKyqKwsDAqKirihRdeiEwmkx03YsSIGDVqVF5rjBs3LhYsWBBz586NiIglS5bE8OHDY8iQIdG7d+/YuHFjzJkzZ6dzxm+44Ybo379/Mz1SAAAAAAAi9pJwOyJi/PjxUVVVFVOnTs1emzdvXsybN6/O/meddVZMnDgx7/lLSkri7rvvjrFjx8bLL78cERHV1dUxc+bMOvsXFxfHuHHjGj3yBAAAAACApkv+WJLtCgsL4/rrr49f/OIXceKJJ9bbr1+/fvGjH/0o7rzzzmjfvn2T1ujevXs8+OCDcd1118Xhhx9e7z5OPfXUePTRR2PMmDFNmh8AAAAAgPwUZHY8p2Mv8tZbb8WiRYti5cqVsW3btigtLY2+ffs22xEhmUwmFi5cGEuXLo2VK1dGhw4dorS0NE444YQoLS1tljUiosEProSCgoLo1q1bRESsW7cu9tL/nEmEeqStUIu0JeqxZZ02tKa1t9Dm/XX2x/czqUXaEvVIW6EWaUv2lXo84IADmnW+veZYktqOPPLIOPLII1ts/oKCgigrK4uysrIWWwMAAAAAgLrtNceSAAAAAACw7xBuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkpbu0NAACQjtOG1rT2FpLw19nuIQEAgJbmp24AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5xa29AQAA2NecNrSmtbfQ5v11tvtwAABomJ8YAQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhO8Z5crKamJpYtWxZvvfVWrFixItavXx9btmyJTp06Rbdu3eLoo4+Ovn37RlFR0W6vtWzZsigvL4/KysqoqamJ0tLS6Nu3b/Tr168ZHsnHFixYEG+++WasWLEiOnbsGKWlpVFWVhalpaXNtgYAAAAAADtr8XB7zZo1cf/998e8efPiH//4R2zatKnB/l27do0RI0bExRdfHAcffHCT13vuuedi8uTJMX/+/Dq/379//xgzZkyMGDGiyXNHfBzQT506NaZOnRpvv/32Tt8vLCyMwYMHx1VXXRVlZWW7tAYAAAAAAA1r8WNJli9fHvfdd1/Mmzev0WA7IuKDDz6IqVOnxllnnRWPP/543utkMpn4z//8z7j00kvrDbYjIioqKuKaa66J8ePHx5YtW/KePyJi7dq1cdFFF8XNN99cZ7Ad8XH4/fzzz8e//du/xX/91381aX4AAAAAAPKzR48liYjo0aNH9OvXL4488sjo2rVrFBUVxbp16+If//hHvPrqq1FTUxMRERs3bozrrrsutmzZEqNGjWp03kmTJsVDDz2Uc23QoEFx/PHHR1FRUVRUVMQLL7wQmUwmIiJ+//vfR1FRUdx+++157bu6ujquvPLKmDNnTvZacXFxDBkyJPr06RMbNmyIuXPnRkVFRbb/bbfdFp07d46RI0fmtQYAAAAAAPlp8XC7qKgoTj755DjjjDPiM5/5TPTu3bvevsuXL4+bbropZs+enb128803x6mnnhpHHHFEveOeffbZmDJlSrbdpUuXuOuuu2Lw4ME5/crLy+Oyyy6LysrKiIiYPn16nHTSSXmF53fccUdOsN2vX7+YPHlyHHbYYTn9pk+fHt///vejuro6IiJuvPHGKCsri/79+ze6BgAAAAAA+WnxY0kGDBgQDz/8cPz7v/97g8F2RMShhx4a9957b3zmM5/JXtu8eXP86le/qndMJpOJO+64I9suKCiIe++9d6dge/teHnjggWjfvn322j333BNVVVUN7quysjIefvjhbPvAAw+Mhx56aKdgOyJixIgRMXHixGy7uro6fvrTnzY4PwAAAAAATdPi4XZTFRUVxdVXX51z7S9/+Uu9/WfOnBlLlizJtr/4xS/GySefXG//o446Ki6++OJse9WqVTFt2rQG93TfffflnM999dVXxwEHHFBv/3POOSdnD7NmzYrFixc3uAYAAAAAAPlrc+F2RMSxxx4bnTp1yrbfe++9evvOmDEjp33eeec1Ov+oUaOiqKio3jl2lMlk4umnn862u3btGmeffXaja3z961/PaT/11FONjgEAAAAAID9tMtyOiNhvv/2yX2//EMjatm7dGn/+85+z7YMPPjjKysoanbu0tDROPPHEbHv+/PmxZs2aOvv+/e9/jxUrVmTbQ4cOzTnWpD7Dhg2Ldu3aZduzZs1qdAwAAAAAAPlpk+H2pk2bYt26ddn24YcfXme/JUuWxPr167PtgQMH5r3Gjn23bdsW8+bNq7PfK6+8Uu+4hnTo0CGOOeaYbLuioiJnrwAAAAAA7Lo2GW7PmDEjqqurs+2hQ4fW2e/111/Pae8YJjdmwIABOe033ngjrzVqj2tI7f3UtwYAAAAAAE3T5sLtxYsXx2233ZZtd+vWLS688MI6+9YOiw855JC81zn44IMbnKu+67XHNaT2foTbAAAAAADNo7i1N5DJZOKjjz6KJUuWxIwZM+Kxxx6LLVu2REREp06d4q677ooePXrUOXbHs7AjInr16pX3urX7VlZWNrpGcXFx9OzZs9nXAAAAAACgafZ4uP3GG2/E2WefnW3X1NTU+YGRQ4YMieuuuy6OOuqoeufauHFjTnvHD6FsTO2+teeq63rHjh2joKCg2dcAAAAAAKBp9ni4nclkYtu2bfV+v7CwMM4777wYM2ZMo3di1w6LS0pK8t5H+/btG5yrruu1xzSm9n52JdxuSpjOvmfH+lArtDb1SFuhFmkLtteeetx1nq/moRZpi9QjbYVapC1Rj7um1Y8lqa2mpiamTp0ajz32WJx//vkxfvz4ekPrzZs357SbEm7X7ltVVdXoGu3atct7/qas0ZBu3bo1eQz7pq5du7b2FiBLPdJWqMWW8H5rbyAJdf0Ml1uPnsfG5PdzsOexMY3XIrQu9UhboRZpS9Rj/vZ4uN2nT5+oqKjItrds2RLr1q2Lf/zjHzFjxoz43e9+F9XV1VFdXR2//OUvY8mSJfHzn/+8zuC69p3U28/qzkftvh06dKizX/v27WPTpk0REVFdXZ33/E1ZAwAAAACApmn1O7dLSkrioIMOioMOOiiGDBkSF154YXzrW9+K9957LyIinn/++bjnnnti/PjxO43t1KlTTrsp4Xbtu75rz7Xj9e3hdu0xjam9n/rWaMi6deuaPIZ9R0FBQfa3eR988EGd59fDnqIeaSvUIm3B9p/h1OOu83Nw81CLtEXqkbZCLdKW7Cv12NynVLR6uF3b0UcfHVOmTIlzzz03e6f0gw8+GBdddFEccMABOX1rh8UbNmzIe53afRsKt99//+M/d9y0aVPU1NREYWFhs67RkL21kGl+mUxGvdBmqEfaCrVIa6mr7tRj03iumodapK1Tj7QVapG2RD3mL7+Udg/r27dvnHXWWdl2VVVVPPfcczv1Ky0tzWlXVlbmvcb2O8O3q+/DK3dcY+vWrbF69epmXwMAAAAAgKZpk+F2RMSpp56a097xnO7t+vTpk9N+9913856/dhDeu3fvOvvtzhq1w+3acwEAAAAAsGvabLjdo0ePnPZHH320U5/aYXF5eXne8y9atCinXV+4Xft6U9ao3be+NQAAAAAAaJo2G27XDrO7dOmyU5++ffvmXH/11Vfznn/+/PnZr4uKimLQoEF19jvppJPqHdeQqqqqWLx4cbbdv3//6Ny5c977AwAAAACgfm023K591/PBBx+8U5/i4uL43Oc+l22/99578dprrzU694oVK3L6DRw4MLp3715n3+OOOy7n3O3Zs2fH5s2bG11j5syZ2Q/EjIgYNmxYo2MAAAAAAMhPmwy3q6qq4ne/+13OtdpncG935pln5rQfeeSRRud/7LHHYtu2bdn28OHD6+1bUFAQZ5xxRra9fv36ePLJJ/NaY0c7zgEAAAAAwO5p0XB7y5YtOUdz5KOmpiZuuOGGnA9uPOGEE+o9r3rYsGHRr1+/bPu3v/1tzJkzp975ly5dGvfff3+23bNnzxg5cmSDe7r44oujpKQk2540aVKsXbu23v5PPPFEzh6GDRsWRx99dINrAAAAAACQvxYNt6uqquKcc86J73znO/Hss8/Gli1bGuz/2muvxQUXXBBPPPHE/2ywsDD+v//v/6t3TEFBQYwfPz7bzmQycfnll8eLL764U9/y8vIYPXp0zrEiV1xxRXTo0KHBffXq1SvOP//8bPv999+PCy64IN55552d+k6fPj2uv/76bLtdu3YxduzYBucHAAAAAKBpilt6gUwmE0899VQ89dRT0bFjxzj66KPjk5/8ZHTt2jU6duwYGzZsiMrKyli4cGG8/fbbOWMLCgpi4sSJccIJJzS4xumnnx6XXHJJTJkyJSI+Pjpk9OjRMWjQoCgrK4vCwsKoqKiIF154ITKZTHbciBEjYtSoUXk9jnHjxsWCBQti7ty5ERGxZMmSGD58eAwZMiR69+4dGzdujDlz5kRFRUXOuBtuuCH69++f1xoAAAAAAOSnxcPtHW3atCnmz58f8+fPb7RvaWlp3HjjjXH66afnNff48eOjqqoqpk6dmr02b968mDdvXp39zzrrrJg4cWJ+G4+IkpKSuPvuu2Ps2LHx8ssvR0REdXV1zJw5s87+xcXFMW7cuEaPPAEAAAAAoOlaNNzeb7/94rbbbou//OUvMWfOnFixYkWjYwYMGBDnnntufOlLX4r9998/77UKCwvj+uuvj89+9rNx7733xquvvlpnv379+sWYMWPii1/8Yt5zb9e9e/d48MEH46GHHoqHH354pzvNt+/jlFNOiXHjxkVZWVmT1wAAAAAAoHEtGm4XFRXFOeecE+ecc05ERKxcuTJef/31eOedd+KDDz6IzZs3R6dOnWL//fePww47LI499tjo0qXLbq05ZMiQGDJkSLz11luxaNGiWLlyZWzbti1KS0ujb9++u31ESGFhYYwePTouvPDCWLhwYSxdujRWrlwZHTp0iNLS0jjhhBOitLR0t9YAAAAAAKBhe/RYkoMOOigOOuigPbLWkUceGUceeWSLzV9QUBBlZWXuzgYAAAAAaAWFrb0BAAAAAABoKuE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJKW7tDQAAjTttaE1rb6HN++tsv7MHAADYl3gXCAAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcor39ILr1q2LJUuWxFtvvRXr1q2LTCYTXbt2jUMOOSROPPHE6Ny5c7Oss2zZsigvL4/KysqoqamJ0tLS6Nu3b/Tr169Z5o+IWLBgQbz55puxYsWK6NixY5SWlkZZWVmUlpY22xoAAAAAAOysxcPtmpqamDt3bjzzzDPx0ksvxZIlS+rtW1BQEIMHD47Ro0fHkCFDdmm95557LiZPnhzz58+v8/v9+/ePMWPGxIgRI3Zp/pqampg6dWpMnTo13n777Z2+X1hYGIMHD46rrroqysrKdmkNAAAAAAAa1uLh9vDhw+Ott97Kq28mk4kXXnghXnjhhfjCF74QN910U+y///55j7355pvjoYcearBfRUVFXHPNNTF79uy49dZbo6SkJK/5IyLWrl0bV111Vbz00kv19qmpqYnnn38+Xn755Rg/fnx84xvfyHt+AAAAAADy0+Lh9po1a3a69olPfCLKysqiR48e0b59+6isrIwXX3wxKisrs31+//vfx8qVK+P++++P9u3bN7rOpEmTdgq2Bw0aFMcff3wUFRVFRUVFvPDCC5HJZLLzFxUVxe23357X46iuro4rr7wy5syZk71WXFwcQ4YMiT59+sSGDRti7ty5UVFRke1/2223RefOnWPkyJF5rQEAAAAAQH722Jnbhx56aIwcOTLOPffc6NWr107f37ZtW/zmN7+JW265JTZv3hwREXPmzImf/OQn8b3vfa/BuZ999tmYMmVKtt2lS5e46667YvDgwTn9ysvL47LLLsuG6NOnT4+TTjopRo0a1ej+77jjjpxgu1+/fjF58uQ47LDDcvpNnz49vv/970d1dXVERNx4441RVlYW/fv3b3QNAAAAAADyU9jSCxxyyCFx8803xzPPPBOXXXZZncF2RERRUVF8/etfj7vvvjsKC/9nW1OnTo0VK1bUO38mk4k77rgj2y4oKIh77713p2A7ImLAgAHxwAMP5NwJfs8990RVVVWDj6GysjIefvjhbPvAAw+Mhx56aKdgOyJixIgRMXHixGy7uro6fvrTnzY4PwAAAAAATdPi4fbjjz8eX/7yl6OoqCiv/kOGDIkvfOEL2XZ1dXXMmjWr3v4zZ87M+ZDKL37xi3HyySfX2/+oo46Kiy++ONtetWpVTJs2rcE93XfffbFly5Zs++qrr44DDjig3v7nnHNOzh5mzZoVixcvbnANAAAAAADy1+LhdnFx008+2THcjohYuHBhvX1nzJiR0z7vvPManX/UqFE5YXvtOXaUyWTi6aefzra7du0aZ599dqNrfP3rX89pP/XUU42OAQAAAAAgPy0ebu+KI444Iqe9evXqOvtt3bo1/vznP2fbBx98cJSVlTU6f2lpaZx44onZ9vz58+v84MuIiL///e85x6IMHTo0rw+4HDZsWLRr1y7bbujucwAAAAAAmqZNhtsbNmzIadd39/eSJUti/fr12fbAgQPzXmPHvtu2bYt58+bV2e+VV16pd1xDOnToEMccc0y2XVFRkbNXAAAAAAB2XZsMtysqKnLa9X0I5euvv57T3jFMbsyAAQNy2m+88UZea9Qe15Da+6lvDQAAAAAAmqZNhtvTp0/PaZ9yyil19qsdFh9yyCF5r3HwwQc3OFd912uPa0jt/Qi3AQAAAACaR5sLt19++eV4+eWXs+3OnTvHaaedVmffHc/Cjqj/Du+61O5bWVnZ6BrFxcXRs2fPZl8DAAAAAICmqfsw61ayadOmmDBhQs61iy66KPbbb786+2/cuDGnXV+/utTuW3uuuq537NgxCgoKmn2NhjRlPfY9O9aHWqG1qUda2/a6U4u0Bepx93m+modapC1Sj7QVapG2RD3umjYVbt94443x5ptvZtu9e/eOMWPG1Nu/dlhcUlKS91rt27dvcK66rtce05ja+9mVcLtbt25NHsO+qWvXrq29BchSjy3h/dbeQJtX17+ZarElqMV8NF6PnsfG5PdzsOexMV4baevUI22FWqQtUY/5azPHkjz44IPxf//v/822S0pK4vbbb28wUN68eXNOuynhdu2+VVVVja7Rrl27vOdvyhoAAAAAADRNm7hze8aMGXHrrbfmXLvpppviuOOOa3Bc7eB7y5Ytea9Zu2+HDh3qXWPTpk0REVFdXZ33/E1ZoyHr1q1r8hj2HQUFBdnf5n3wwQeRyWRaeUfsy9QjrW37v5lqkbZAPe4+Pwc3D7VIW6QeaSvUIm3JvlKPzX1KRauH2y+++GJcc801UVNTk7129dVXx7nnntvo2E6dOuW0mxJu177ru/ZcO17fHm7XHtOY2vupb42G7K2FTPPLZDLqhTZDPdIa6qo5tUhrUY+7z3PVPNQibZ16pK1Qi7Ql6jF/rXosyYIFC+Lyyy/PCYEvvvjiuPTSS/MaXzss3rBhQ95r1+7bULi93aZNm3JC+OZaAwAAAACApmm1cHvJkiVxySWX5HzI4siRI+O73/1u3nOUlpbmtCsrK/Me+9577+W0e/Xq1egaW7dujdWrVzf7GgAAAAAANE2rhNvLli2Lb3zjGznn6A0fPjxuuummJs3Tp0+fnPa7776b99jaQXjv3r2bfY3a4XbtuQAAAAAA2DV7PNxesWJFjB49OlatWpW9NmTIkPjxj38chYVN207tsLi8vDzvsYsWLcpp1xdu177elDVq961vDQAAAAAAmmaPhttr1qyJ0aNHx/Lly7PXPv3pT8ddd90V7dq1a/J8ffv2jS5dumTbr776at5j58+fn/26qKgoBg0aVGe/k046qd5xDamqqorFixdn2/3794/OnTvnvT8AAAAAAOq3x8Ltjz76KMaMGRNvvPFG9lpZWVlMnjw5OnTosEtzFhcXx+c+97ls+7333ovXXnut0XErVqzI6Tdw4MDo3r17nX2PO+64nHO3Z8+eHZs3b250jZkzZ0Z1dXW2PWzYsEbHAAAAAACQnz0SbldVVcW3vvWtnKNA+vXrF/fdd1/sv//+uzX3mWeemdN+5JFHGh3z2GOPxbZt27Lt4cOH19u3oKAgzjjjjGx7/fr18eSTT+a1xo52nAMAAAAAgN3T4uH21q1bY+zYsTFnzpzstU984hPxy1/+Mrp27brb8w8bNiz69euXbf/2t7/NWau2pUuXxv33359t9+zZM0aOHNngGhdffHGUlJRk25MmTYq1a9fW2/+JJ57I2cOwYcPi6KOPbnANAAAAAADy16LhdiaTiWuvvTZmz56dvXbooYfGAw88ED169GiWNQoKCmL8+PE5a15++eXx4osv7tS3vLw8Ro8enXOsyBVXXNHosSi9evWK888/P9t+//3344ILLoh33nlnp77Tp0+P66+/Pttu165djB07tkmPCQAAAACAhhW35OTvvvtu/O53v9vpWlPPnz700EPjmWeeqff7p59+elxyySUxZcqUiPj46JDRo0fHoEGDoqysLAoLC6OioiJeeOGFyGQy2XEjRoyIUaNG5bWHcePGxYIFC2Lu3LkREbFkyZIYPnx4DBkyJHr37h0bN26MOXPmREVFRc64G264Ifr379+kxwsAAAAAQMNaNNzeMUje8dqO513nI5/+48ePj6qqqpg6dWr22rx582LevHl19j/rrLNi4sSJee+hpKQk7r777hg7dmy8/PLLERFRXV0dM2fOrLN/cXFxjBs3rtEjTwAAAAAAaLo98oGSe0JhYWFcf/318Ytf/CJOPPHEevv169cvfvSjH8Wdd94Z7du3b9Ia3bt3jwcffDCuu+66OPzww+vdx6mnnhqPPvpojBkzpknzAwAAAACQnxa9c/uwww7b6ZiOljZkyJAYMmRIvPXWW7Fo0aJYuXJlbNu2LUpLS6Nv3767fURIYWFhjB49Oi688MJYuHBhLF26NFauXBkdOnSI0tLSOOGEE6K0tLSZHg0AAAAAAHVp0XC7NR155JFx5JFHttj8BQUFUVZWFmVlZS22BgAAAAAAddtrjiUBAAAAAGDfIdwGAAAAACA5wm0AAAAAAJKz1565DUDbcNrQmtbeQhL+OtvvmwEAAKApvJMGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5xa29AQAAAFrHaUNrWnsLSfjrbPeFAUBb5F9oAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnFrb2BlrBs2bIoLy+PysrKqKmpidLS0ujbt2/069ev2dZYsGBBvPnmm7FixYro2LFjlJaWRllZWZSWljbbGgAAAAAA1G2PhdsbNmyI8vLyWLBgQSxYsCAWLlwYy5cvz37/0EMPjT/96U+7tcZzzz0XkydPjvnz59f5/f79+8eYMWNixIgRuzR/TU1NTJ06NaZOnRpvv/32Tt8vLCyMwYMHx1VXXRVlZWW7tAYAAAAAAI1r8XD7l7/8ZTz++OPxz3/+M2pqalpkjUwmEzfffHM89NBDDfarqKiIa665JmbPnh233nprlJSU5L3G2rVr46qrroqXXnqp3j41NTXx/PPPx8svvxzjx4+Pb3zjG3nPDwAAAABA/lo83J4zZ04sWbKkRdeYNGnSTsH2oEGD4vjjj4+ioqKoqKiIF154ITKZTERE/P73v4+ioqK4/fbb85q/uro6rrzyypgzZ072WnFxcQwZMiT69OkTGzZsiLlz50ZFRUW2/2233RadO3eOkSNHNtOjBAAAAABgu1Y5c7tTp05x7LHHxqJFi2Ljxo27Ndezzz4bU6ZMyba7dOkSd911VwwePDinX3l5eVx22WVRWVkZERHTp0+Pk046KUaNGtXoGnfccUdOsN2vX7+YPHlyHHbYYTn9pk+fHt///vejuro6IiJuvPHGKCsri/79++/y4wMAAAAAYGeFLb1A+/bto6ysLM4777y45ZZb4sknn4xXXnklHn744TjggAN2a+5MJhN33HFHtl1QUBD33nvvTsF2RMSAAQPigQceiPbt22ev3XPPPVFVVdXgGpWVlfHwww9n2wceeGA89NBDOwXbEREjRoyIiRMnZtvV1dXx05/+tEmPCQAAAACAxrX4ndt33nlni809c+bMnCNPvvjFL8bJJ59cb/+jjjoqLr744rj33nsjImLVqlUxbdq0+Pd///d6x9x3332xZcuWbPvqq69uMJQ/55xz4v/8n/+TvdN71qxZsXjx4jj66KPzflwAAAAAADSsxe/cbkkzZszIaZ933nmNjhk1alQUFRXVO8eOMplMPP3009l2165d4+yzz250ja9//es57aeeeqrRMQAAAAAA5C/ZcHvr1q3x5z//Ods++OCDo6ysrNFxpaWlceKJJ2bb8+fPjzVr1tTZ9+9//3usWLEi2x46dGjOsSb1GTZsWLRr1y7bnjVrVqNjAAAAAADIX7Lh9pIlS2L9+vXZ9sCBA/Meu2Pfbdu2xbx58+rs98orr9Q7riEdOnSIY445JtuuqKjI2SsAAAAAALsn2XD79ddfz2nvGCY3ZsCAATntN954I681ao9rSO391LcGAAAAAABNl2y4XTssPuSQQ/Iee/DBBzc4V33Xa49rSO39CLcBAAAAAJpPsuH2jmdhR0T06tUr77G1+1ZWVja6RnFxcfTs2bPZ1wAAAAAAoOmKW3sDu2rjxo057f322y/vsbX71p6rrusdO3aMgoKCZl+jMU1Zk33PjvWhVmht6nH3eM523/bnUC3SFqjH3ef5ah5qsXl4zpqXeqStUIu0Jepx1+w14XZJSUneY9u3b9/gXHVdrz2mMbX3s6vhdrdu3XZpHPuerl27tvYWICu3Ht9vtX2kpPHXe89jY+p6Dr02tgS1mI/G69Hz2Jj8fg72PDZGLTYP78tajn+raSvUIm2JesxfsseSbN68OafdlHC7dt+qqqpG12jXrl0Tdpf/GgAAAAAANF2yd27XvpN6y5YteY+t3bdDhw71rrFp06aIiKiurm7S/vJdozHr1q3bpXHsGwoKCrK/zfvggw8ik8m08o7Yl6nH3eP1fvdtfw7VIm2Betx9Xhebh1psHuqxealH2gq1SFuyr9Rjc/81VLLhdqdOnXLaTQm3a9/1XXuuHa9vD7drj2lM7f3Ut0Zj9tZCpvllMhn1QpuhHpvO87X76noO1SKtRT3uPs9V81CLzcPz1XLUI22FWqQtUY/5S/ZYktph8YYNG/IeW7tvQ+H2dps2bYqamppmXwMAAAAAgKZLNtwuLS3NaVdWVuY99r333stp9+rVq9E1tm7dGqtXr272NQAAAAAAaLpkw+0+ffrktN999928x9YOwnv37t3sa9QOt2vPBQAAAADArttrwu3y8vK8xy5atCinXV+4Xft6U9ao3be+NQAAAAAAaLpkw+2+fftGly5dsu1XX30177Hz58/Pfl1UVBSDBg2qs99JJ51U77iGVFVVxeLFi7Pt/v37R+fOnfPeHwAAAAAADUs23C4uLo7Pfe5z2fZ7770Xr732WqPjVqxYkdNv4MCB0b179zr7HnfccTnnbs+ePTs2b97c6BozZ86M6urqbHvYsGGNjgEAAAAAIH/JhtsREWeeeWZO+5FHHml0zGOPPRbbtm3LtocPH15v34KCgjjjjDOy7fXr18eTTz6Z1xo72nEOAAAAAAB2X9Lh9rBhw6Jfv37Z9m9/+9uYM2dOvf2XLl0a999/f7bds2fPGDlyZINrXHzxxVFSUpJtT5o0KdauXVtv/yeeeCJnD8OGDYujjz66wTUAAAAAAGiapMPtgoKCGD9+fLadyWTi8ssvjxdffHGnvuXl5TF69OicY0WuuOKK6NChQ4Nr9OrVK84///xs+/33348LLrgg3nnnnZ36Tp8+Pa6//vpsu127djF27NgmPSYAAAAAABpX3NILLF++PD7/+c/X+b0djwdZvnx5DBgwoM5+DzzwQHz605+u83unn356XHLJJTFlypSI+PjokNGjR8egQYOirKwsCgsLo6KiIl544YXIZDLZcSNGjIhRo0bl9RjGjRsXCxYsiLlz50ZExJIlS2L48OExZMiQ6N27d2zcuDHmzJkTFRUVOeNuuOGG6N+/f15rAAAAAACQvxYPtzOZTE6I3ZD6+u0YStdl/PjxUVVVFVOnTs1emzdvXsybN6/O/meddVZMnDgxrz1FRJSUlMTdd98dY8eOjZdffjkiIqqrq2PmzJl19i8uLo5x48Y1euQJAAAAAAC7JuljSbYrLCyM66+/Pn7xi1/EiSeeWG+/fv36xY9+9KO48847o3379k1ao3v37vHggw/GddddF4cffni9+zj11FPj0UcfjTFjxjRpfgAAAAAA8tfid24fdthhOx3X0VKGDBkSQ4YMibfeeisWLVoUK1eujG3btkVpaWn07dt3t48IKSwsjNGjR8eFF14YCxcujKVLl8bKlSujQ4cOUVpaGieccEKUlpY206MBAAAAAKA+LR5ut4YjjzwyjjzyyBabv6CgIMrKyqKsrKzF1gAAmtdpQ2taewtJ+OvsveIP+wAAgH2Ady8AAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACSnuLU3AAAAACk7bWhNa28hCX+d7f46AJqXf1kAAAAAAEiOcBsAAAAAgOQItwEAAAAASI4ztwEAAADg/885+vlxjj5tgSoEAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAklPc2hsAAAAAOG1oTWtvoc3762z3KALsyKsiAAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkpbu0NALRVpw2tae0tJOGvs/2eFAAAgFzeUzfO++nd5xkEAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcWtvQEAAAAAdt9pQ2taewtJ+Ots93rC3sJ/zQAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJKe4tTeQsnXr1sW8efOisrIyPvroozjooIPisMMOi4EDB0ZRUVFrbw8AAAAAYK8l3N4FS5cujUmTJsXs2bOjurp6p+/37Nkzvva1r8U3v/nNKCkpaYUdAgAAAADs3RxL0kS//e1v40tf+lI888wzdQbbERGrVq2Ke+65J772ta/FO++8s4d3CAAAAACw93PndhM899xzce2110ZNTU322ic+8Yn4l3/5l+jWrVssW7Ysnn322aiqqoqIiPLy8vjmN78Zv/71r2P//fdvrW0DAAAAAOx1hNt5WrlyZYwbNy4bbBcUFMT3vve9uPDCC6Ow8H9ugF+zZk2MHTs2Xn755YiI+Oc//xk/+MEP4o477miVfQMAAAAA7I2E23maPHlybNiwIdu+8sor46KLLtqpX/fu3eO+++6Lc889N15//fWIiPjDH/4QY8aMiQEDBuyx/abstKE1jXfax/11thOFAAAAANi3ScjysHr16pg2bVq2fcQRR8Sll15ab//27dvHhAkTsu1MJhOTJ09u0T0CAAAAAOxLhNt5mDVrVs6HR371q1+Ndu3aNThm8ODB0bt372z7ueeei40bN7bYHgEAAAAA9iXC7Tz86U9/ymkPHz48r3FnnHFG9uvNmzfH888/36z7AgAAAADYVwm38/DKK69kv+7Ro0ccfvjheY0bOHBgTnvOnDnNui8AAAAAgH2VcLsRK1asiA8//DDbPuaYY/IeW/sDJLd/wCQAAAAAALunuLU30Na98cYbOe1DDjkk77E9evSIdu3aZc/rXrp0abPuDRpy2tCa1t5Cm/fX2X6/BwAAAJAqyU4jVqxYkdPu1atX3mMLCgqitLS03rkAAAAAANg17txuxMaNG3PanTp1atL4/fbbL/v11q1bY/PmzdG+ffu8xxcUFDRpPfYN2+tix/pQK03nOWse6rF5eM52n1psHp6z5qEed5/nq3moxebhOWse6nH3eb6ah1psHp6z3VdfDXpu8yfcbkTtcLspwXRd/Tds2NCkObp169ak9fYO77f2Btq8uuqia9euta54HhvT+H9fnsN8NF6Pnsd8qMfdpxabh1psHupx9+X3c7DnsTFqsXl4bWwe6nH3qcXmoRabh3rcffU9hztnPNRHuN2IzZs357TbtWvXpPElJSUNzsfOFr12YGtvYa/gedx9nsPm4XlsHp7H3ec5bB6ex+bheWwensfd5zlsHp7H5uF53H2ew+bheWwenkf2BGduN6L2XdbbPxwyX1u2bGlwPgAAAAAAmk643YjaZ2w39c7r2v13PIMbAAAAAIBdI9xuRO1we8OGDU0av2P/4uJid24DAAAAADQD4XYjSktLc9orVqzIe2wmk8npX3suAAAAAAB2jXC7EX369MlpL1++PO+xq1evzjmju3fv3s22LwAAAACAfZlwuxEHHXRQdO7cOdv+xz/+kffY8vLynLZwGwAAAACgeQi383DSSSdlv37//fdj2bJleY2bN29eTvvkk09u1n0BAAAAAOyrhNt5GDZsWE57xowZeY176qmnsl+3b98+PvOZzzTrvgAAAAAA9lXC7Tz867/+a7Rr1y7bnjZtWs5Z2nV58cUXY+nSpdn2kCFDolOnTi22RwAAAACAfUlxa28gBT169IivfvWr8atf/SoiIpYtWxa/+MUv4tvf/nad/Tdv3hwTJ07MtgsKCuKyyy7bI3slPRs2bIi///3v8dZbb8UHH3wQmUwmOnfuHIceemiUlZVFt27ddnuN1atXx4IFC+K9996Ljz76KIqLi6NLly7Rp0+fGDBgQHTo0GH3Hwh7hb2tHj/88MN49dVX46233ooPP/wwioqK4oADDojDDz88jjnmmOjatWuzrUXz2ltq8c0334zy8vJYvXp1bNiwITp27BjdunWLY445Jj75yU9GUVHRbq9By9sT9bhmzZqYO3durFq1Kj766KPo3r179OrVKz71qU9Fx44dd/9BRMSWLVvilVdeieXLl8eaNWuiW7du2TXchJGG1Guxqqoq/t//+3/x+uuvx9q1a6Oqqiq6dOkSPXr0iBNOOCF69eq12/tnz0i9Ftm77G316D1MuvaWWkztPYxwO0/f/OY344knnogNGzZERMTdd98dnTp1igsvvDAKC//nBvg1a9bE2LFj45///Gf22llnnRUDBgzY43tm92zYsCHKy8tjwYIFsWDBgli4cGEsX748+/1DDz00/vSnP+3y/AsXLowpU6bErFmzYuvWrXX2KSgoiMGDB8c3vvGN+OxnP9vkNf74xz/Ggw8+GPPnz6+3T/v27ePMM8+MSy+9NPr06dPkNerzzDPPxBVXXJFzbXefs32ZemyauXPnxpQpU+Ivf/lLbNu2rc4+BQUF0bdv3/jyl78co0eP3uW19jVqsXFbtmyJhx56KB599NF455136u134IEHxle+8pUYM2ZMdOnSpUlr8LG9oR5ffPHFuPvuu2PevHmRyWR2+n6nTp3i85//fIwfP36Xg7+PPvoofvKTn8T06dPjgw8+qHONM844I66++uro2bPnLq2xr1OL9Xv99ddjxowZ8fzzz8eCBQsa/AvYT37yk3H++efHV77ylZy/nCV/anH3eA/TvNRj03gP03LUYuNSfg9TkKnrGaFOs2fPjssuuyxqamqy1z7xiU/EKaecEt26dYu33nornn322aiqqsp+/5Of/GT8+te/jv333781tswu+OUvfxmPP/54/POf/8z5/7q23Xnxu/vuu2Py5Mn1/oNVly996Uvxwx/+MIqLG/+d1MaNG2P8+PHx7LPP5j1/SUlJXHvttXHeeeflPaY+H374YZx11lmxcuXKnOt+MGw69di0ety0aVPcdNNN8fjjj+c95oQTTojf/OY3TVpnX6QW86vFN954I6644op4/fXX817joIMOijvvvDM+9alP5T1mX7c31OPWrVvjpptuil//+td5zd2lS5e4+eab4/Of/3ze+4mIWLRoUVx55ZU5b+Dq071795g0aVKceuqpTVpjX6YWGzZhwoRd+jd2wIABMWnSpOjdu3eTx+6r1OLu8x6m+ajHpvEepuWoxfyk/h7GndtNMHTo0LjlllviP/7jP2LTpk0R8fGt+m+++Wad/Y855pi45557BNuJmTNnTixZsqTF5r/rrrviZz/7Wc61Ll26xKmnnhpHHHFEFBUVRWVlZbz00kvx3nvvZfs8/vjjsWXLlpg0aVKD82/bti2+9a1vxd/+9rec64ceemiccsopcdBBB8XWrVtj2bJl8fzzz8dHH30UER//lu6mm26K4uLi+NrXvrZbj/H222/f6YdCdo16zL8eP/rooxgzZsxOd+MeccQR8alPfSp7N+Lq1avjH//4RyxevLjBH3DIpRYbr8XKysq48MILd3r9O/bYY2PgwIHRrVu32LBhQyxevDhefvnl7A/AK1eujEsuuSQefvjhOPbYYxt+ooiI9OsxImL8+PE5Hz4e8fFNEZ/+9KejW7dusWbNmnjppZeyP2euX78+xo0bF1OmTInBgwfn9TjefffduPTSS2P16tXZa127do3TTz89evXqFatWrYo///nPsWrVqoj4+C8Qv/3tb8ejjz4aRx99dF5r7OvUYsO1+P777+907cADD4yTTjopSktLo0uXLrF27dqYN29eLF68ONunvLw8LrjggnjkkUfiiCOOaPQxoBbzfV1siPcwzUc95l+P3sO0LLXYeC3uDe9hhNtNdM4550RZWVlMmjQpnnvuuTr/rK5nz57x1a9+Nb71rW9FSUlJK+yS5tapU6c49thjY9GiRbFx48ZdnqeioiJ+/vOf51w777zz4n//7/+901mX27Zti8ceeyxuueWWbJ09+eSTceaZZ8b/+l//q941HnvssZzwpl27dnHDDTfEl7/85ZwjdCI+/of01ltvjWnTpmWv3XrrrTF06NAoLS3dpcc4Z86c7G+Qe/bsmX3DTPNRjzvLZDJx1VVX5fxQ2K9fv7jhhhvq/U3yypUr4w9/+EMsWLCgwbmpn1rMdcstt+T8UNirV6+YNGlSnTX49ttvxzXXXJOt2Y0bN8aECRPiv//7v6OgoKDeNahfSvX44IMP5rxJ6dSpU9x8881x5pln5vTLZDLx3//933HjjTfGli1borq6Or7zne/EH//4x+jRo0eDjyOTycR3vvOdnGD77LPPjptuuin222+/7LXtb6weeOCBiPi4Fi+//PL44x//GO3bt29wDeqmFnfWuXPnGDFiRIwcOTKOOeaYOvu89NJLce2112bf/K9atSrGjx8f06ZN87q4i9Ri/ryHaXnqcWfew7QOtZhrb3gPI9zeBb17946f/exn2bsMKisrY8OGDdGjR484/PDDY9CgQW3ucHXy1759+ygrK4vjjz8+jjvuuDj++OOjT58+UVhYGP/6r/+6Wy9+jzzySM6fqpx99tnxgx/8oM6+RUVF2T+Dv+mmm7LXH3300QZf/B5++OGc9oQJE2LkyJF19t1///1j4sSJsX79+uwL5saNG+OJJ56Ib37zm/k9qB1s2bIlJkyYkD3/6fvf/36MGzeuyfPwP9RjfvU4bdq0+Mtf/pJtn3LKKTFlypQGf8F40EEHOaeuCdRiw7W4atWqnB8827VrF/fdd1/07du3zv6HH3543HfffXHOOefE22+/HREfHx/x6quvxsCBA+t9HHws5XrcsGFD3Hvvvdl2QUFB3HvvvXXeWVNQUBBf+cpXYr/99ourrroqIj6+G+fee++td0/bzZgxIxYuXJhtn3rqqfHjH/94pzceJSUlcd1118X69euzfw69fPnyePTRR71G5kEtNlyL++23X1x22WUxZsyYRv+a9ZRTTolHHnkkRo4cmf2lzMKFC2PGjBk7vYlnZ2qx8dfF+ngP0/zUY3716D1My1OLDdfi3vIeprDxLtTngAMOiGHDhsV5550Xl156aXzpS1+Kk08+WbCduDvvvDOmTZsWP/jBD+JLX/pS9O3bd6e7+nbVSy+9lNO+/PLLGx0zatSonA93+tvf/lbvnyGtWLEi3njjjWy7Z8+e9YY3O7ryyisb3Ge+fvazn8XSpUsjIuKzn/1snHXWWbs0D/9DPTZej2vWrIkf//jH2XavXr3iZz/7mb+caWZqseFafOmll3I+2OXzn/98vT8Ubrf//vvHRRddlPca/I+U6/HJJ5+MdevWZdtnn312o38yeuaZZ+Z88NBvfvObWLFiRYNjJk+enP26sLAw/uM//qPBO2quvfbanPBxypQp9X4gEv9DLTZci7fccktcddVVeR/TeMghh2TflG9X+0+xqZtabPx1sT7ewzQ/9dh4PXoPs2eoxYZrcW95DyPchj1oxxeVzp07R58+fRodU1RUFMcff3y2XV1dnfMCV9/8ERFlZWV5vXD37ds3503Hrpw1V1FREffff39ERHTo0CFuuOGGJs/BnrW31ONjjz0WH3zwQbZ99dVX+6yDxOwNtVh7jRNOOKHR+SNipzscnPXZ+lq6Hp9//vmc9le+8pW89vXVr341Z/6ZM2fW2/fNN9+MioqKbPu0006LI488ssH5u3btGl/4whey7dWrV8ecOXPy2hstY2+oxXw+KKu24cOH57xG+9P71rc31GJ9vIdJz95Sj97DpG9vqMW95T2McBv2oB1/I9ehQ4e8x9U+r6k+O/7GLSKiY8eOea+xY9+mnpVUU1MTEyZMyJ4d9e1vfzsOP/zwJs3Bnrc31OP2s8W26969u7ttErQ31GLtOy7yXaN2P+fKtr6Wrsfy8vLs14WFhbv8JuKZZ56pt++sWbNy2meccUZea9Q++qH2POxZe0Mt7orOnTtH9+7ds+26PpSSPWtvrUXvYdK0N9Sj9zB7h72hFveW9zDCbdiDDjvssOzX69ati6qqqrzGLV++PPt1165d44ADDmh0/oiId999N6/5N23aFGvXrs22m/qp9FOnTo3XXnstIj6+07H2n6jQNu0N9fjqq6/GO++8k22fccYZu3SXGK1rb6jFXV1jx8fQ2BrsGS1djzvWVJcuXfJ+E9GzZ8+co+9eeeWVnHMedzR37tycdr5nIJaVleWsUXse9qy9oRZ31Y5noPp3vfXtrbXoPUya9oZ69B5m77A31OLe8h5GuA170I5nH1VXV+d1d8Hbb7+d84FQQ4YMqfe3YgceeGAMGDAg216wYEFeL05PPfVUzrmap59+eqNjtnv33XfjJz/5SUR8/Nu6//iP/4h27drlPZ7WszfU4/Y3JNvV96nitG17Qy2ecsopOa99Tz/9dL3n5+3oD3/4Q/brgoKCGDp0aKNjaFktXY+bN2/Oft3UczV37L9ly5bsB/nUtuMZ8x06dIjevXvnNf9+++2X8+Zk6dKlO/3lA3vO3lCLu2LZsmU54XavXr2abW52zd5Yi97DpGtvqEfvYfYOe0Mt7i3vYYTbsAddcMEFOX+CcttttzX4A9jGjRvje9/7XjZcKSkpif9fe/ceFFX5hwH8AVlXRS4SarZeyLxEXisRM0tDm0xNSG1KvF8YyibKdEorQRMlNTFHIS+p2MXU8pIoapZBmaPmNVNLxTBEUQxQru4i+/uD4fz27C67Z3FZOG/PZ6YZ3uN7zlmYJ9jvu+9531dffdXmPSIjI6Wvy8rKMGPGDJufIP79999YuHCh1A4ICMDQoUPtfi+VZs+eLRUgI0aM4B9mFREhj6ZvDABI65fl5+fjyy+/xJgxY9CvXz90794dTz/9NF5++WUsWbJEthYt1T4Rsujn5ydb3+7SpUuIj4+3+Zq+//57bNu2TWqHhoYiICDA5jlU82o6j15eXtLXhYWFil+XXq9HSUmJ7Fh6erpFP4PBIJsNdv/99zv0qOgDDzwgfV1aWmoxM4dcR+1ZrK4dO3bI2r169XLatal6RMwiaxj1EiGPrGHEIEIWRalhOLhN5EI6nQ6xsbHSJjk5OTkYPnw4Vq5cifT0dOj1ety9exdXr17FN998g9DQUBw7dgxAxcYD8+bNs7tJwcCBAzFy5EipffjwYbz44ovYtm0bsrOzcffuXej1ely4cAEJCQkYPny4tJZhkyZNsGzZMmi1WkXfT3JyMtLS0gBU/FKcPn26wz8Tqj0i5NH0j7Sbmxt0Oh327t2LgQMHYu7cuThy5AiuXbuGkpISXL9+HSdPnsSKFSsQGhqKadOmoaCgoNo/P3IeEbIIVGwEZLpBzOrVqzFp0iSkpaUhPz8fRqMRRUVFOHbsGN5//31ERUVJMyO6dOmCWbNmOf7DI6er6Tw2a9ZM+rq4uFg2EG3LhQsXLI5lZ2dbHLt586bsiYMWLVooun6l5s2b270HuYbas1gd+fn5+OKLL2THzNeCJ9cTLYusYdRNhDyyhhGDCFkExKhhuKgPkYsNHjwYvr6+iImJQWZmJm7duoX4+Hibn4517NgRs2bNQlBQkKJ7xMTEICAgAMuWLUNhYSEuXbqEGTNm2DznmWeeQXR0tGzGli35+fmYP3++1J4xYwZ8fX0VnUt1h9rzaLrDuJ+fH7Zt24YPPvjA7msyGo3YuXMnzp07h3Xr1lkM5pDrqT2LQMWSDuvXr8dHH32ELVu24O7duzhw4AAOHDhQ5Tn169dHeHg4pk6d6tBGNFSzajKPjz32GP7880+pnZqaitGjR9t9TT/99JPFsaKiIotjpss5AMo3Lark6elp83rkWmrOYnXMmzcP+fn5UrtXr16cUVtHiJJF1jBiUHseWcOIQ+1ZBMSoYThzm6gWPPnkk0hJScHEiRNlC/1b8/zzz2PVqlWKB2+Aik9/x48fj5SUFLvrZ2s0GrzxxhuIj49XPLANAHFxccjNzQVQUXiEhoYqPpfqFjXn8fbt29LXJSUlmD17ttQeMmQIvvzySxw9ehSnTp3Czp07MWXKFNlGHOnp6XjzzTdlsxyp9qg5i5U8PT0xd+5cbNiwAe3atbPZ19/fH3FxcZgxY0adeFNIcjWVR/PsJSUl2d2AKD8/H19//bXFcWsDz+bFi9Knsarqz8Ht2qfWLDpq69atsiVJtFotoqOj7/m65DwiZJE1jDjUnEfWMGJRcxYrqb2G4eA2US1ITU1FaGgo1q5da3dH7927d2PAgAGYP3++bEMBW8rLy7F27VoMHTrU6qd2pgwGA5YtW4aQkBBs2rRJ0fUPHjyI7du3A6j4xM70jzGpj5rzaPpHuri4GGVlZXBzc8OCBQuwePFiBAUFwcvLCw0aNED79u3x5ptvYuPGjbIdqU+cOGH1DQC5npqzWKmgoADR0dEYPXo0Ll68aLPvzZs3MW3aNAwZMgRHjx5VfA9yjZrK41NPPYUOHTpI7czMTMycObPKAvXOnTuYNm0abt68afXfzOn1elnb0Q3SzDcssldEUc1TaxYdcerUKYv3k++++67dJafItdSeRdYwYlFzHlnDiEXNWayk9hqGy5IQuVhiYiKWLl0qtf38/DB+/Hj069cPLVu2hIeHB27cuIHDhw8jKSkJFy5cgMFgwPr163Hq1CmsXbvW4pFhU3q9Hm+88QZSU1OlYx06dMC4ceMQHByM5s2bw2AwIDMzE6mpqVi/fj1yc3ORl5eH6OhonD9/3uaaSSUlJbJZNJGRkXjwwQfv7YdCtUbtedRqtRabZYwaNQphYWFVnvPwww8jNjYWr7/+unRs3bp1GDVqlLReGrme2rMIAFevXsXYsWNlG8n07dsXr7zyCrp27QofHx8UFxfj/Pnz2LVrF7799lsYDAZcvHgRY8eOxccff4xBgwZV/4dITlOTeXRzc8OcOXMwZswYqThJSUlBRkYGIiMjERwcDB8fH+Tl5eHgwYP49NNPpbU5PT09ZTOzrS05Yj44bTAYHPrezQfH68qMnP8qNWdRqb///huRkZGywnvYsGEYNWpUta9Jzqf2LLKGEYva88gaRhxqzyIgRg3jZjQajbX6CohUJCQkBFlZWQAqNg/Yv3+/Q+enpKRg6tSpUjswMBCrV69G06ZNrfbX6/WYNWuWNMMAqHhMafHixVXeIyYmBhs3bpTaYWFhiI2NrXLmVk5ODiIiInDu3Dnp2Ny5c2U75ppasGAB1q5dCwAICAhAcnKyRSFtqmPHjtLX1fmZUdWYR6B3797Spn8A4OHhgf379ytafy40NFS2htn27dsRGBho9zyyxCxWvKYRI0bIdrGfM2cOXnnllSpf06lTpzBp0iRpUyCNRoOtW7fKZmiQ49SQRwD49ttvER0dbXeGT6X7778fEyZMQFxcnHRs5syZGD9+vKxfenq6rMDo378/EhMTFd0DAGJjY2Ub+q1evRpPP/204vPp//7rWVQiOzsb4eHh0s8JqHgMe/ny5fDw4DwsZ2EWWcPUJcwja5i6glkUp4bhxztELmIwGGSbl2i1WiQmJlb5iw+omH0VGxsre3O1c+dOnD592mr/v/76S/b4fOWnu7YeSW7atCkSEhJka2zGx8dbfWzlzJkzWL9+vdSeM2eOzTeFVHeJkEfAcuOzRx55RPHGKuZrmFXuXE2uJUoWN2/eLHtTGB4ebvNNIQB069YNH374odQ2GAx239xSzXJFHiuNGDECq1atQqtWrey+rqCgIGzYsAFubm6y4z4+PhZ9zWfmOLrRn3n/e5mRS9UnQhbtyc3NxcSJE2UD20FBQVi6dCkHtusQEbLIGkYcIuQRYA0jAlGyKEoNw8FtIhc5cOAAcnJypPaQIUMUbVKm0WgwceJE2bHvvvvOat/t27fD9GGMCRMmKFprU6fTYciQIVI7Ly8PP//8s0W/RYsWSZ8WhoWFoVevXnavTXWTCHkEKj6VNtW+fXu7169k/sny9evXFZ9LziNKFrdu3SprR0RE2L0+ULGpTOvWraV2Wloa8vLyFJ1LzueKPJrq06cPdu/ejUWLFmHw4MFo3bo1PD09odVq0bp1awwcOBCJiYn4/PPPodPpcOXKFdn51tYj9vf3lw0MZmdn230dpsz7m/+eJdcQIYu2FBYWYvLkydLj0wDQqVMnrFixwuFNUKlmiZBF1jDiECGPAGsYEYiSRVFqGH4kTuQiJ0+elLV79uyp+Fzzvn/88YeiewQHBzt0jy1btkjt06dP49lnn5X1Mf1ltWPHDiQnJyu+PgBkZWXhkUcekdo6nQ779u1z6BrkHCLkEaj4I33kyBGp7cjMMfO+t27dUnwuOY8IWdTr9bLHQ1u1aqXozS1QsZZejx498M8//wAAjEYjzpw5gz59+ih+jeQ8rsijOY1Gg6FDh2Lo0KF2+5rO7NFoNHj44YetXq9ly5bIyMgAUDFYbTQaLWbwVOXatWvS1w0bNoROp1N0HjmXCFmsSmlpKV599VWcOXNGOta2bVt89tlnaNy4seLrkGuIkEXWMOIQIY8AaxgRiJBFkWoYztwmcpHc3FxZ29bjKub8/f1l7ao+ETO/h/l5zrhHpfLycty9e9fuf+bs/Tu5hih5NJ/lYL4Rmi3mffl4au0QIYt5eXmy32eOXB+w/J45c7v2uCKP1VVSUoKzZ89K7cDAwCp/b5nOziktLcWlS5cU3aOwsBCXL1+W2gEBAYoHxcm5RMmiOYPBgKioKPz222/SMZ1Oh6SkJPj5+Tn1dZJziJZF1jDqJkoeWcOonwhZFKmG4eA2kYuYP2JZWlqq+Fzzvg0bNrTaz/wXVlVrw97LPUgMouQxKChI1nbksTzzR+9ZVNcOEbJo/j04cn2g4g2ovXuQa7gij9W1b98+WbZMl8wx9/jjj8vax48fV3SP33//HeXl5VK7R48eDr5KchZRsmiqvLwc77zzDtLS0qRjTZs2RVJSkuK1Zsn1RMwiqZcoeWQNo34iZFGkGobLkhC5iPkfnfT0dPTv31/RuRcvXpS177vvPqv9zI+np6ejW7duTruHkrWgzHGn8bpJhDwCFWvOtWnTRpppePLkSZSXl8Pd3f5ntydOnJC1TR83JdcRIYs+Pj7QaDQwGAwAgIyMDJSVlSneEM10zdmq7kGu4Yo8VteGDRukr+vXr4/Q0NAq+/bv3x8LFy6U2nv37sVLL71k9x579uyxuA7VDlGyaComJgYpKSlS29fXF+vWrZOt2Ul1jwhZZA0jDhHyCLCGEYEIWRSphuHMbSIX6dq1q6y9e/duxefu3LlT1u7evbuie+zatUvR9Y1Go0Xfqu5BYhApj4MGDZK+zsnJkc0Iq0p+fr5srUSNRsMZirVEhCy6ubmhc+fOUru4uBipqamK7nH9+nXZ4/larRaBgYGKziXnc0Ueq2PHjh2yYvall16Cr69vlf0DAgJkayv++uuvsuVGrLl165Zs4NHf399iZhm5jihZrLRw4UJs3rxZant5eWHNmjUObaJGtUO0LJK6iZRH1jDqJkIWRaphOLhN5CJBQUHw9vaW2mfPnsVXX31l97wTJ07IigEAeOaZZ6z2DQkJkbU3btyoaHOCpKQknD9/Xmr7+vri0UcftXseqZdIeRw/fjy8vLykdlxcHAoLC23eIzY2FsXFxVJ72LBh3MSqloiSRfN7LFq0CLdv37Z5faPRiNmzZ8vWTuzduzcaNGhg97VRzXBFHh11/PhxxMTESO1mzZrh7bfftnvea6+9Jn1dXl6O2bNnw2g0Vtn/o48+QkFBgdSOiIhQPHOHnE+kLK5cuRJr1qyR2g0bNsTKlStlBTXVXSJlkdRPpDyyhlE3UbIoSg3DwW0iF9FqtZg0aZLsWGxsLBISEqyuz2Q0GpGcnIzJkydLj4kAFb/4qioGunfvjieffFJq37lzBxMnTsSePXusFrTFxcVYsmQJFixYIDseGRnJjSkEJ1IefX19ZYM4ly9fxrhx45CRkWHRt7CwEDNnzkRycrJ0zNvbW3Y+uZYoWQwPD5fNisjIyMCoUaNw7tw5q/2vX7+OKVOmWDzm/Prrr1vtT67hijwCFY+jRkREIDU1VXaeqdLSUqxatQoTJkyQCll3d3fMnTtXUSH73HPPoUuXLlL74MGDmD59OoqKimT99Ho94uLisHXrVumYTqfDyJEj7d6Dao4oWdy0aRPi4+Oldv369ZGYmGixLjzVXaJkkcQgUh5Zw6ibKFkUpYZxM9qawkH0H5SVlYVnn33W6r+Z74xdr149q/2SkpLQs2dPi+N6vR6TJk3CkSNHZMd9fX3Ru3dvtGzZEvXq1cONGzdw6NAhZGVlyfq1aNECmzZtsrnpTlZWFl5++WXk5OTIjrdu3Ro9e/ZEs2bNUFZWhsuXL+PQoUO4deuWrF+fPn2wcuVKp83W4np194Z5VJZHo9GIqVOnyh4H02g0CA4ORseOHaHRaJCZmYlffvlF9kl0vXr1kJiYiH79+tm8PjGLSrKYlpaGKVOmoKysTHa8a9eu6NatG3x8fFBcXIy//voLR44csXiDGhUVVetvDNVC7Xk8f/48XnjhBQAVyzN069YNbdu2hbe3N27fvo0rV67g0KFDstlZbm5uiImJcWjQ+erVqxgxYgT+/fdf6ZiPjw9CQkLQvHlz3Lx5E2lpabL/Lxo1aoSvv/5atqwJVY1ZtC0kJMTidVX1c7Bl37590Ol0Dp/3X8IsOhdrmHvDPCrDGqbmMYv2iVDDcHCbyMyVK1fueQOlzz//HMHBwVb/raCgADNnzpStlaVEYGAgPvnkEwQEBNjtm56ejrfeekv2OL0SgwYNQmxsLDw9PR06zxa+Mbw3zKPyPN65cwfvvfeexRpmVWncuDHi4+PRt29fh17XfxWzqCyLP/zwA95//33k5+crvr6HhweioqIQGRnp0Ov6L1N7Hk0LFSV8fX0xb948DBgwwKHXAwB//PEHoqKiLAoqa5o0aYLFixfLnnQg25hF26wNblfHjz/+iJYtW97zdUTGLDoXa5h7wzwqxxqmZjGLyqi9huGyJEQu5uXlheXLlyMhIQHBwcFwc3Oz2b9du3aIjo7G5s2bFQ3eAMBDDz2ELVu24IMPPkDbtm1t9nV3d8cTTzyBFStWYMmSJU4d2Ka6T6Q8arVaLF68GEuXLpU9im+uUaNGCA8PR0pKCt8U1iGiZHHAgAHSI4fmu6ib02q1CAsLw5YtW+rEm0L6v5rOo7+/P1588UU88MADNvv5+fkhIiICe/bsqfYATufOnfHdd99hzJgx8PHxsdqnYcOGCAsLQ3JyMge26xiRskjqxixSXSJSHlnDqJsoWVR7DcOZ20S1rKCgAL///juuXLmC27dvo7y8HI0bN0bz5s3RpUsXm4+oKJWdnY3Tp0/jxo0bKCwshLu7O7y9vdGqVSt07dqVa9SRRKQ8Xr58GWfPnsWNGzdw584dNGnSBG3atMGjjz4KjUbjlHtQzREhi0ajEenp6Th37hzy8vJQVFSEBg0awNvbG+3atUNgYCD3N1CJmsxjZmYm/vzzT1y9ehVFRUXw8PDAfffdhw4dOqBTp05wd3feXBS9Xo+jR48iKysLubm58PHxQYsWLdCjRw9+uK0SomSR1I9ZpLpEpDyyhlE3EbKoxhqGg9tEREREREREREREpDr8yJOIiIiIiIiIiIiIVIeD20RERERERERERESkOhzcJiIiIiIiIiIiIiLV4eA2EREREREREREREakOB7eJiIiIiIiIiIiISHU4uE1EREREREREREREqsPBbSIiIiIiIiIiIiJSHQ5uExEREREREREREZHqcHCbiIiIiIiIiIiIiFSHg9tEREREREREREREpDoc3CYiIiIiIiIiIiIi1eHgNhERERERERERERGpDge3iYiIiIiIiIiIiEh1OLhNRERERERERERERKrDwW0iIiIiIiIiIiIiUh0ObhMRERERERERERGR6nBwm4iIiIiIiIiIiIhUh4PbRERERERERERERKQ6HNwmIiIiIiIiIiIiItXh4DYRERERERERERERqQ4Ht4mIiIiIiIiIiIhIdTi4TURERERERERERESqw8FtIiIiIiIiIiIiIlIdDm4TERERERERERERkepwcJuIiIiIiIiIiIiIVIeD20RERERERERERESkOv8DkU/ZgDkukmAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 491, + "width": 731 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "post = after_marg.posterior.switchpoint.values.reshape(-1)\n", + "bins = np.arange(post.min(), post.max())\n", + "plt.hist(post, bins, rwidth=0.9);" + ] + }, + { + "cell_type": "markdown", + "id": "ad3cc13c-f2e7-4789-aac2-3e3e9dfe58cc", + "metadata": {}, + "source": [ + "By plotting a histogram of sampled values instead of working with the log-probabilities directly, we are left with noisier and more incomplete exploration of the underlying discrete distribution." + ] + }, + { + "cell_type": "markdown", + "id": "c675ae7f-2c91-4ead-90c2-ab0bd78a02ed", + "metadata": {}, + "source": [ + "## Authors\n", + "* Authored by [Rob Zinkov](https://zinkov.com) in January, 2024" + ] + }, + { + "cell_type": "markdown", + "id": "7073a737-5f30-44bc-ac6c-bc85b8955391", + "metadata": {}, + "source": [ + "## References\n", + "\n", + ":::{bibliography}\n", + ":filter: docname in docnames \n", + ":::\n", + "\n", + "* [STAN manual section on marginalization](https://mc-stan.org/docs/stan-users-guide/latent-discrete.html)" + ] + }, + { + "cell_type": "markdown", + "id": "3f14213a-651e-4271-9a2d-71954e84605c", + "metadata": {}, + "source": [ + "## Watermark" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "57fd6d30-cfd8-4fc4-85df-1f4361ed7015", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Last updated: Wed Feb 07 2024\n", + "\n", + "Python implementation: CPython\n", + "Python version : 3.11.6\n", + "IPython version : 8.20.0\n", + "\n", + "pytensor: 2.18.6\n", + "xarray : 2023.11.0\n", + "\n", + "pandas : 2.1.4\n", + "pymc : 5.11\n", + "matplotlib : 3.8.2\n", + "pytensor : 2.18.6\n", + "pymc_experimental: 0.0.15\n", + "numpy : 1.26.3\n", + "arviz : 0.17.0\n", + "\n", + "Watermark: 2.4.3\n", + "\n" + ] + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -n -u -v -iv -w -p pytensor,xarray" + ] + }, + { + "cell_type": "markdown", + "id": "47987baa-2f8d-4efd-9c43-12f76e2659e2", + "metadata": {}, + "source": [ + ":::{include} ../page_footer.md\n", + ":::" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pymc-dev", + "language": "python", + "name": "pymc-dev" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + }, + "myst": { + "substitutions": { + "extra_dependencies": "pymc-experimental" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/howto/marginalizing-models.myst.md b/examples/howto/marginalizing-models.myst.md new file mode 100644 index 000000000..e61a83c89 --- /dev/null +++ b/examples/howto/marginalizing-models.myst.md @@ -0,0 +1,269 @@ +--- +jupytext: + text_representation: + extension: .md + format_name: myst + format_version: 0.13 +kernelspec: + display_name: pymc-dev + language: python + name: pymc-dev +myst: + substitutions: + extra_dependencies: pymc-experimental +--- + +(marginalizing-models)= +# Automatic marginalization of discrete variables + +:::{post} Jan 20, 2024 +:tags: mixture model +:category: intermediate, how-to +:author: Rob Zinkov +::: + +PyMC is very amendable to sampling models with discrete latent variables. But if you insist on using the NUTS sampler exclusively, you will need to get rid of your discrete variables somehow. The best way to do this is by marginalizing them out, as then you benefit from Rao-Blackwell's theorem and get a lower variance estimate of your parameters. + +Formally the argument goes like this, samplers can be understood as approximating the expectation $\mathbb{E}_{p(x, z)}[f(x, z)]$ for some function $f$ with respect to a distribution $p(x, z)$. By [law of total expectation](https://en.wikipedia.org/wiki/Law_of_total_expectation) we know that + +$$ \mathbb{E}_{p(x, z)}[f(x, z)] = \mathbb{E}_{p(z)}\left[\mathbb{E}_{p(x \mid z)}\left[f(x, z)\right]\right] $$ + +Letting $g(z) = \mathbb{E}_{p(x \mid z)}\left[f(x, z)\right]$, we know by [law of total variance](https://en.wikipedia.org/wiki/Law_of_total_variance) that + +$$ \mathbb{V}_{p(x, z)}[f(x, z)] = \mathbb{V}_{p(z)}[g(z)] + \mathbb{E}_{p(z)}\left[\mathbb{V}_{p(x \mid z)}\left[f(x, z)\right]\right] $$ + +Because the expectation is over a variance it must always be positive, and thus we know + +$$ \mathbb{V}_{p(x, z)}[f(x, z)] \geq \mathbb{V}_{p(z)}[g(z)] $$ + +Intuitively, marginalizing variables in your model lets you use $g$ instead of $f$. This lower variance manifests most directly in lower Monte-Carlo standard error (mcse), and indirectly in a generally higher effective sample size (ESS). + +Unfortunately, the computation to do this is often tedious and unintuitive. Luckily, `pymc-experimental` now supports a way to do this work automatically! + +```{code-cell} ipython3 +import arviz as az +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import pymc as pm +import pytensor.tensor as pt +``` + +:::{include} ../extra_installs.md +::: + +```{code-cell} ipython3 +import pymc_experimental as pmx +``` + +```{code-cell} ipython3 +%config InlineBackend.figure_format = 'retina' # high resolution figures +az.style.use("arviz-darkgrid") +rng = np.random.default_rng(32) +``` + +As a motivating example, consider a gaussian mixture model + ++++ + +## Gaussian Mixture model + ++++ + +There are two ways to specify the same model. One where the choice of mixture is explicit. + +```{code-cell} ipython3 +mu = pt.as_tensor([-2.0, 2.0]) + +with pmx.MarginalModel() as explicit_mixture: + idx = pm.Bernoulli("idx", 0.7) + y = pm.Normal("y", mu=mu[idx], sigma=1.0) +``` + +```{code-cell} ipython3 +plt.hist(pm.draw(y, draws=2000, random_seed=rng), bins=30, rwidth=0.9); +``` + +The other way is where we use the built-in `NormalMixture` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with `pmx.MarginalModel` instead of `pm.Model`. This different class is what will allow us to marginalize out variables later. + +```{code-cell} ipython3 +with pm.Model() as prebuilt_mixture: + y = pm.NormalMixture("y", w=[0.3, 0.7], mu=[-2, 2]) +``` + +```{code-cell} ipython3 +plt.hist(pm.draw(y, draws=2000, random_seed=rng), bins=30, rwidth=0.9); +``` + +```{code-cell} ipython3 +with prebuilt_mixture: + idata = pm.sample(draws=2000, chains=4, random_seed=rng) + +az.summary(idata) +``` + +```{code-cell} ipython3 +with explicit_mixture: + idata = pm.sample(draws=2000, chains=4, random_seed=rng) + +az.summary(idata) +``` + +We can immediately see that the marginalized model has a higher ESS. Let's now marginalize out the choice and see what it changes in our model. + +```{code-cell} ipython3 +explicit_mixture.marginalize(["idx"]) +with explicit_mixture: + idata = pm.sample(draws=2000, chains=4, random_seed=rng) + +az.summary(idata) +``` + +As we can see, the `idx` variable is gone now. We also were able to use the NUTS sampler, and the ESS has improved. + +But `MarginalModel` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the `recover_marginals` method. + +```{code-cell} ipython3 +explicit_mixture.recover_marginals(idata, random_seed=rng); +``` + +```{code-cell} ipython3 +az.summary(idata) +``` + +This `idx` variable lets us recover the mixture assignment variable after running the NUTS sampler! We can split out the samples of `y` by reading off the mixture label from the associated `idx` for each sample. + +```{code-cell} ipython3 +# fmt: off +post = idata.posterior +plt.hist( + post.where(post.idx == 0).y.values.reshape(-1), + bins=30, + rwidth=0.9, + alpha=0.75, + label='idx = 0', +) +plt.hist( + post.where(post.idx == 1).y.values.reshape(-1), + bins=30, + rwidth=0.9, + alpha=0.75, + label='idx = 1' +) +# fmt: on +plt.legend(); +``` + +One important thing to notice is that this discrete variable has a lower ESS, and particularly so for the tail. This means `idx` might not be estimated well particularly for the tails. If this is important, I recommend using the `lp_idx` instead, which is the log-probability of `idx` given sample values on each iteration. The benefits of working with `lp_idx` will explored further in the next example. + ++++ + +## Coal mining model + ++++ + +The same methods work for the {ref}`Coal mining ` switchpoint model as well. The coal mining dataset records the number of coal mining disasters in the UK between 1851 and 1962. The time series dataset captures a time when mining safety regulations are being introduced, we try to estimate when this occurred using a discrete `switchpoint` variable. + +```{code-cell} ipython3 +# fmt: off +disaster_data = pd.Series( + [4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6, + 3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5, + 2, 2, 3, 4, 2, 1, 3, np.nan, 2, 1, 1, 1, 1, 3, 0, 0, + 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1, + 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2, + 3, 3, 1, np.nan, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4, + 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1] +) + +# fmt: on +years = np.arange(1851, 1962) + +with pmx.MarginalModel() as disaster_model: + switchpoint = pm.DiscreteUniform("switchpoint", lower=years.min(), upper=years.max()) + early_rate = pm.Exponential("early_rate", 1.0, initval=3) + late_rate = pm.Exponential("late_rate", 1.0, initval=1) + rate = pm.math.switch(switchpoint >= years, early_rate, late_rate) + disasters = pm.Poisson("disasters", rate, observed=disaster_data) +``` + +We will sample the model both before and after we marginalize out the `switchpoint` variable + +```{code-cell} ipython3 +with disaster_model: + before_marg = pm.sample(chains=2, random_seed=rng) + +disaster_model.marginalize(["switchpoint"]) + +with disaster_model: + after_marg = pm.sample(chains=2, random_seed=rng) +``` + +```{code-cell} ipython3 +az.summary(before_marg, var_names=["~disasters"], filter_vars="like") +``` + +```{code-cell} ipython3 +az.summary(after_marg, var_names=["~disasters"], filter_vars="like") +``` + +As before, the ESS improved massively + ++++ + +Finally, let us recover the `switchpoint` variable + +```{code-cell} ipython3 +disaster_model.recover_marginals(after_marg); +``` + +```{code-cell} ipython3 +az.summary(after_marg, var_names=["~disasters", "~lp"], filter_vars="like") +``` + +While `recover_marginals` is able to sample the discrete variables that were marginalized out. The probabilities associated with each draw often offer a cleaner estimate of the discrete variable. Particularly for lower probability values. This is best illustrated by comparing the plot of the log-probabilities with the histogram of the sampled values. + +```{code-cell} ipython3 +lp_switchpoint = after_marg.posterior.lp_switchpoint.mean(dim=["chain", "draw"]) +x_max = years[lp_switchpoint.argmax()] + +plt.scatter(years, lp_switchpoint) +plt.axvline(x=x_max, c="orange") +plt.xlabel(r"$\mathrm{year}$") +plt.ylabel(r"$\log p(\mathrm{switchpoint}=\mathrm{year})$"); +``` + +```{code-cell} ipython3 +post = after_marg.posterior.switchpoint.values.reshape(-1) +bins = np.arange(post.min(), post.max()) +plt.hist(post, bins, rwidth=0.9); +``` + +By plotting a histogram of sampled values instead of working with the log-probabilities directly, we are left with noisier and more incomplete exploration of the underlying discrete distribution. + ++++ + +## Authors +* Authored by [Rob Zinkov](https://zinkov.com) in January, 2024 + ++++ + +## References + +:::{bibliography} +:filter: docname in docnames +::: + +* [STAN manual section on marginalization](https://mc-stan.org/docs/stan-users-guide/latent-discrete.html) + ++++ + +## Watermark + +```{code-cell} ipython3 +%load_ext watermark +%watermark -n -u -v -iv -w -p pytensor,xarray +``` + +:::{include} ../page_footer.md +::: From 1b6a0168431e5eeffe79481c7afd683bae06e0b8 Mon Sep 17 00:00:00 2001 From: Rob Zinkov Date: Sat, 10 Feb 2024 15:33:31 +0100 Subject: [PATCH 2/6] Add better labels --- examples/howto/marginalizing-models.ipynb | 80 ++++++++++----------- examples/howto/marginalizing-models.myst.md | 18 ++--- 2 files changed, 49 insertions(+), 49 deletions(-) diff --git a/examples/howto/marginalizing-models.ipynb b/examples/howto/marginalizing-models.ipynb index b54b9800a..aefe77f93 100644 --- a/examples/howto/marginalizing-models.ipynb +++ b/examples/howto/marginalizing-models.ipynb @@ -148,7 +148,7 @@ "id": "2e1b1cab-56ce-4ddd-95d3-6454c8d0aae0", "metadata": {}, "source": [ - "The other way is where we use the built-in `NormalMixture` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with `pmx.MarginalModel` instead of `pm.Model`. This different class is what will allow us to marginalize out variables later." + "The other way is where we use the built-in {class}`NormalMixture ` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with {class}`pmx.MarginalModel ` instead of {class}`pm.Model `. This different class is what will allow us to marginalize out variables later." ] }, { @@ -237,7 +237,7 @@ "\n", "
\n", " \n", - " 100.00% [12000/12000 00:04<00:00 Sampling 4 chains, 0 divergences]\n", + " 100.00% [12000/12000 00:13<00:00 Sampling 4 chains, 0 divergences]\n", "
\n", " " ], @@ -252,7 +252,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 5 seconds.\n", + "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 14 seconds.\n", "The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n" ] }, @@ -371,7 +371,7 @@ "\n", "
\n", " \n", - " 100.00% [12000/12000 00:05<00:00 Sampling 4 chains, 0 divergences]\n", + " 100.00% [12000/12000 00:13<00:00 Sampling 4 chains, 0 divergences]\n", "
\n", " " ], @@ -386,7 +386,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 6 seconds.\n", + "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 13 seconds.\n", "The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n", "The effective sample size per chain is smaller than 100 for some parameters. A higher number is needed for reliable rhat and ess computation. See https://arxiv.org/abs/1903.08008 for details\n" ] @@ -531,7 +531,7 @@ "\n", "
\n", " \n", - " 100.00% [12000/12000 00:05<00:00 Sampling 4 chains, 0 divergences]\n", + " 100.00% [12000/12000 00:13<00:00 Sampling 4 chains, 0 divergences]\n", "
\n", " " ], @@ -546,7 +546,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 5 seconds.\n" + "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 14 seconds.\n" ] }, { @@ -626,7 +626,7 @@ "source": [ "As we can see, the `idx` variable is gone now. We also were able to use the NUTS sampler, and the ESS has improved.\n", "\n", - "But `MarginalModel` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the `recover_marginals` method." + "But {class}`MarginalModel ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals \n", " \n", - " 100.00% [4000/4000 00:04<00:00 Sampling 2 chains, 0 divergences]\n", + " 100.00% [4000/4000 00:12<00:00 Sampling 2 chains, 0 divergences]\n", " \n", " " ], @@ -942,7 +942,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 5 seconds.\n", + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 13 seconds.\n", "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", "/home/zv/upstream/pymc-experimental/pymc_experimental/model/marginal_model.py:169: UserWarning: There are multiple dependent variables in a FiniteDiscreteMarginalRV. Their joint logp terms will be assigned to the first RV: disasters_unobserved\n", " warnings.warn(\n", @@ -985,7 +985,7 @@ "\n", "
\n", " \n", - " 100.00% [4000/4000 01:52<00:00 Sampling 2 chains, 0 divergences]\n", + " 100.00% [4000/4000 05:03<00:00 Sampling 2 chains, 0 divergences]\n", "
\n", " " ], @@ -1000,7 +1000,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 112 seconds.\n", + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 303 seconds.\n", "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" ] } @@ -1292,14 +1292,14 @@ " \n", " \n", " switchpoint\n", - " 1889.746\n", - " 2.443\n", + " 1889.836\n", + " 2.397\n", " 1886.000\n", " 1894.000\n", - " 0.074\n", - " 0.052\n", - " 1054.0\n", - " 1541.0\n", + " 0.076\n", + " 0.054\n", + " 967.0\n", + " 1680.0\n", " 1.0\n", " \n", " \n", @@ -1310,12 +1310,12 @@ " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", "early_rate 3.077 0.289 2.529 3.606 0.007 0.005 \n", "late_rate 0.932 0.113 0.725 1.150 0.003 0.002 \n", - "switchpoint 1889.746 2.443 1886.000 1894.000 0.074 0.052 \n", + "switchpoint 1889.836 2.397 1886.000 1894.000 0.076 0.054 \n", "\n", " ess_bulk ess_tail r_hat \n", "early_rate 1734.0 1150.0 1.0 \n", "late_rate 1871.0 1403.0 1.0 \n", - "switchpoint 1054.0 1541.0 1.0 " + "switchpoint 967.0 1680.0 1.0 " ] }, "execution_count": 19, @@ -1332,18 +1332,18 @@ "id": "1fc7e742-67b4-4152-8ec5-4bd8c4f7c640", "metadata": {}, "source": [ - "While `recover_marginals` is able to sample the discrete variables that were marginalized out. The probabilities associated with each draw often offer a cleaner estimate of the discrete variable. Particularly for lower probability values. This is best illustrated by comparing the plot of the log-probabilities with the histogram of the sampled values." + "While `recover_marginals` is able to sample the discrete variables that were marginalized out. The probabilities associated with each draw often offer a cleaner estimate of the discrete variable. Particularly for lower probability values. This is best illustrated by comparing the histogram of the sampled values with the plot of the log-probabilities." ] }, { "cell_type": "code", "execution_count": 20, - "id": "3338722f-a0c6-4277-b458-8ff8dcb59434", + "id": "798d9cbf-5eda-4625-8c9b-84995318bb15", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeZyVdd3/8ff3OofZQBzggLgwlEuJlTkTJENMJWpmhQPlhjUhQW5pSnALQZmlYWMYmJgbdwmTiGjC3Nx1i3suDP60mSJzDwI1WUY5iszGOdf398fVGRiY5axzlnk9Hw8fcJ0513W+43DNnHlfn+vzMdZaKwAAAAAAAAAAsoiT7gUAAAAAAAAAABArwm0AAAAAAAAAQNYh3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWIdwGAAAAAAAAAGQdwm0AAAAAAAAAQNYh3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWIdwGAAAAAAAAAGQdwm0AAAAAAAAAQNYh3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWIdwGAAAAAAAAAGQdf7oXAERj165d6V4CcpQxRsXFxZKkYDAoa216FwRkIc6j3HFI3ZfkD77Q4bFQ8WjtLn84TSvqWziXgMRxHgGJ4zwCkoNzqXODBg1K6vGo3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWYaAkEhYMBlVfX69t27bpww8/1LBhw3TUUUeptLRUPp8v3csDAAAAAAAAkIMItxG3zZs366abbtKTTz6pvXv3HvTxoUOH6rzzztPFF1+svLy8NKwQAAAAAAAAQK6iLQniUltbq69//et65JFHOg22JWnnzp1asmSJzjvvPL311lu9vEIAAAAAAAAAuYzKbcTsz3/+s+bOnSvXddsf+8hHPqKTTz5ZxcXF2rp1q5544gm1tLRIkl566SVdfPHFuu+++zRgwIB0LRsAAAAAAABADiHcRkx27NihmTNntgfbxhjNmTNHU6dOlePsuxHgvffe05VXXqn/9//+nyTpjTfe0DXXXKNf/epXaVk3AAAAAAAAgNxCWxLE5LbbbtOePXvat6+44gpNmzatQ7AtSYMHD9bSpUt1zDHHtD/2pz/9SS+99FKvrRUAAAAAAABA7iLcRtQaGxt1//33t2+XlJTooosu6vL5+fn5+vGPf9y+ba3VbbfdltI1AgAAAAAAAOgbCLcRtccee6zD8Mhzzz1X/fr163af8vJyHX300e3bf/7zn9XU1JSyNQIAAAAAAADoGwi3EbXHH3+8w/aXv/zlqPY744wz2v/e2tqqZ599NqnrAgAAAAAAAND3EG4jan/5y1/a/x4IBDRixIio9istLe2w/fzzzyd1XQAAAAAAAAD6HsJtRGX79u3avXt3+/aoUaOi3veEE07osP3Pf/4zaesCAAAAAAAA0DcRbiMqmzZt6rB9xBFHRL1vIBDo0Jt78+bNSVsXAAAAAAAAgL6JcBtR2b59e4ft4cOHR72vMUaHHXZYl8cCAAAAAAAAgFj5070AZIempqYO20VFRTHt379///a/h0Ihtba2Kj8/P+r9jTExvR4Qrf3/bfHvDIgP51Eu6ezrZ/i69hLOJSBxnEdA4jiPgOTgXOodhNuIyoHhdizBdGfP37NnT0zHKC4ujun1gHgceuih6V4CkPU4j7Kcz3fQQ36fj5/DacC5BCSO8whIHOcRkBycS6lDWxJEpbW1tcP2/j20o5GXl9ft8QAAAAAAAAAgFlRuIyoHVlnv3bs3pv3b2tq6PV5PgsFgTM8HomWMab+C+v7778tam+YVAdmH8yh3DAiHD3pzGAqH9SE/h3sF5xKQOM4jIHGcR0BycC51Ltl3hRJuIyoH9tiOtfL6wOfv34M7GnwDQG+w1vJvDUgQ51G26+xrx9c0HTiXgMRxHgGJ4zwCkoNzKXVoS4KoHBhu79mzJ6b993++3++PuXIbAAAAAAAAAPZHuI2oHHbYYR22t2/fHvW+1toOzz/wWAAAAAAAAAAQK8JtROWYY47psP32229HvW9jY2OHHt1HH3100tYFAAAAAAAAoG8i3EZUhg0bpkMOOaR9++WXX45635deeqnDNuE2AAAAAAAAgEQRbiNqn/nMZ9r//u6772rr1q1R7VdfX99he8yYMUldFwAAAAAAAIC+h3AbUTv11FM7bD/00ENR7bdu3br2v+fn5+tzn/tcUtcFAAAAAAAAoO8h3EbUJkyYoH79+rVv33///R16aXemrq5Omzdvbt/+whe+oKKiopStEQAAxM/agx/74AMpFOrkAwAAAACQZoTbiFogENC5557bvr1161bdeeedXT6/tbVV119/ffu2MUaXXnppStcIAABi19ho9d+/c/Xqawd/bOub0qSzvY83NhJyAwAAAMgchNuIycUXX6z+/fu3b99yyy363e9+J9d1Ozzvvffe04wZM/TGG2+0P/aVr3xFJ5xwQq+tFQAA9Ky+wWpKldWyGikU6vw5waC0rEaaUmVV30DADQAAACAz+NO9AGSXww47TL/61a906aWXynVdWWv1i1/8QitXrtTYsWNVXFysLVu26IknnlBLS0v7fscee6x+9rOfpXHlAAD0TaGQ1fo6actWqbnZqrDQaGSJNK5c2vh3aeZsK2ulA65TH8R1pdZW7/mLFkplpaZ3PgEAAAAA6ALhNmL2xS9+UTfccIOuvfZaNTc3S5L+9a9/6V//+lenzx81apSWLFmiAQMG9OIqAQDo2xobrWrXWq2u9SqvfT7JGMlaq3BYGjhQamryQuvOem13xnUlx5HmzrdasVwKBAi4AQAAAKQPbUkQl0mTJunBBx/Uaaed1mHI5P6GDh2q733ve1q1apWOOuqoXl4hAAB91/6tRoJB77Fw2Gs7Eg57296gyOiD7QjXlVpapNq1tCcBAAAAkF5UbiNuRx99tG699Vbt2rVL9fX12rZtm/bs2aNAIKARI0aorKxMPp8v3csEAKBPqW+wUbcaiZfrSmtqpalVVn4/1dsAAAAA0oNwGwkbNGiQTj311HQvAwCAPqWzXtqDiq1uXhJbq5F47QpKdRukivGpfR0AAAAA6ArhNgAAQBbpqZd2b/E5XrBe0XsvCQAAAAAdEG4DAABkifoGqznzrFpb97Uc6c1Ae3/GkZqarCTakgAAAABID8JtAACALNAbvbRj4YalV1+T7lzqqrDQaGSJNK5c9OAGAAAA0GsItwEAADJcY6NXsd0bvbSj5Vrp+Rekv9Tva4lSXCxNrrSqnGgUCBByAwAAAEgtwm0AAIAU62z4YyyVzrVrvVYkmRJsR7huxyryYFBaViOtXGVVvUAqKyXgBgAAAJA6hNsAAAAp0tPwx2gqnUMhb/9MaEUSDdeVWlulmbOtFi0k4AYAAACQOk66FwAAAJCL6husplRZLavxgm3JG/4YCu0bAhmpdJ5SZVXf0HlZ9vq6fftni0j7lLnzrRobM6zcHAAAAEDOoHIbAAAgDt21Gtn4d0U9/LGnSuctW72K70ggni1cV2pp8VqqTJ9G9TYAAACA5CPcBgAAiEFPrUYGDpSamhTT8EfXlRzHq3ResVwdWpQ0N1uZLM2GXVdaUytNrbJR9RYHAAAAgFjQlgQAACBK0bQa+eADbzvW4Y/7Vzrvr7DQpHyQpDGS3+8F9cm2KyjVbUj+cQEAAACAcBsAACAK9Q1WM2dbtbambrhjpNI5FNqXZo8sSW1LEsfx/lu00Oj4jx/88USrxn2O11oFAAAAAJKNcBsAAKAHjY1Wc+ZZuW7qgu2IAyudx5VLxcWpeS3HkQoKpMU3GZWeZFLS/sQ4UlMTQyUBAAAAJB89twEAAHpQu9ar2E51exBpX6VzxX+2/X6jyZVeK5REgnWf4wXN1pXCrjSoWJpUKVVONB16fCebG5a275Bq7rEHDd6kDzcAAACARBBuAwAAdCMU8oZHprpiO2JfpfO+4LdyotHKVbG3RHEcKT9fuuoKaVfQqKnJqqjIC5fLx0YXLica6LtWWvew5PPZDoM3i4ulyZU25eE6AAAAgNxFuA0AANCN9XX7hkf2BjcsvfqadOdSt0OVc/UCo5mzrRwnuoDbcbx+2Tfe4LUc8cQeIvuT9G7xwL7hwaC0rEZaucqqeoFUVkrADQAAACA2hNsAAADd2LJV8vlSO9Rxf66Vnn9B+kv9gVXO0rU/lm64UWpp6T7gjvTSrl6wf7Adn8GDFHWgHivXlVpbpZmzrRYtJOAGAAAAEBvCbQAAgG40N9uUDFrszoGDKyNVzvn50rw50qbN0upa7/FU99IeNMh73VhbokTLdb3wfO58qxXLRYsSAAAAAFEj3AYAAOhGYaGR7Y1Jkj2IVDlfe520aKHR1CqpboNXWR5PL+1o9esXe0uUWLmuV41eu9Zq+rTkrT0Uslpf5/0/YpglAAAAkHsItwEAALoxsqT3WpL0pGOVs1HFeKMKSfH00o5FWanRooXe6/bUEiVeriutqZWmVtmEg+fGRqvatXZfdbtPDLMEAAAAcpCT7gUAAABksnHlXhiaKfavcu5NZaVGK5Z7FeOR/x8+xxs46UvSO8pdQa8aPRH1DVZTqqyW1ewbBBoOS6HQvosUkTYvU6qs6hvSX5UPAAAAID6E2wAAAN3w+40mV3oV05kiUuUcCvVuMBsIGE2f5mjNA0Y3XG/03RlGF5wvfXeG0RmnexXSifA5XguReNU3WM2cbaPqD77/MEsCbgAAACA7ZdCvaQAAAJmpcqJRfn7sAbcxXmXzwIHedqTS2UlCJ4xkVDnHy+/3WqJ86wKji2Y4+tYFRocdpoQHbxrH6x8ej8ZGqznz7EHDOLvjupK1XruVxkYCbgAAACDb0HMbAACgB4GAUfUCxTRU0XG8sHfRQqNPfbLj8MdXX5OefyGx3tWRKueK+A+RVMkYvOmGpVdfk+5c6sY8/LF2rVexHesSUjXMEgAAAEDqEW4DAABEIZahio4jFRRI1QuMSk/yAtOK8Wof/njnUld/qU8s3N5X5ZwZgWwyBm+61gv9/1If2/DHUMgbHhnv/89kDrMEAAAA0HtoSwIAABClaIYqDiqWplZJK5bvC7YP5FU5J7YW60pFRZkTxCZr8Kbrxj78cX3dvuGR8UpnmxcAAAAA8aFyGwAAIAbeUEWjqVW2Q6uRoiKvjUb52J7baCSjyjnsesfJFN7gTatlNYlVpHdm/+GPixZ6Fxn2t2WrN8wykf+nmdbmBQAAAEDPCLcBAADi4A1V3NdqJBaRKudEqo0HFXtBeiapnGi0cpXX+zoVAbfjeG1hVixXhxYlzc02icMsM6caHgAAAED3aEsCAADQy7wqZy+sjYfjSJMqoxu02Ju8wZtGxsT/uXVn/+GP+8vFNi8AAAAAeka4DQAAkAaVE43y82MPgSPDKisnZmYQ6w3eNCooSF3AvabWGyIZkYttXgAAAAD0jHAbAAAgDeKpcnYcyRipeoHp0JYj03Q3eNNJwrIPHP6YjGGWmdjmBQAAAED3CLcBAADSJJYq50jF9uKbjEpPytxgO8IbvOlozQNGN1xv9N0ZRhecL40Zk3hFd2T4Y0SutnkBAAAA0D3CbQAAgDTqrsrZ9593aoOKpalV0orl2RFs788bvGn0rQuMLprh6OMfSzzc3jf8cZ9cbfMCAAAAoGv+dC8AAACgr/OqnI2mVlnVbfCqkpuarIqKjEaWeO0ycqWq2Bv+mNj0Rzcsbd8h1dxj1dxsVVjo/X9acJ00e44XWLtuz8fJljYvAAAAADpHuA0AAJAhvCpnqUKSlJthazKGP7pWWvew5PNZGSNZaxUOe5Xvp58m/fnPUmtb9wF3pGK7ekH2VcMDAAAA8BBuAwAA7CcUslpf51VP718VPK48d6qn0yky/DEYTPxYB4bkwaD08CNSXp70pdOlDc95j/kcr5WJdaWw67V5mVTptSKhYhsAAADIXoTbAAAAkhobrWrXWq2u/U8g6tNBVcGTKy2BaIK84Y9Wy2qiax0SK9eV2tqkRx6VFlZLLS0mp9u8AAAAAH0Z4TYAAOjz6hus5syzam3dF7h2VhW8rEZaucqqeoE3CBLxqZxotHJVx//fyeS6XtuR+ddIK5ZLFeONcrXNCwAAANCXJTirHgAAILvVN1jNnB1d0Oq6UmurNHO2VX1DYkMR+7JAwKh6gZExXgidCq4rtbRItWv5OgEAAAC5inAbAAD0WY2NXsW260ZfQey6krXS3PlWjY0Ep/EqKzVatNCooCC1AfeaWq+POgAAAIDcQ7gNAAD6rNq1XsW2jTH7pCo4OcpKjVYsN5pa5fU0l7zhj36/92cy7ApKdRt6fl4oZPXU01Y191jdudRVzT3eNsE4AAAAkLnouQ0AAPqkUMgbHhlvz+dIVfDUKstwwgQEAkbTpxlNrbKq26AOwx83b7Z69PGD+5/Hwud4x6zo4uMMEgUAAACyF+E2AADok9bXeWFmIiJVwRXjk7Givs3vN6oYHwmhvRD5zqVWJsE82TheWN7ZQEkGiQIAAADZjbYkAACgT9qy1avSTUSkKhipUVhoYm4ZcyDrSkVFnQfbDBIFAAAAshvhNgAA6JOam5NZFYxUGFmSWEsSSQq73nH2xyBRAAAAIDcQbgMAgD4plVXBSI5x5fsGTcZrULFUPrbjYwwSBQAAAHID4TYAAOiTUlUVjOTx+40mV0pOnO9YHUeaVKkOAz+TNUg0FCLgBgAAANKNcBsAAPRJqaoKRnJVTjTKz4894HYcqaDA239/yRwkCgAAACC9CLcBAECflIqqYCRfIGBUvcDImOi/Vo4jGSNVLzAKBDp+fRgkCgAAAOQOwm0AANBnJbsqGKlRVmq0aKFRQUHPX6vI12bxTUalJx389WGQKAAAAJA7/OleAAAAQKqFQlbr67xq2+Zmq8JCo5ElXmuS6gVGM2dbOU50fZi7qwpG6pSVGq1Y7g1zXF3rtRbxOV7QbF2v//mgYq+avnJi118bb5BoYsE0g0QBAACAzEC4DQAAclZjo+0Yhvq8YNpaq3DY67k9uVK69sfSDTdKLS3dB9yRquDqBZ1XBSO1AgGj6dOMplZZ1W3wLlY0NVkVFXkXK8rH9twmhkGiAAAAQO4g3AYAADmpvsFqzjyr1tZ9gfWBoWYwKC2rkfLzpXlzpE2blVBVMHqH329UMV6qkCTF9rWIDBJNZKgkg0QBAACAzEC4DQAAslZX7UYKC61mz5Gs7bnViOtKra3StddJixYaTa1S3FXByHzeIFGrZTXRtaE5EINEAQAAgMxBuA0AALJOT+1GYuW6Xmg5d77ViuVGFeNNXFXByA6VE41WrupY1R8NBokCAAAAmaWHefMAAACZpb7BakqVV3kbaS0RDkuhUGK9lF3X67lduzaxYYPIfIGAUfUCI2O8wDoaDBIFAAAAMg+V2wAAIKN01WpkXLm08e/SzNk2qnYj8XBdaU2tNLXK0nYix5WVGi1a6FXrM0gUAAAAyE6E2wAAICP01Gpk4ECpqckLIW0Ki6t3Bb2e2xXjU/cayAxlpUYrlqvjvzsGiQIAAABZg3AbAACkXX2D1Zx5HXsgH9hi5IMPemctPserGq/onZdDmgUCRtOnGU2tsgwSBQAAALIM4TYAAEir+gab0lYjsTKOF24yTLJv8fuNKsaLQaIAAABAFiHcBgAAadPY6FVsp7rVSCysKxUVEW4CAAAAQKaLcj48AABA8tWu9VqRZEqwLXl9lkeWpHsVAAAAAICeULkNAADSIhTyhvhlQiuS/Q0q9vosA50JhazW13m9uZubrQoLvd7c48rpzQ0AAAD0NsJtAACQFuvrpGAw3avoyHGkSZWElDhYY6NV7VrvgkwwKPl8kjGStVbhsFRcLE2utKqcaBQI8O8HAAAA6A20JQEAAGmxZasXEGYKx5EKCqTKiQST6Ki+wWpKldWymn0XZMJhKRTy/pS8x5fVSFOqrOobMqjPDgAAAJDDCLcBAEBaNDdbmQzJkR3Hq8KtXkDVLTqqb7CaOdvrDd9TCx3XlVpbpZmzCbgBAACA3kC4DQAA0qKw0GTEIMlIxfbim4xKTyLYxj6NjVZz5lm5bvS94V3XG5A6d75VY2MG/AMHAAAAchjhNgAASIuRJftaOvQWnyP5/d6fkjc8cmqVtGI5wTYOVrvWq9iO9SKM60otLd7+AAAAAFKHgZIAACAtxpV7Q/hSOVQy0m7kphul5majLVulpiaroiKjkSVS+ViGR6JzoZA3PDLaiu0Dua60plaaWmX5NwYAAACkCOE2AABIC7/faHKlN6Qv3gCxO5F2I9UL9lVlV0iSCBrRs/V1iV942RWU6jZIFeOTsSIAAAAAB6ItCQAASJvKiUb5+V4QHQtjvPYiAwd627QbQbJt2Sr5fIkdw+d4xwEAAACQGlRuAwCAtAkEjKoXSDNnWzlOdBXckVYjixYafeqTXmUs7UaQbM3NVibBf0LG8f5dcrcAAAAAkBqE2wAAIK3KSo0WLZTmzrdqaek+4O601ch42o0g+QoLjWyskyQP4Ial7TukmnusmputCgu9iy/jyrn4AgAAACQD4TbiFg6H1dDQoDfffFM7d+7UgAEDNHz4cJWVlam4uDjdywMAZJGyUqMVy6Xatd4Qv2DQa+lgHMm6Utj1Wo1MqvRamQQCBINIrZElUjic2DFcK617WPL5vCpwa63CYW+Q6uRKy79lAAAAIEGE2znmnXfe0caNG/X3v/9dGzdu1Isvvqg9e/a0f/zyyy/XFVdckdBrtLW16fbbb9eqVau0c+fOgz7er18/nXLKKZo1a5Y+8pGPJPRaAIC+IxAwmj7NaGqVpdUI0m5cuRdCJzpUUjo4JA8GpWU10spVVtULvIs7AAAAAGJHuJ0DWlpadNVVV+nFF1/sNGxOpjfffFNXXHGFXn755S6fs3fvXj388MN65pln9LOf/UwTJ05M6ZoAALnF7ze0GkHa+f1GkyutltVE1ws+Vq4rtbZ6/eYXLSTgBgAAAOLhpHsBSFxbW5ueeOKJlAfbu3fv1kUXXdQh2C4sLNRXvvIVXXzxxTrvvPNUUlLS/rGmpibNmTNHTz/9dErXBQAAkAqVE43y871e76ngupK1Xr/5xsbE+nsDAAAAfRGV2zns8MMP12GHHaa//vWvSTne/PnztWnTpvbtk08+WYsXL9bgwYPbHwuHw7r77rv1y1/+8j99JcOaOXOmHnroIQUCgaSsAwAAoDcEAkbVC7zqasdJXQV3S4vXb37Gd5J/fAAAACCXUbmdIwYPHqzPf/7z+t73vqfbb79dzz77rJ588kn94Ac/SMrxN27cqHXr1rVvH3vssVq6dGmHYFuSfD6fpk+frssvv7z9sd27d+uOO+5IyjoAAAB6U1mp0aKFRgUFqa3gXlMrhUJUbwMAAACxoHI7BwwcOFB1dXUpfY3bbrutw/aPf/xj5eXldfn8iy++WLW1tdq6daskaeXKlbr00ksPCsMBAAAyXVmp0YrlXnX16lpvIKTPkYwjWVcKJ6Gie1dQqtsgTfxa4scCAAAA+goqt9GjPXv26JlnnmnfPuaYYzR27Nhu9+nXr5/OOeec9u22tjY9/vjjKVsjAABAKgUCRtOnOVrzgNEN1xt9d4bRBedL351hdMbpks+X2PF9jrRlK5XbAAAAQCwIt9Gjp59+Wm1tbe3bZ5xxRlT7ffnLX+6w/dhjjyV1XQAAAL3N7zeqGG/0rQuMLprh6FsXGB12mGRMYsc1jtTUlJw1AgAAAH0F4TZ69MILL3TYLi0tjWq/kpISDRkypMvjAAAA5ILCQiObYNG1daWiouSsBwAAAOgrCLfRo02bNnXYPuGEE6Led9SoUe1//+CDD7Rz586krQsAACATjCyRwuHEjhF2pZElCZZ/AwAAAH0M4TZ6tH+4nZeX16EauydHHHFEl8cCAADIBePKpeLixI4xqFgq736kCQAAAIADEG6jRzt27Gj/+/Dhw2ViaCp52GGHddjetm1b0tYFAACQCfx+o8mVkhPnO2vHkSZVescBAAAAED1/uheAzNbS0qLwfvfZFsXYDHLAgAEdtpvinJQUS6AOxGL/f1v8OwPiw3mUSzr7+hm+rlGoPMvRylWuWlsl141+P8eRCgq8/TmXgMRxHgGJ4zwCkoNzqXcQbqNbB4bR+fn5Me2fl5fX7fGiVZzovb5AFA499NB0LwHIepxHWc7nO+ghv8/Hz+EoFBdLv7llr757yQeSogu4Hcf77ze3DNRxx/br8DHOJSBxnEdA4jiPgOTgXEod2pKgW62trR22+/Xr18UzO3dguN3S0pLwmgAAADLRZ8f00123D1RhQc8tShxHKiyQlt4xUGNGx/b+CgAAAICHyu0kmTBhgt5+++2UHX/WrFm66KKLUnb8rhxYqb13796Y9m9ra+uwXVBQENc6gsFgXPsBPTHGtF9Bff/992WtTfOKgOzDeZQ7BoTDB705DIXD+pCfw1H72HHSPTWO/met1YNrrIJByedIxpGsK4Vdb3jk5ElGZ000GhrYo8j/Xs4lIHGcR0DiOI+A5OBc6lyy7wol3Ea3DuyxfWAld08ODLdj7dkdwTcA9AZrLf/WgARxHmW7zr52fE1jFRgifedCo29/S6rbIG3ZKjU1WRUVGY0skcrH7hse2dX/W84lIHGcR0DiOI+A5OBcSh3CbXSroKBAPp+vfajknj17Ytr/ww8/7LAdb7gNAACQbfx+o4rxUoWkzod1AgAAAEgE4XaS3HzzzTFXNcfiqKOOStmxezJs2DC98847kqTt27fLWhv1lNdt27Z12B4+fHjS1wcAAAAAAACg7yHcTpJPfepT6V5CyhxzzDHt4XZbW5saGxs1dOjQqPaN7Lf/sQAAAAAAAAAgUYTb6NHRRx+tZ555pn37pZde0he+8IWo9n355Zfb/z5w4EAFAoGkrw8AACDbhUJWdRuk7Tua1dRs5RhXJSOkceX7+nMDAAAA6IhwGz36zGc+o+XLl7dvNzQ0RBVub9myRe+++2779ujRo1OyPgAAgGzV2GhVu9Zqda0UDFr5fE0yRrJWCoel4mJpcqVV5USjQICQGwAAANgf4TZ6VFFRoby8PLW1tUmS1q1bp6uuuqrH/R566KEO26eeemoqlgcAyBKhkNX6OmnLVqm52aqw0GhkCZWp6LvqG6zmzLNqbZVc13vsPzO82wWD0rIaaeUqq+oFUlkp5woAAAAQQbiNHvXv318VFRV67LHHJEmbNm3Shg0bNHbs2C732bt3rx544IH27by8PE2YMCHlawUAZJ6OlamSz6f/VKZaKlPRZ9U3WM2cbWXtvmC7K64rtbZKM2dbLVpIwA0AAABEOOleALLDJZdc0mH7uuuua6/k7swdd9yhrVu3tm+ff/75Gjx4cMrWBwBIj1DI6qmnre7672bdvKRJNfe4euppq1DISvICvClVVstqvGBb8ipTQ6F9FaqRytQpVVb1DTYtnwfQmxobvYpt1+052I5wXa9Vydz5Vo2NnCcAAACAROU2onTiiSfqjDPO0Lp16yRJb7zxhmbMmKHFixd3CK1d19Xdd9+tJUuWtD92yCGH6OKLL+71NQMAUieaPsFjT7Z65FFRmQocoHat14rExphRu67U0uLtP30a5wgAAABgrI31bTUy0ZIlS/Sb3/zmoMettXL3SxSMMXKcgwv2jzzySD3yyCPdvsYHH3ygc889V5s3b25/rLCwUBMmTNCIESO0a9cu1dXVdajY9vl8uuOOO1RRURHPp9Vu165dCe0PdMUYo+LiYklSMBgU3xKBnnXWJzhZHEcqKJBWLKdFSTocUvcl+YMvdHgsVDxau8sfTtOKck8oZDXpbNt+J0M8BhVLqx8w9KoHOsF7OyBxnEdAcnAudW7QoEFJPR6V2znC61sajvt50ew7cOBA3XXXXbr88sv1yiuvSJKam5v1xz/+sdPnFxUV6ac//WnCwTYAIHPE0ic4HlSmItetr1NCwbYk7QpKdRukivHJWBEAAACQvei5jZiMGDFC999/vy677DINHTq00+f069dPp59+uh588EGdddZZvbxCAECqxNMnOB6uK62pVXvfbiCXbNnqDVVNhM/xjgMAAAD0dVRu54grrrhCV1xxRa+8Vl5enq688kpdfvnlqq+v15tvvqnGxkb1799fw4cPV1lZWdJvMQAApF+8fYLjQWUqclVzs5VJ8KYE40hNTVYSdzcAAACgbyPcRtx8Pp/GjBmjMWPGpHspAIAUC4W84ZGprNjeX6QylcZWyDWFhSbhfotuWHr1NenOpa4KC41GlkjjykUPbgAAAPQ5hNsAAKBHyegTHAsqU5GrRpZIUYw66ZZrpedfkP5SH5mnIhUXS5MrrSonMowVAAAAfQc9twEAQI+S0Sc4FtaViooI6JB7xpV7QXSiXFcKhfYF5cGgtKxGmlJlVd9Av3oAAAD0DYTbAACgR8noExyLsOtVuAK5xu83mlwpOSl4F+66UmurNHM2ATcAAAD6BsJtAADQI69PcO+93qBiqXxs770e0JsqJxrl56cu4LZWmjvfqrGRgBsAAAC5jXAbAAD0KBl9gqPlONKkSobjIXcFAkbVC4yMSV3A3dIi1a4l3AYAAEBuI9wGAAA9Slaf4J44jlRQ4FW2ArmsrNRo0UKjgoLUBdxraqVQiIAbAAAAuYtwGwAA9CiVfYIjHEcyRqpeYBQIEG4j95WVGq1YbjS1at/FI59P8vslJwmnwK6gVLch8eMAAAAAmcqf7gUAAIDsUDnRaOUqq9ZWryo0mSIV29ULjEpPIthG3xEIGE2fZjS1ymrDc0bbdxRoT5PV3/7WrOdfSOxc8znSlq1SRfKWCwAAAGQUKrcBAEBU4ukT7Djef2eesV9lquNVpvr+c4xBxdLUKmnFcoJt9F1+v1HFeKMZ3ynUlZcX6fiPm4TvlDCO1NREWxIAAADkLiq3AQBA1Lw+wdLc+VYtLd1XlR5YjR0KWdVt8CpJm5qsioqMRpZI5WMZHgkcqLBQsgnm0m5Y2r5DqrnHqrnZqrDQO+fGlXPOAQAAIDcQbgMAgJh4fYKl2rVWq2ulYNDrE2yMZF0p7HrV2JMqvVYmkf7ZXmVqpEUCwRrQnZElRuFwYum2a6V1D0s+n/XOT2sVDnt3UUyutB3OTwAAACAbEW4DAICYddUn2Oe0qGQE1dhAosaVeyF0MJj4scLhjtvBoLSsRlq5yqp6gXfBCgAAAMhGhNsAACBukT7BxcWFkqRgsE020V4KAOT3G02u9ELoZA9wlbxjtrZKM2dbLVpIwA0AAIDsxEBJAAAAIANVTjTKz49+gGusXNfr6z13vlVjIxelAAAAkH0ItwEAAIAMFAgYVS8wMia1AXdLi9dDHwAAAMg2hNsAAABAhiorNVq00KigILUB95paKRQi4AYAAEB2IdwGAAAAMlhZqdGK5UZTq7whk5LkcyS/3/szGXYFpboNyTkWAAAA0FsYKAkAAABkuEDAaPo0o6lVVnUbpC1bpaYmq6Iio82brR59XAqH4z++z/GOWZG8JQMAAAApR7gNAAAAZAm/36hifCSENpKkO5daGZPYcY3jheWRYwIAAADZgLYkAAAAQBYrLDSyCbbLtq5UVESwDQAAgOxCuA0AAABksZElibUkkaSw6x0HAAAAyCa0JQEAAAcJhazW13k9eJubrQoLjUaWSOPKvbYIADLHuHJv0GQwGP8xBhVL5WOTtCAAAACglxBuAwCAdo2NVrVrrVbXekGZzycZI1lrFQ57AdrkSqvKiUaBACE3kAn8fqPJlVbLaiTXjX1/x5EmVXLhCgAAANmHtiQAAECSVN9gNaXKC8giFaDhsBQK7Wt5EAxKy2qkKVVW9Q0JNvkFkDSVE43y872gOhaOIxUUePsDAAAA2YZwGwAAqL7BauZsq9bWnis/XVdqbZVmzibgBjJFIGBUvcDImOgDbsfx7syoXsCdGAAAAMhOhNsAAPRxjY1Wc+ZZuW70LQ1cV7JWmjvfamcjATeQCcpKjRYtNCoo6DngjlRsL77JqPQkgm0AAABkJ8JtAAD6uNq1XsW2jTGjdl2ppUX6n7WE20CmKCs1WrHcaGqV1yNfknyO5Pd7f0re8MipVdKK5QTbAAAAyG4MlAQAoA8LhbzhkfEMoZO8/Vavsfr+5Vb9+hGSAZkgEDCaPs1oapVV3QZpy1apqcmqqMhoZIlUPpbhkQAAAMgNhNsAAPRh6+v2DY+M166g9PQzezXhlLxkLAlAkvj9RhXjpQpJEmE2AAAAcg9tSQAA6MO2bJV8vsSO4XOkTZvDyVkQAAAAAABRItwGAKAPa262MgkWdBpH2tNE320AAAAAQO8i3AYAoA8rLDQxD5I8kHWl/kW0PAAAAAAA9C56bgMA0IeNLJHCCXYUCbvS0R9NsLcJgLQJhazW13ltipqbrQoLvcGT48oZPAkAAIDMRrgNAEAfNq5cKi5ObKjkoGKpYny/JK0IQG9pbLSqXWu1utb7HuDzScZI1lqFw973hsmVVpUTjQIBQm4AAABkHtqSAADQh/n9RpMrJSfOdwSOI02eZNSvH8EXkE3qG6ymVFktq9l3cSsclkKhfXdzBIPSshppSpVVfQN99QEAAJB5CLcBAOjjKica5efHHnA7jlRQIJ01kWAbyCb1DVYzZ1u1tkqu2/1zXVdqbZVmzibgBgAAQOahLQkAAH1Ed311qxcYzZxt5Tg9h12SF2wb4+03lHYFQNZobLSaM8/KdRX1MFnX9c75ufOtViwXLUoAAACQMQi3AQDIcdH11ZWu/bF0w41SS0v3AXekYrt6gVHpSYRcQDapXetVbEcbbEe4rve9oXat1fRpnPcAAADIDITbAADksPoGr0pz//YDkX66EZG+uvn50rw50qbN2heEO5JxJOtKYdcbHjmpUgyYA7JQKORd5Irm7ozOuK60plaaWmXl93P+AwAAIP0ItwEAyFGRvrrWRt9X99rrpEULjaZWSXUbvBYmTU1WRUVeC5PysSLUArLU+rp9wyPjtSvofW+oGN/987prg8T3EAAAACQL4TYAADko8b66RhXjjSokSQRRQC7YstVrS3Tg3Rux8DnecSq6+Hh0bZAsd38AAAAgKZx0LwAAACRfMvrqAsgtzc1WJsE82Tje3RydqW+wmlJltaxmX4V4OCyFQvsC9UgbpClVVvUNfJ8BAABAYgi3AQDIMcnqqxsKETwBuaSw0MR8wetA1pWKig5OyCNtkPbv79+VSBukmbMJuAEAAJAYwm0AAHJMMvvqAsgdI0sSa0kieYNlR5Z0fGz/NkjRXlSLtEyaO9+qsZGAGwAAAPEh3AYAIMdE+uomItJXF0DuGFfu9bxOxKBib7Ds/miDBAAAgHQh3AYAIMekuq8ugOzk9xtNrvQGx8bDcaRJld5xImiDBAAAgHQi3AYAIMeksq8ugOxWOdEoPz/2gNtxpIICb//90QYJAAAA6US4DQBAjklVX10A2S8QMKpeYGRM9AG340jGSNULjAKBjuE2bZAAAACQToTbAADkmFT11QWQG8pKjRYtNCoo6DngjlRsL77JqPSkg+/moA0SAAAA0smf7gUAAIDk8vrqWi2ria8Pbmd9dQHklrJSoxXLvWGOq2u91iI+xwuarevdvTGo2PteUDnx4IrtCK8NUmLBtBuWtu+Qau6xam62Kiw0GlniXajj+xAAAAC6Q7gNAEAOqpxotHKVVWtrbAF3V311AeSeQMBo+jSjqVVWdRu81iBNTVZFRV64XD6253A5GW2QXCute1jy+bwqcGutwmHvDpTJlbbbcB0AAAB9G+E2AAA5yOurK82cbeU40QXc3fXVBZC7/H6jivFShSQptnM/0gYp0aGS0sEheTAoLauRVq6yql7gVZunUyhktb7OuwhAhTkAAEBmINwGACBHeX11pbnzrVpaug+4IxXb1Qs676sLAJ1JtA1ST1xXam31LtQtWpiegLux0XZs3+ITFeYAAAAZgoGSAADkMK+vrtHUqn1DJn2O5Pd7f0peX92pVdKK5QTbAGJXOdEoP7/n4ZTxcl3JWu9CXWNjcgdPhkJWTz1tVXOP1Z1LXdXc422HQt7r1DdYTanywvtIdXo4LIVC+yrNIxXmU6qs6hsYjAkAANCbqNwGACDHJaOvLgBIXbfmWHCdNHuOom6DFCvXlVpavAGY06cl/v0qmmrssSdbPfKoF6z39DllQoU5AABAX0S4DQBAH5FIX10AfVs0YfDpp0l//rPU2pa6gHtNrTS1yiZ0Qa6+wWrOvI4Ddzvr9/3QutjX5zhehfmK5aJFCQAAQC8g3AYAAADQpWjD4IcfkfLypC+dLm147j8huCMZR7KuFE5C4L0rKNVtkCrGd/+8rirMCwutZs+Jrho7HsmuMAcAAED3CLcBAAAAdKq+wWrmbBt1a462NumRR6WF1VJLi+nQBmnzZqtHHz84GI+Fz/EC64ouPt5ThXlvSFaFOQAAAHpGuA0AAADgII2NXsV2ZKBjNCKtOeZfI61YLlWMN4q0QbpzqZVJMOs1jheWd9ZaKZoK894SbYU5AAAAEpOimeYAAAAAslntWi8ojjbYjti/Ncf+CgtNzMc6kHWloqLOg+2ZszsG2+kUqTAHAABAamV8uB0KhbRr1y5t375du3fvVigUSveSAAAAgJwWCnmtPeINiiOtOUKhfWn2yJLEK6nDrnec/e1fYZ4Jwba0f4U5AAAAUikj2pKEQiG9+OKLeuWVV/Taa6/p1Vdf1ZYtW/Thhx+qtbX1oOcXFhbqyCOP1FFHHaVjjz1WpaWlOumkkzR48OA0rB4AAADILevrvJ7ViTiwNce4cqm4OLHjDiqWysd2fCzeCvNU6qrCHAAAAMmVtnC7paVFjz76qP70pz9pw4YNam5ubv+Y7eGdaVNTk15//XW98cYbevLJJ9sfHzVqlM4880x9+ctf1ogRI1K1dAAAACCnbdnqDWNM5vBHv99ocqXVspr4KqwdR5pUqQ5DGhOtME+VzirMAQAAkHy9Hm6/8847uvvuu/WHP/xBe/bs6RBk+/1+DRs2TMOHD9dhhx2mgQMHqqCgQAUFBXIcRy0tLWpra1NTU5N27Nihbdu2adu2bdqzZ48k6aWXXtLLL7+sX/3qVxo3bpxmzJih8vLy3v4UAQAAgKzW3Jya4Y+VE41Wroq9N7bjSAUF3v77S0aFeSp0VmEOAACA5Ou1cPv999/XkiVLdN9992nv3r2y1mrw4MEaP368xowZo1GjRuljH/uY8vLyYj72m2++qZdeekkbN27UU089pddff13PPvus1q9fr0984hO65pprdOKJJ6bgswIAAAByjzf8MbE+H5215ggEjKoXSDNnWzlOdAG340jGSNULjAKBjsdLRoV5snVWYQ4AAIDU6JVw+//+7/90/fXX691331VRUZEmTZqkb3zjGzrxxBNlEi0JkTRixAiNGDFCZ5xxhv7rv/5L27Zt0x//+Efdd999evHFF3X++efr7LPP1tVXX60BAwYk4TMCAAAAcleqhj9KUlmp0aKF0tz5Vi0t3QfckYrt6gVGpScd/HtDMirMk6mrCnMAAACkRkrD7b179+r666/Xfffdp0MPPVRXX321zjvvPPXv3z+VL6vhw4dr+vTpmj59up566iktXrxYq1at0gsvvKDbbrtNI0eOTOnrAwAAANksVcMfI8pKjVYs94ZBrq71XsfneK1MrOsF44OKvQroyokHV2xHJKPCPFm6qzAHAABAaqQs3G5ubtYll1yi559/XhdeeKEuv/zytFRNf/7zn9fnP/95/elPf9LPf/5znXPOObrlllt08skn9/paAAAAgGyQiuGPBwoEjKZPM5paZVW3wWsx0tRkVVRkNLLEC8Z7au2RjArzZOipwhwAAACpkZJwu7W1Vd/5zne0fft2LVu2TGPGjEnFy8TkK1/5isrLyzV//nxdeumluvvuu+nDDQAAAHQh2cMfu+L3G1WMlyok7T98MhrJqDDvjuN4f55xulT3XPwV5gAAAEiNlITbs2bN0t69e/XAAw9o8ODBqXiJuAwaNEi/+c1vdPPNN+uiiy7SqlWrVFLSSSNAAAAAoI9L9vDHVEi0wrw7B1Zjh0LxV5gDAAAgNVISbo8YMUK//OUvVVhYmIrDJ+zKK6/UUUcdpZ07dxJuAwAAAF1I5vDHVIm3wnx/0VRjJ1JhDgAAgNRISbg9Z86cVBw2qb7xjW+kewkAAABAxkvW8MdEhUJW6+u8yunmZqvCQq9yely5F6jHU2F+041Sc7OhGhsAACBLpWygJNLDWqutW7fq9ddf17Zt2/Thhx8qPz9fxcXF+tjHPqbjjz9ePp8vKa8VDofV0NCgN998Uzt37tSAAQM0fPhwlZWVqbi4OCmvAQAAgPRLxvDHeDU22o7Bus8Lpq21Coe9ntuTK6VrfyzdcKPiqjCnGhsAACA7ZVy4vWvXLm3fvl3HH398upeSNXbv3q1HH31UTz75pJ577jnt2rWry+cOGDBAkydP1oUXXqijjjoqrtdra2vT7bffrlWrVmnnzp0Hfbxfv3465ZRTNGvWLH3kIx+J6zUAAACQeXq7NUd9g9WceR1bjoTDHZ8TDErLaqT8fGneHGnTZmVshTnV4AAAAMllrLU23YuIWL58uaqrq+W6rsaPH6+77ror3UvKeBs2bNCMGTO0d+/emPYrKirSj370o5jbs7z55pu64oor9PLLL0f1Gj/72c80ceLEmF6jM90F9kAijDHtdxoEg0Fl0LdEIGtwHuWOQ+q+JH/whQ6PhYpHa3f5w2laUd/CudRRfYPVzNlW1sbWamTRQqMTP6UMqjBXhwrzVAbr4DwCkoHzCEgOzqXODRo0KKnHy5jK7U2bNrUH29ZaPfPMM9qyZYtGjhyZ7qVltA8//PCgYDsvL0+f/vSndfTRR2vw4MFqa2vT66+/rueee06tra2SpKamJs2bN08tLS365je/GdVr7d69WxdddJE2bdrU/lhhYaFOOeUUjRgxQsFgUHV1ddq6dWv7a8yZM0fFxcWqqKhI0mcMAACAXNfY6FVsu64XDkfDdb2Ae+58qxXLjSrGm4ysMF+5yqp6gdfLHAAAAInJmHC7rq5OeXl5am5uliQNGzZMhx9+eJpXlT2MMSovL9d5552nU045Rfn5+Qc9Z+fOnbruuuu0bt269seuv/56feYzn4mqDcz8+fM7BNsnn3yyFi9erMGDB7c/Fg6Hdffdd+uXv/zlf/oghjVz5kw99NBDCgQCCX6WAIADcfs7gFxUu9YLimMtcHJdr+d27Vqr6dN653tgLBXmriu1tkozZ1stWkjADQAAkKiMCbfb2tp04oknatq0afrXv/6lM888U3l5eTEd4/3339cTTzyhSZMmpWaRGerzn/+8Zs2a1WNAPXToUP3617/WrFmz9L//+7+SJNd19atf/Up33nlnt/tu3LixQyh+7LHHaunSpQd9jXw+n6ZPn67m5mbdcsstkryK7zvuuEPz58+P59MDAHQiugFrltvfAWSdUMj73hZNK5LOuK60plaaWmVTfpEv8Qpz8T0aAAAgAU66FxBx0kknaePGjRo9erQuvPBCHXbYYTEfY+vWrfrhD3+YgtVlri9+8Yu66667YhrA+eMf/1j9+/dv316/fr12797d7T633XbbQcfo7uLDxRdfrJKSkvbtlStX6r333ot6jQCArtU3WE2pslpW4wXbknf7eyi07zb4yO3vU6qs6hvo7QYge6yv2/e9LV67gl7P7VRLRoU5AAAA4pcx4XZpaalGjx6tefPmKRQKxXWMvjh00O+Pvfi+uLhY48ePb9/eu3dvtwMi9+zZo2eeeaZ9+5hjjtHYsWO7fY1+/frpnHPOad9ua2vT448/HvNaAQAdRW5/37+va1f2v/2dgBtAttiy1bsbJRE+xztOKiWrwjwU4vszAABAvDIm3Jakm2++WeFwWJMnT9Zzzz0X8/6vvPJKClaVm/avqpakxsbGLp/79NNPq62trX37jDPOiOo1vvzlL3fYfuyxx2JYIQDgQPvf/h5tmBK5VX7ufKvGRgIUAJmvudnKJNipwzhSU1Nqv+dlU4U5AABArsqYntvhcFjGGP3yl7/U2rVr9aMf/UjhcFif+9zndPzxx2v48OEaMGCAHKfzPL65uVkrVqzo5VVnrz179nTY7tevX5fPfeGFFzpsl5aWRvUaJSUlGjJkiN59991OjwMAiE02DVgDgHgVFhrZWL/RHcC6UlFRar/fRSrMI+2g4hGpMK9I3rIAAAD6lIwJt5cvX64bb7yxw2PWWj3wwANRH8NaK5NomUcf8eqrr3bY7q7H+aZNmzpsn3DCCVG/zqhRo9pbmnzwwQfauXOnhg4dGsNKAQBSdg1YA4BEjCxJLDCWpLDrHSeVklthzvdlAACAeGRMuD1o0KBOKzQSrdrAwd566y3V19e3bw8cOLDbwHr/cDsvL09DhgyJ+rWOOOKIg45FuA0AsUvm7e8V43t8KgCkzbhyqbg4se95g4ql8u5HxCQsGRXmbljavkOqucequdmqsNBoZIn3/4ALkQAAAD3LmHA7EpgaY3T44Yfr05/+tAoKCqLef8+ePXrqqafU2tqaqiXmjFtvvbXDG/HTTz+928GUO3bsaP/78OHDY6qOP7AifNu2bTGsFAAQwe3vAPoKv99ocqXVspr47lZxHGlSZerD4WRUmLtWWvew5PN5VeDWWoXDXrg/udKqcqJRIEDIDQAA0JWMCbcHDx4sSTr22GP1hz/8QXl5eTEf49Zbb9WSJUuSvbScsn79eq1evbp9u1+/frr44ou7fH5LS4vC+71rLyoqiun1BgwY0GG7qakppv0jaDeDVNn/3xb/zpDJWlqSc/t7c3Py/61zHuWSzr5+hq9rL+Fc2qfyLEcrV7lqbY0t4HYcqaDA2z/V/w8/N04qLrYJ31UjHRySB4PSshpp5SqrG28wKivt2/8eYsF5BCSO8whIDs6l3pEx4Xakcnv06NFxBdtS9IMO+6odO3bo6quv7lC1ffHFF2vkyJFd7nNgGJ2fnx/Tax74tYw33C4uLo5rPyAWhx56aLqXAHRp0KBmWRvf99AIa6XBgwtVXFyYpFUdjPMoy/l8Bz3k9/n4OZwGff1cKi6WfnPLXn33kg8kRRdwO473329uGajjju16WHoyTTmvSXfc1Rz3PITuuK7U2irNnO3qrtsH6rNjeudzyiV9/TwCkoHzCEgOzqXUcdK9gIjBgwfriCOO0OGHHx73MYYMGZLQ/rmstbVV3//+97Vz5872x0pLS3XJJZf0uN/++vWL7U31geF2S0tLTPsDADxHf9SX+IC1sHccAMgGnx3TT3fdPlCFBV5o3R3HkQoLpKV3DNSY0b0XAp97doEKolhfvFzX++/y73+gHTtSkKADAABkuYyp3M7Ly9Pjjz+e0DE+/vGPJ3yMeE2YMEFvv/12yo4/a9YsXXTRRXHtGw6HNWvWLDU0NLQ/dvjhh+vmm2/uMaw+sFJ77969Mb12W1tbh+1Y+qjvL5iM+z2BThhj2q+gvv/++wyxRcb69Ik2KQPWTvzUHgWDiVWAH4jzKHcMCIcPenMYCof1IT+HewXn0sE+dpx0T42j/1lr9eAarwWIz/HaLFlXCrve97bJk4zOmmg0NLAnKW1CopWXJ1UvcHTVLFeOE1+P8J64rtTcItXcE9T0aRlTm5SxOI+AxHEeAcnBudS5ZN8VmjHhdqyeffbZ9rC2sLBQn/70pzV69Og0ryoz/eQnP9EjjzzSvl1cXKylS5ceNOyxMwf22I51YOeB4XasPbsj+AaA3mCt5d8aMpbPJ02uVMID1ny+1H5P5TzKdp197fiapgPn0j6BIdJ3LjT69rekug3eYNymJquiIqORJVL52H3DI9Px/6z0JGnRQqO5861aWlIXcK9eY/Xtb7kpH5SZSziPgMRxHgHJwbmUOlkbbm/dulXPPfecJK8y+Xe/+50+8YlP6JZbbom7Z3cuuvHGG3X//fe3bxcVFenOO+/UscceG9X+BQUF8vl87UMl9+zZE9Prf/jhhx224w23AQBS5USjlats/APWJhKIAMhefr9RxXipQlLnw0/Tp6zUaMVyqXat1epadVphnqhdQS/crxif+LEAAAByRdaG21OmTNGUKVPat621WrJkiW666Sb98Ic/7PX13HzzzTFXNcfiqKOOinmf2267Tf/93//dvp2Xl6dbb71Vn/70p2M6zrBhw/TOO+9IkrZv3y5rbdRTXrdt29Zhe/jw4TG9NgBgn0DAqHqBNHO2jfr2d8eRjJGqFxgFApkVBgFALgkEjKZPM5paZQ+qMN+82erRx5XQ7ASf4x2zInlLBgAAyHpZG24fyBij4447Tj/72c/SEm5/6lOf6vXX7M4999yjxYsXt2/7fD4tWrRI48aNi/lYxxxzTHu43dbWpsbGRg0dOjSqfSP77X8sAED8ykqNFi1UVLe/Ryq2qxcYlZ5EsA0AvaGzCvM7l1pFWRvSJeN4YXmmVa0DAACkU8aG22+99ZaeffZZvfvuu3KjKE176623tG7dOvXv378XVpfZamtrdd1117VvG2O0YMECnXbaaXEd7+ijj9YzzzzTvv3SSy/pC1/4QlT7vvzyy+1/HzhwoAKBQFxrAADsE83t74OKvR7blROp2AaAdCssNAn32XTD0quvSXcudVVY6PUbH1cuenADAIA+LSPD7erqai1fvjyqUHt/1lp985vfTNGqssOjjz6qefPmdXjzfM0112jSpElxH/Mzn/mMli9f3r7d0NAQVbi9ZcsWvfvuu+3bDPwEgOTp7vb3AwesAQDSa2RJYi1JJMm10vMvSH+p937vCYel4mJpcqXlQiYAAOizMi7c/ulPf6qVK1fGXNlQWFio888/XzNnzkzRyjJfXV2dZs6cqVAo1P7YrFmzdMEFFyR03IqKCuXl5amtrU2StG7dOl111VU97vfQQw912D711FMTWgcA4GCZPGANAOAZV+4F0cFgYsdx3Y7tqIJBaVmNtHKVVfUC784eAACAviSjwu2nnnpK9957r4wx+tznPqdPfOITysvL029+8xudffbZGjZsWPtzrbXauXOn1q9fr7ffflv/9V//lXCIm802btyoyy67rD2AlqRLL71UF110UcLH7t+/vyoqKvTYY49JkjZt2qQNGzZo7NixXe6zd+9ePfDAA+3beXl5mjBhQsJrAQAAALKN3280udJqWU10w4Bj4bpSa6s3bHjRQgJuAADQt2RUuL148WIdeuihWrJkicaMGdP+eE1Njc4880yVl5d3ut+DDz6on//852pubtb06dN7a7kZ4/XXX9d3v/tdNTU1tT/27W9/O6rq6mhdcskl7eG2JF133XVavXq18vLyOn3+HXfcoa1bt7Zvn3/++Ro8eHDS1gMAAABkk8qJRitXWbW2pibgdhxv2PCK5aJFCQAA6DOcdC8g4s0339RLL72kn/zkJx2CbckbRLht27Yu9/3617+uJUuW6JZbbtE///nPVC81o7z11lv6zne+o+B+9zieffbZmjdvXlJf58QTT9QZZ5zRvv3GG29oxowZeu+99zo8z3Vd/fa3v9WSJUvaHzvkkEN08cUXJ3U9AAAAQDYJBIyqFxgZ4wXRyea6UkuLN2wYAACgr8iYyu36+noNHz5cX/nKVw762BFHHKH6+npNnjy5y/3Ly8t15plnqqamRtdee20KV5pZ1qxZox07dnR4bPXq1Vq9enVMx7nssst0+eWXd/uc66+/Xq+99po2b94sSXruuec0YcIETZgwQSNGjNCuXbtUV1fXoWLb5/Np0aJFCgQCMa0HAAAAyDVlpUaLFnoV1i0tqangXlMrTa2yDBUGAAB9QsZUbu/YsUPHHntspx8bNWqUnn322R6HTJ5++umqq6tLxfIyVmf/T8LhcMz/RTPAc+DAgbrrrrt0/PHHtz/W3NysP/7xj7r99tt13333dQi2i4qK9Itf/EIVFRXJ+WQBAACALFdWarRiudHUKm/IpCT5HMnvl5wk5NG7glLdhsSPAwAAkA0yJtwuKipSv379Ov3YCSecoHfeeUePPPJIt8cIBALdti9B4kaMGKH7779fl112mYYOHdrpc/r166fTTz9dDz74oM4666xeXiEAAACQ2QIBo+nTHK15wOiG642+O8PogvOlMWMSb1nic6QtW3t+HgAAQC7ImLYkw4YNU1tbW6cf+8IXviC/369f//rXGj9+vIqKijp93uuvv66CgoJULjPjXHHFFbriiit69TXz8vJ05ZVX6vLLL1d9fb3efPNNNTY2qn///ho+fLjKyso0aNCgXl0TAAAAkG38fqOK8ZJ3n6PRnUtd/aU+sXYlxpGamqwk2pIAAIDclzHh9ic+8Ql98MEH+tvf/qbq6mr5fD7NmzdPo0aN0qGHHqqKigo98cQTuvrqq3XzzTfL5/N12L+pqUl33XWXjjzyyDR9Bn2Pz+fTmDFjDhoACgAAACB2hYUmqnaB3XHD0vYdUs09Vs3NVoWFRiNLpHHlog83AADIORkTbh9xxBEaMmSIfvCDH+jtt9+WJM2aNUt/+tOfJElTp07V448/rscee0znn3++LrvsMo0ePVoFBQX629/+phtuuEFbtmzRN7/5zXR+GgAAAAAQl5ElUjic2DFcK617WPL5rIzxZvSEw15/78mVVpUTjQIBQm4AAJAbMqbntiR95Stf0dtvvy1jvDdb7777bvvHTj75ZH3jG9+QtVYvvviiLrvsMn32s5/ViSeeqKqqKv3jH/+QJH3jG99Iy9oBAAAAIBHjyvcNmUxUOCyFQvvC8mBQWlYjTamyqm9IrDocAAAgU2RUuH3WWWfpsssuU79+/WSM0WWXXdbh43PnztXRRx/dfquetbb9P2OMKisrNWrUqHQsHQCAHoVCVk89bVVzj9WdS13V3ONth0KEDAAAr23I5MrEh0p2xXWl1lZp5mwCbgAAkBuMTbSpWwq0tbWptbVVhxxyyEEfe++993TttdfqkUce6dCPbsKECVq8eLHy8vJ6c6noJbt27Ur3EpCjjDEq/k+JVDAYTLjPJdCZxkar2rVWq2u9yjmfT/+5VVz73SqurL1VnPModxxS9yX5gy90eCxUPFq7yx9O04r6Fs4lSN7PjClVVq2tiQ2W7I7jSAUF0orl2flzpzucR0DiOI+A5OBc6tygQYOSeryM6bm9v7y8vC5D6sGDB+vXv/61duzYoRdffFHNzc067rjj9LGPfayXVwkAQM/qG6zmzOsYUhzYTzVyq/jKVVbVC6Sy0twKGgAA0QsEjKoXeNXVjpOagNt1pZYWqXat1fRp/MwBAADZK6PaksRi2LBhmjBhgr761a8SbAMAMlJ9g9XM2dFV33GrOAAgoqzUaNFCo4KC1LYoWVMrWmMBAICslvHhdktLi/75z39q48aNB5Xvv/3222ptbU3TygAA6Fpjo1ex7brRV925rteqZO58q8ZGwgYA6MvKSo1WLDeaWrVvyKTPkfx+789k2BWU6jYk51gAAADpkJFtSUKhkB588EH94Q9/0D/+8Q+F/3P/dm1tbYcq7erqaj377LOaNm2aLrnkEvn9GfnpAAD6oNq1XsV2rG3VuFUcABARCBhNn2Y0tcqqboO0ZavU1GRVVGS0ebPVo48f3OoqFj7HO2ZF8pYMAADQqzIuDf7Xv/6l73//+3r99dclqb1a2xgj94DSt8WLF+vxxx/XjTfeqOeee05Lly5Vfn5+r68ZAID9hULe8Mh4+6RGbhWfWmXl9xNwA0Bf5/cbVYyPhNDez4U7l1qZBH9EGMcLyyPHBAAAyDYZ1ZZk+/btuvDCC/X666/LWitrrYYPH65PfepTnT7fcRyddtppevDBBxUKhfSjH/2ol1cMAMDB1td5QyITwa3iAIDuFBaamO8OOpB1paIigm0AAJC9Mqpye+HChdq2bZuGDh2qadOm6Wtf+5qGDRsmSTr++OO73G/AgAG65ZZb9NWvflUvvPCCRo8e3VtLBgDgIFu2Sj4ft4oDAFJnZEliP2ckKex6xwEAAMhWGRNuv//++/rTn/6kT37yk7rjjjs0ZMiQmPYPBAI677zzdO+99xJuAwDSqrmZW8UBAKk1rtwbNJnInUKDiqXysUlaEAAAQBpkTFuS5557To7jaOHChTEH2xEnn3yy/vKXvyR5ZQAAxCYZt4q7YWn7DqnmHqs7l7qqucfqqaetQqEEDwwAyAl+v9HkSsmJ8zc6x5EmVYrZDgAAIKtlTOX2tm3bdMwxx+gjH/lI3Mc45JBD1NjYmLxFAQAQh2TcKu5aad3Dks/nVYFbaxUOe1V6kyutKicaBQIEEgDQl1VONFq5yqq1NbYhxo4jFRR4+wMAAGSzjKncbm5uViAQSOgYO3bsUEFBQZJWBABAfCK3iidDOCyFQvvC8mBQWlYjTamyqm+gihsA+rJAwKh6gZEx0VdwO45kjFS9gIukAAAg+2VMuD1kyBBt3rw5oWM89dRTKilhIgoAIL0SvVW8J64rtbZKM2cTcANAX1dWarRooVFBQc8/dyIV24tvMio9iWAbAABkv4wJt0866SS9/fbbevTRR+Pa/7XXXlNtba3GjRuX5JUBABC7yolG+fmpDbitlebOt2psJOAGgL6srNRoxXKjqVX77hzyOZLf7/0pecMjp1ZJK5YTbAMAgNyRMT23jz32WI0aNUrz589X//79VV5eHvW+zz//vH7wgx8oFArp7LPPTuEqAQCIjneruFdd7Tix9UKNlutKLS1S7Vqr6dMIKgCgLwsEjKZPM5paZVW3QdqyVWpqsioqMhpZIpWPZXgkAADIPRkTbkvS7NmzNWPGDE2fPl1nnnmmpkyZorKyMjn/KXszZt+bsQ8++EDPPPOMVq9erWeeeUaSVFVVldBASgAAksm7Vdyrrm5pSV3AvaZWmlplCS0AAPL7jSrGSxWSJH4uAACA3JZR4fbnPvc5ff/739fNN9+sP/3pT/rTn/6kgoICHX744TLGaO7cuTLG6N1339WOHTva97PWqqysTHPmzEnj6gEAOJh3q7hXXb261hsI6XMk40jWlcJJCLx3BaW6DVLF+MSPBQAAAABAtsiocFuSLr30Uu3evVu/+93vZK1Vc3Nz+6DJV155RZIXZu9vzJgxuvnmm+Xz+Xp9vQAA9KS7W8U3b7Z69HEpHI7/+D7HO2ZF8pYMAAAAAEDGy7hwW5KuvvpqVVRU6JprrtGbb77ZHmYbYzoE2wUFBZoxY4Yuu+yy9tYlAABkqs5uFb9zqZVJ8K5x43hhObefAwCiFQpZra/zLo42N1sVFnq9uceV05sbAABkj4wMtyWpvLxc69at05NPPqknn3xSr7zyit5//33l5eWppKREY8eO1Ve/+lUNHjw43UsFACBuhYXmoDuSYmVdqaiIIAIA0LPGRtuxVZZPMsa7OzYcloqLpcmVVpUTjQIBfrYAAIDMlrHhtiQ5jqMJEyZowoQJ6V4KAAApMbIksZYkkte3e2RJctYDAMhd9Q1Wc+ZZtbbuG3J84M+gYFBaViOtXGVVvcCbHQEAAJCpMqqXx7///W+FQqF0LwMAgF4zrtyrkkvEoGKpfGwyVgMAyFX1DVYzZ3cMtrviulJrqzRztlV9Q2J3FwEAAKRSRoXbp556qp5//vl0LwMAgF7j9xtNrpTiHR3hONKkSvqjAgC61tjoVWy7bs/BdoTrStZKc+dbNTYScAMAgMyUUeG2tZZwGwDQ51RONMrPjz3gdhypoMDbHwCArtSu9Sq2Yx3x4LpSS4u3PwAAQCbKqHBbkn7/+9/rX//6V7qXAQBArwkEjKoXGBkTfcDtON4AsOoFDPwCAHQtFPKGR0ZbsX0g15XW1HrHAQAAyDQZF27v3r1b559/vlatWqW2trZ0LwcAgF5RVmq0aKFRQUHPAXekYnvxTUalJxFsAwC6tr7OGxKZiF1BqW5DMlYDAACQXBkXbkvSwIEDtXjxYlVUVKi6ulpbt25N95IAAEi5slKjFcuNplbtGzLpcyS/3/tT8oZHTq2SViwn2AYA9GzLVsnnS+wYPsc7DgAAQKbxp3sBB5o0aZJuuOEGua6rxx9/XPfee6/OPPNMjR07VlOmTNGECRPkxDt1CwCAFAiFrNbXeb/4NzdbFRYajSyRxpXHPugxEDCaPs1oapVV3QbvmE1NVkVF3jHLxzI8EgAQveZmK5Pgjw3jeD+LJH7+AACAzJJR4faYMWNUVVUlSXIcR6eddppOO+00bdmyRffee6/mz5+vwsJCnXvuuTrnnHM0dOjQNK8YANCXNTZa1a71epkGg15lnDHegORw2Ku+nlxpVTkx9r7Yfr9RxXipQhJhAgAgXoWFRjbWSZIHcMPS9h1SzT024Yu4AAAAyWRsou90elFra6v+93//V/fee69eeeUVnXrqqbrgggt08sknp3tpSLFdu3alewnIUcYYFf+n/0MwGEz4lz/0HfUNVnPmWbW2dj+ky3Gk/Hxv8GNZaW4GAJxHueOQui/JH3yhw2Oh4tHaXf5wmlbUt3AuIRWeetpq3o+T829p30Vc7XcRV3FdxE0VziMgcZxHQHJwLnVu0KBBST1eVvX3yM/P1ze+8Q098MADWrFihYqKinTxxRfrK1/5in7/+9/rww8/TPcSAQB9QH2D1czZPQfbkvfx1lZp5myr+gbezAAAete48n1zHBIVDkuhkPen5N21tKxGmlLFzzgAAJAeWRVu7+/oo4/WCSecoKFDh2rTpk36+c9/roqKCl1zzTV6+eWX0708AECOamz0KrZdt+dgO8J1vSq3ufOtGhv55R8A0Hv8fqPJld6dRKnARVwAAJBOWRduv/rqq/rJT36iz3/+81qwYIHeeustGeP1kWtra9OLL76or3/96zrvvPO0Zs0ahUKhdC8ZAJBDatd6Fdux3lHmulJLi7c/AAC9qXKiUX5+agNuLuICAIB0yKhwe8mSJdq5c+dBj4dCIf3xj3/UN7/5TU2aNEmrVq1SU1OTrLWy1mrIkCG65JJL9Nhjj+nBBx/UQw89pLKyMv3iF7/Ql7/8Zf3xj39Mw2cDAMg1oZA3PDLaiu0Dua60ptY7DgAAvSUQMKpeYGRMagNuLuICAIDellHh9q233qo33nijfXvbtm1avHixvvjFL2r27Nmqr69vD7QlafTo0frVr36lJ598UldddZWGDx8uSRo5cqTmzJmjp556St/61rf085//XN/61rf03nvvpeXzAgDkhvV1Xn/RROwKSnUbkrEaAACiV1ZqtGihUUFBagNuLuICAIDe5E/3AvZnrdWqVavU1tam+++/X08++aTC/5lWEgm0+/fvr7POOksXXHCBjjvuuG6Pl5eXpwsvvFCTJk3SlVdeqRkzZujee+9Vfn5+yj8XAEDu2bJV8vn2DdKKh8/xjlORvGUBABCVslKjFcu96urVtd4FW58jGUeyrhSO886k/UUu4laMT/xYAAAAPcmocFuSHnroIT300EOS9gXaknTcccdpypQpqqysVP/+/WM6ZnFxse666y5NnjxZS5cu1fe+972krhkA0Dc0N1sZk9gxjCM1NVlJCR4IAIA4BAJG06cZTa2yqtvgXXBtarIqKjLavNnq0ce5iAsAALJHxoXb0r5Q2+/36/TTT9cFF1ygMWPGJHTMvLw8zZgxQ7fffjvhNgAgLoWFpsOF13hYVyoqItgGAKSX329UMT4SQns/l+5cykVcAACQXTIy3B4+fLjOPfdcnXvuuQoEAgkda9u2bfrrX/+q8vJyjRw5Uu+8806SVgkA6GtGliRWzSZ5t3yPLEnOegAASCYu4gIAgGyTceH26NGjtXTp0qT0xd6+fbvOOuss7d69W0cccYTOPfdcHXXUUUlYJQCgLxpXLhUXJzZUclCxVD42SQsCACCJuIgLAACyTYrmZMfvggsuSNrAx40bN+qDDz6QJL399tu65ZZbdOGFFybl2ACAvsfvN5pcKTlx/vR0HGlSpXccAAAyTeQibiK4iAsAAHpTxoXbRx55ZNKONXr0aA0fPlzWWvl8Pn3nO9/Rueeem7TjAwD6nsqJRvn5sQfcjiMVFHj7AwCQibiICwAAsk1GtSVZvny5jjvuuKQdb9CgQfq///s/vf766zrqqKM0ePDgpB0bANA3BQJG1QukmbOtHEdy3Z73cRzJGKl6gVEgwC/8AIDMVTnRaOUqq9bW6H7GRXARFwAApENGVW5/9rOfVWFhYVKPWVhYqBNPPJFgGwCQNGWlRosWGhUU9FzdFvllf/FNRqUn8Qs/ACCzeRdxjYyJvoKbi7gAACBdMqpyGwCAVAuFrNbXSVu2Ss3NVoWFRiNLvD6jsdxGXVZqtGK5VLvWanWtN2TS50jGkazrDdQaVOzdnl05kV/2AQDZw7uIK82db9XS0n0Fd+QibvUCLuICAIDeR7gNAOgTGhttxyDa51WZWWsVDnsDtCZX2piC6EDAaPo0o6lVVnUbvMC8qcmqqMgLzMvH0ncUAJCduIgLAACyAeE2ACDn1TdYzZnXsX9oONzxOcGgtKxGWrnKqnqB90t9tPx+o4rxUoUkiV/uAQC5gYu4AAAg0xFuAwByWn2D1czZVtb2PBjLdaXWVm9Y5KKFsQXcAADkKi7iAgCATJVRAyUBAEimxkavYtt1ew62I1xXstbrM9rYaFO7QAAAAAAAEDfCbQBAzqpd67UisTFm1K4rtbR4+wMAAAAAgMxEuA0AyEmhkDcAK9qK7QO5rrSm1jsOAAAAAADIPPTcBgDkpPV13pDIROwKSnUbpIrxyVgRAAC5LRSyWl/nDZ5sbrYqLPQGT44rZ/AkAABIjYwMt/fu3at+/fol/BwAQN+1Zavk80nhcPzH8DnecSqStywAAHJOY6NV7Vrvjqlg0Pv5a4xkrVU4LBUXS5MrrSonGgUChNwAACB5MrItySmnnKJ33nmn2+d88Ytf1LZt23ppRQCAbNPcbGUS/P3ZOFJTE21JAADoSn2D1ZQqq2U1++6YCoelUGjfBeZgUFpWI02psqpv4OcqAABInowMtxsbG/X+++93+5x3331XwUTvNwcA5KzCQhPzIMkDuWHp1dekO5e6qrnH6qmnLT24AQD4j/oGq5mzveHNPc24cF2ptVWaOZuAGwAAJE9GtiUBACBRI0sSa0kiSa6Vnn9B+ks9t1YDALC/xkarOfOsXFdRX0x2XclxpLnzrVYsFz9HAQBAwjKychsAgESNK/eC6ES5LrdWAwBwoNq1XsV2rHdJua7U0uLtDwAAkCjCbQBATvL7jSZXehViycat1QCAviwU8oZH9tSKpCuuK62pFa2+AABAwgi3AQA5q3KiUX5+6gJua71bqxsb+eUcANB3rK/bNzwyXruCUt2GZKwGAAD0ZYTbAICsFwp5wx5r7rEdhj8WF0vVC4yMSV3Aza3VAIC+ZstWyedL7Bg+xzsOAABAIhgoCQDIWo2NVrVrvVujg0HvF21jDhz+KF37Y+mGG70gOt5bqLsSubV6apWV389gLABA7mtutjKJ/sgz0iuvWtXc4x2vsNBoZIk3M4OfpwAAIFqE2wCArFTfYDVnnjfMKhJYR4Y+RkSGP+bnS/PmSJs2a18Q7kjGkdyw5CZYeB25tbpifGLHAQAgGxQWGtlYJ0keIByWnvyz9PQztpML01aVE40CAUJuAADQPdqSAACyTn2D1czZHYPtrkSGP157nVR6ktGaB4xuuN7ouzOMLjhfGjMm8ZYl3FoNAOhLRpYcfEE5XuGwFArtO17kwvSUKoY2AwCAnhFuAwCySmOjV7HtutG3GNl/+GMwKFWMN/rWBUYXzXD08Y8lHm4bR2pq4hdwAEDfMK7cq7BOlciF6ZmzCbgBAED3CLcBAFmldq1XsR3r3dBdDX/0bq1ObE3WlYqKuHUaANA3+P1GkytTM6w5Yv8L042NBNwAAKBzhNsAgKwRCnnDI+MdChkZ/hgK7fslORm3Vodd7zgAAPQVlRON8vNTH3B3dmEaAAAggnAbAJA11td5vTgTERn+GJGMW6sHFUvlYxM7BgAA2SQQMKpeYGRM6gPuAy9MAwAARBBuAwCyxpatks+X2DEOHP6Y6K3VjiNNqvSOAwBAX1JWarRooVFBQWoD7gMvTAMAAEQQbgMAskZzs5VJMEPubPhjvLdWO45UUODtDwBAX1RWarRiudHUqn13Qvkcye/3/kyGAy9MAwAARPjTvQAAAKLlDX9M7LbkzoY/erdWSzNnWzlOdD29HUcyRqpeYBQIEG4DAPquQMBo+jSjqVVWdRu8ILqpyaqoyOjVV62eflYKheI//r4L0/y8BQAAHRFu55impia98cYb+ve//62dO3eqqalJkjRgwAANHz5cn/zkJ3XYYYcl5bXC4bAaGhr05ptvaufOne2vUVZWpuJEG9gCQCdSOfzRu7VamjvfqqWl+4A7UrFdvcCo9CR+0QYAQPJadFWMlyokRYLomnukp55J/oVpAAAAiXA7J2zYsEG1tbWqr6/Xli1beqxqPP7443X++efrnHPOkd8f+z+BtrY23X777Vq1apV27tx50Mf79eunU045RbNmzdJHPvKRmI8PAF2JDH9MZKhkd8MfvVurpdq1VqtrvdfxOV7FmHW9YHxQsddju3IiFdsAAPQklRemAQAACLdzwMMPP6wHH3ww6ue/8soruvbaa3Xffffp5ptv1siRI6Pe980339QVV1yhl19+ucvn7N27Vw8//LCeeeYZ/exnP9PEiROjPj4AdMcb/mi1rCa61iEHimb4Y3e3Vo8s8YJxhkcCABCdVF+YBgAAfRvhdo5xHEdHH320jjnmGB1++OEaMGCA2tratG3bNtXX1+utt95qf+7LL7+sb33rW7r33nt11FFH9Xjs3bt366KLLtKmTZvaHyssLNQpp5yiESNGKBgMqq6uTlu3etNempqaNGfOHBUXF6uioiL5nyyAPqlyotHKVVatrbEF3LEOf+zs1moAABCb3rgwDQAA+i7C7RwwcOBAVVZW6ktf+pLGjBmjQw89tNPnWWv1xBNP6JprrmlvJ7Jjxw5dc801+u1vf9vj68yfP79DsH3yySdr8eLFGjx4cPtj4XBYd999t375y1/KWqtwOKyZM2fqoYceUiAQSPAzBQCGPwIAkG1668I0AADoe5x0LwCJu+qqq3TjjTfqtNNO6zLYliRjjCZMmKDly5eroKCg/fFnn31Wr7zySrevsXHjRq1bt659+9hjj9XSpUs7BNuS5PP5NH36dF1++eXtj+3evVt33HFHrJ8WAHTJG/5oVFDg/eLbncgvxotvYvgjAADp4F2YNjKm55/bEVyYBgAA0SDc7oOOPvponXPOOR0ee/rpp7vd57bbbuuw/eMf/1h5eXldPv/iiy9WScm+qS8rV67Ue++9F8dqAaBz3vBHo6lVXi9PyRv+6Pd7f0pej86pVdKK5QTbAACkExemAQBAKtCWpI8aPXq0ampq2re3bdvW5XP37NmjZ555pn37mGOO0dix3U906devn8455xzddNNNkqS2tjY9/vjjOvvssxNcOQDsw/BHAACyh3dhWqpda7W61hsy6XMk40jWlcKud2F6UqXXioSKbQAA0BPC7T5qwIABHbbdbprfPf3002pra2vfPuOMM6J6jS9/+cvt4bYkPfbYY4TbAFKC4Y8AAGQHLkwDAIBkyshw2xgjp4d71aJ5Drr273//u8P2iBEjunzuCy+80GG7tLQ0qtcoKSnRkCFD9O6773Z6HAAAAAB9ExemAQBAMmRkOjxnzhx99KMf7fY5V199tY4++uheWlHu+d///d8O21/4whe6fO6mTZs6bJ9wwglRv86oUaPa//7BBx9o586dUe8LAAAAAAAAAF3JyHD7wgsvVL9+/bp9zrRp0+T3Z2Theca744479Nxzz7VvT5w4Ucccc0yXz98/3M7Ly9OQIUOifq0jjjiiy2MBAAAAAAAAQLxIh/uAUCikxsZGNTQ06N577+0QbJ900km69tpru91/x44d7X8fPny4jIn+tsHDDjusw3Z3gysBAAAAAAAAIFqE2zlo0aJFuuuuu9q3w+HwQc/p37+/pk6dqksvvVR5eXldHqulpaXD/kVFRTGt5cDBlU1NTTHtHxFLoA7EYv9/W/w7A+LDeZRLOvv6Gb6uvYRzCThYKGS1vk7astWquVkqLJRGlhiNK+988CTnEZA4ziMgOTiXegfhdg4Kh8OdBtoRQ4cO1axZs/S1r32tx/YvB4bR+fn5Ma3lwOA83nC7uLg4rv2AWBx66KHpXgKQ9TiPspzPd9BDfp+Pn8NpwLmEvm7HDlerHmjRylUt2rXLyueTjJGslcJhq0GDjM4/N1/nnl2gYcM677bJeQQkjvMISA7OpdTJyJ7bSK2dO3dq7ty5Ov300/Xkk092+9zW1tYO2z2F4Qc6MNxuaWmJaX8AAAAAfcv/e36vvlq5S3fc1axdu6wkKRyWQiHvT0natcvqjrua9dXKXfp/z+9N42oBAEA6UbmdJBMmTNDbb7+dsuPPmjVLF110UVTPnT17tmbPnt2+/eGHH2r79u2qr6/XqlWrtHHjRknSO++8o0suuUTXXXedzjnnnE6PdWCl9t69sb1xbGtr67BdUFAQ0/4RwWAwrv2Anhhj2q+gvv/++7LWpnlFQPbhPModA8Lhg94chsJhfcjP4V7BuQRI9Q1WV81yZa3kut0/13WllhZpxsUfaPFNjspKDecRkAScR0BycC51Ltl3hRJu9wEDBgzQgAEDdMwxx+jss8/WsmXL9Itf/ELWWllr9dOf/lSf/vSn9bGPfeygfQ/ssX1gJXdPDgy3Y+3ZHcE3APSGyDkBIH6cR9mus68dX9N04FxCX9TYaHX1D61c12s/Eg3XlRxHmjPP1YrlRkOH7rs5mfMISBznEZAcnEupQ1uSPsYYowsvvLBDFfjevXt16623dvr8goIC+fbrv7lnz56YXu/DDz/ssB1vuA0AAAAgt9WutWptjT7YjohUcNeuJTQAAKCvoXI7SW6++eaYq5pjcdRRRyX1eJdccomWLVvW3gP7iSeeUFtb20E9siVp2LBheueddyRJ27dvl7U26imv27Zt67A9fPjwBFcOAAAAINeEQlara3tuRdIV15XW1EoXfpuAGwCAvoRwO0k+9alPpXsJMSkqKtJJJ52kDRs2SPLajWzZskXHHXfcQc895phj2sPttrY2NTY2aujQoVG9TmS//Y8FAAAAAPtbXycl2t5/V1Cq2yBN/FoyVgQAALIBbUn6sEAg0GF79+7dnT7v6KOP7rD90ksvRf0aL7/8cvvfBw4ceNBrAgAAAMCWrdJ+3RDj4nOkLVup3AYAoC8h3O7DDuyHHZngeqDPfOYzHbYbGhqiOv6WLVv07rvvtm+PHj06xhUCAAAA6Auam62i7HzYJeNITU3JWQ8AAMgOGdWW5N///reGDRsmv7/7ZZ111lnas2ePfD6fBg0apBNPPFGTJ0/WCSec0EsrzQ37V1U7jqPDDjus0+dVVFQoLy9PbW1tkqR169bpqquu6vH4Dz30UIftU089Nf7FAgAAAMhZhYVGNtZJkgewrsT8egAA+paMqtw+9dRT9cYbb/T4vIsuukiXX365LrroIp1yyil6++23df755+u6665L+A1RX/Hkk09q+/bt7dsnnniiBgwY0Olz+/fvr4qKivbtTZs2tffq7srevXv1wAMPtG/n5eVpwoQJCa4aAAAAQC4aWSKFw4kdI+xKI0sSLP8GAABZJaMqt6MNpr/2tYMnhOzYsUOXXnqpli5dqu9+97vJXlrG2rRpk4YNG9ZlMN2Zt956S9dee22HxyZNmtTtPpdccokee+yx9u3rrrtOq1evVl5eXqfPv+OOO7R169b27fPPP1+DBw+Oeo0AAAAA+o5x5VJxcWJDJQcVS+Vjk7QgAACQFTKqcjsRw4YN0/e//32tWrUq3UvpVU899ZROPfVULVq0SK+//nq3z21padH999+vs88+W++880774x//+Md17rnndrvviSeeqDPOOKN9+4033tCMGTP03nvvdXie67r67W9/qyVLlrQ/dsghh+jiiy+O5dMCAAAA0If4/UaTKyUnzt9QHUeaVOkdBwAA9B0ZVbmdqP79+3dotdFXBINB3X777br99ts1bNgwfeITn9CRRx6pQw45RJI3OHLTpk3661//qj179nTY98gjj9Rtt90mXxSjya+//nq99tpr2rx5syTpueee04QJEzRhwgSNGDFCu3btUl1dXYeKbZ/Pp0WLFikQCCTxMwYAAACQayonGq1cZdXaKrlu9Ps5jlRQ4O0PAAD6lpwJt621+v3vf68hQ4akeylptWPHDu3YsSOq537hC1/Qz372Mw0fPjyq5w8cOFB33XWXLr/8cr3yyiuSpObmZv3xj3/s9PlFRUX66U9/2qFfNwAAAAB0JhAwql4gzZxt5TjRBdyOIxkjVS8wCgQItwEA6Gt6Ldz+97//rbfffrvH5/3jH//Q7t27ozqm67ratWuXXnvtNT300EPavHlzj72jc80ZZ5yhtrY2Pf3003rxxRfV1NTU7fPz8/P1xS9+Ueeee67Gjx8f8+uNGDFC999/v2677Tbdf//92rlz50HP6devn774xS9q1qxZ+uhHPxrzawAAAADom8pKjRYtlObOt2pp6T7gjlRsVy8wKj2JYBsAgL7I2GinOCZoyZIlWrJkiYzp+k2Htbbbj3fHWquCggL94Q9/0DHHHBPvMrNaOBzW5s2b9a9//Uvbt2/Xhx9+KGutBgwYoIEDB+q4447TcccdJ78/Odc0wuGw6uvr9eabb6qxsVH9+/fX8OHDVVZWpkGDBiXlNSJ27dqV1OMBEcYYFRcXS/Ja/PTSt0REKRSyWl8nbdkqNTdbFRYajSzxhk7RUzNzcB7ljkPqviR/8IUOj4WKR2t3+cNpWlHfwrkE7NPYaFW71mp1rTdk0udIxpGsK4Vdb3jkpEqvFcn+FducR0DiOI+A5OBc6lyyM8NeC7clr/fzjh079Prrr+vZZ5/Vo48+etBAwngVFRVp4cKFmjBhQlKOh8xCuI1U4YdNZjroF1qfd8uxtVI4LBUXS5M7+YUW6cF5lDsIt9OLcwk4WChkVbfBu9Dd1GRVVORd6C4f2/mFbs4jIHGcR0BycC51LqvD7QPt3btXDz74oBYtWqT3339fknTCCSeoqKgoqv0dx9Ghhx6qE088UV//+tc1ePDgVC4XaUS4jVThh03mqW+wmjOv52FSjiPl53u3IpeVEnCnE+dR7iDcTi/OJSBxnEdA4jiPgOTgXOpcssPttA6U7Nevn8477zyVl5frggsu0Lvvvquf//znOv7449O5LABAmtQ3WM2cbWVtz0OkXFdqbfWGTi1aKAJuAAAAAAD6GCfdC5CkkpISXXnlleleBgAgjRobvYpt1+052I5wXa9Vydz5Vo2NXAUHAAAAAKAvSWvl9v5OOeUUyvMBoA+rXeu1Ion1R4HrSi0t3v7Tp1G9DQBAXxXpz719R7Oamq0c46pkBIOoAQDIZRkTbgcCAS1fvlwjR45M91IAAL0sFPKGR0ZbsX0g15XW1EpTqyy/vAIA0Md0HERt5fM1dTKI2jKIGgCAHJQRbUkiPvvZz6qwsDDu/d9//32tWbMmeQsCAPSK9XVSMJjYMXYFpboNyVgNAADIFvUNVlOqrJbV7HsvEQ5LoZD3p+Q9vqxGmlJlVd/A3cIAAOSSjAq3E7Vp0yb98Ic/TPcyAAAx2rJV8vkSO4bP8Y4DAAD6hsgg6tbW2AZRE3ADAJA7circfuedd9K9BABAHJqbrUyCdwkbR2pq4pdVAAD6AgZRAwAAKYN6bnfm/fffV1NTU1SDJpubm3Xvvff2wqoAAMlWWGgSHipsXamoiD6aAAD0BQyiBgAAUgaG2//617+0ZMkSPf300/rggw9i2tdaK5No6R8AoNeNLNnXFzNeYdc7DgAAyG0MogYAABEZFW5v3LhR06ZNU1NTkyQlXMUHAMgO48ql4uLEhkoOKpbKxyZpQQAAIGMlcxB1xfhkrAgAAKRLRoXbc+fO1Z49e9q3i4qKVFxcHNW+zc3N2rVrV4pWBgBIJb/faHKl1bKa+KqwHEeaVCmqrwAA6AMig6gTuesrMoi6InnLAgAAaZAx4fbGjRu1adMmnXDCCbr44ov1uc99TgMGDIjpGPPnz9eDDz6YohUCAFKpcqLRylVe/8xYAm7HkQoKvP0BAEDuS+4gat4/AACQzZx0LyDiH//4hw455BAtX75cZ5xxRszBtiSddtppKVgZAKA3BAJG1QuMjPEC62g4jmSMVL3AKBDgl1MAAPoCbxB1YsdgEDUAALkhY8LtDz74QCeeeGJcoXbEkCFD6NMNAFmsrNRo0UKjgoKeA+5Ixfbim4xKT+KXUwAA+goGUQMAgIiMCbcHDBigvXv3JnSMUaNG6bHHHkvSigAA6VBWarRiudHUKm/IpOT1xfT7vT8lb3jk1CppxXKCbQAA+prIIOpEMIgaAIDckDE9tz/96U/r17/+tUKhkPz++JbVr18/HXnkkUleGQCgtwUCRtOnGU2tsqrb4A18amqyKioyGlni/TLK8EgAAPomBlEDAICIjKnc/uQnP6mPfvSjeuCBB+I+xubNm/Xtb387iasCAKST329UMd7oWxcYXTTD0bcu8Lb5ZRQAgL6tcqJRfn70czoiGEQNAEBuyZhwW5Kuv/563X777Xr++efj2n/Hjh1x7wsAAAAAyA4MogYAAFKGhdvHHnusFi9erJkzZ2rJkiX68MMPY9r/5ZdfTtHKAAAAAACZhEHUAAAgY3pub9++XW+//bYk6dprr9WvfvUr/e53v9NnP/tZffSjH1VRUVG3+zc1NenBBx/sjaUCAAAAADKAN4haql1rtbpWCgYln8+r0LauFHa94ZGTKr1WJFRsAwCQWzIm3F63bp1uuOGGDo9Za/Xkk0/qySefjOoY1loZw5sVAAAAAOgr9h9EveE5o+07CrSnycrntKhkBIOoAQDIZRkTbg8ePFjW2oMe7+wxAAAAAAD2FxlEXVxcKEkKBtv4fRIAgByXUeG2JBlj9OlPf1qjR49WQUFB1Pvv2bNHq1ev1vvvv5+qJQIAAAAA+pBQyGp9nbRlq9TcbFVYaDSyRBpXTjU4AACZIOPC7RNPPFErV66M6xiHHXaYqqurk7ksAAAAAEAf09hoO+/jba3CYam4WJpcaenjDQBAmmVcuP2pT30q7mOMGjUqWcsBAKQIFVAAACDduns/svHv0px5Vq2tkut6zw+HO+4fDErLaqSVq6yqF3iDLQEAQO/LmHB70KBBGjNmjI477ri4jzFs2DCNHj06iasCACQLFVAAACDdeno/0r+/1NTkPbendt2uK7W2SjNnWy1aSMANAEA6GMuEDWSBXbt2pXsJyFHGGBUXF0uSgsEgQ4dSpL7BHlQB1RnHkfLzpeoFhl8QswjnUe44pO5L8gdf6PBYqHi0dpc/nKYV9S2cS0DiujuPon0/EivHkQoKpBXLuUCP3MDPIyA5OJc6N2jQoKQez0nq0dLs/fff15o1a9K9DADAfuobrGbOju4Xyf0roOob+MEPAACSI5b3I7FyXamlRapdy3sXAAB6W06F25s2bdIPf/jDdC8DAPAfjY1ehZTrRv+LpOt6twHPnW/V2MgviQAAIDHxvB+JletKa2q9Xt4AAKD35FS4vWXLlnQvAQCwn9q1XoVUrHdfUQEFAACSJd73I7HaFZTqNqT2NQAAQEcpHyhprdUf/vAHvfzyyyotLdXXvva1Tp+3bt06NTc3x/06TU1N+t3vfhf3/gCA5AqFvGFN8VZIRSqgplZZ+f30rwQAALFL9P1ILHyOtGWrVJH6lwIAAP+R8nD72muv1apVqyRJK1as0D/+8Q/NmTPnoOf9+te/1qZNmxJ6LWutjCEAAYBMsL5OCgYTO0akAqpifDJWBAAA+ppkvB+JlnGkpiYrid9JAQDoLSlvS/I///M/krzgOVLF3ZnBgwe3Pyfe/wAAmWPLVsnnS+wYkQooAACAeCTj/Ui03LC0fYdUc4/VnUtd1dxj9dTTlj7cAACkUMort0eNGqX6+noZY2St1bHHHtvp8wYNGiRJOuSQQ3TmmWcqEAjIcaLP3vfs2aMHH3xQH3zwQVLWDQBITHOzVaI301ABBQAAEpGM9yPRcq207mHJ5/Ne01qrcFgqLpYmV1pVTjQKBHhPAwBAMqU83F64cKHmzZunv/3tbzrppJN0/fXXd/q84uJiGWP005/+VF/5ylfieq3DDjtM1dXViSwXAJAkhYUm4btqrCsVFfFLIAAAiE8y3o/EKhzuuB0MSstqpJWrrKoXSGWlvLcBACBZUh5uH3HEEbr77rt7fF6kcvuTn/xk3K81atSouPcFACTXyJKDf7mLVdj1jgMAABCPZLwfSQbXlVpbpZmzrRYtJOAGACBZUh5uR6u8vFzNzc0aMmRI3McYNmyYRo8encRVAQDiNa7cuw03kSFOg4ql8rFJWhAAAOhzkvF+JFlcV3Icae58qxXLRYsSAACSIOUDJaM1duxYzZs3T/3794/7GB/96EdVU1OTxFUBAOLl9xtNrvR+iYuH40iTKr3jAAAAxCPR9yPJ5rpSS4tUu5YhkwAAJEOG/IgHAOSiyolG+fmx/0LpOFJBgbc/AABAIuJ9P5IqriutqZVCIQJuAAASlTFtSboSCoW0YcMGbdy4UTt27JDjOBo+fLhGjx6tsrKydC8PANCNQMCoeoHXX9JxvF/meuI4kjFS9QLD7boAACBh8bwfMf95C9K/v/Thh5LPkYzjDbsOR7F/T3YFpboNUsX4xI8FAEBflrHhdjgc1tKlS3X33Xcr2EWDtI985COaNWuWTjvttN5dHAAgamWlRosWev0lW1q6/4UyUrFdvcCo9CSCbQAAkBzxvh/51Ce9EHrLVqmpyaqoyGjzZqtHH09sUKXP8Y5ZEf8hAACAMjTcfuutt/SDH/xAf//73yVJ1loZ0zHksNZq8+bNuuKKK/Ttb39bV199tXw+XzqWCwDoQVmp0YrlXn/J1bXeUKcDK6AGFXs9tisnUrENAACSL973IxXjIyG0t33nUiuT4FsV43hheeSYAAAgPhkXbr/zzjs677zz9N5778nafT3I9v/7/qy1Wr58uXbt2qUbb7yxt5YJAIhRIGA0fZrR1Cp7UAXUyBKpfCzDIwEAQGol4/1IYaHp8vfTaFlXKirifQ8AAInKqHC7tbVV3/ve9/Tuu+9q5MiROvvsszV69GgdccQRGjBggPLy8tTa2qrdu3frzTff1MaNG/XnP/9ZL7zwgtauXasxY8bonHPOSfenAQDoht9vDqqAAgAA6E2JvB8ZWZJYSxLJqxIfWZLYMQAAQIaF2//93/+tl156SdOnT9cPfvCDTtuM9OvXTwMGDNDhhx+uz372s5oxY4ZeeeUVXX311frFL36hL33pSzr00EPTsHoAAAAAQK4bVy4VF3ttTeI1qNirEgcAAIlx0r2AiHA4rJqaGn3xi1/Uf/3Xf8XUP/v444/Xb3/7W+Xn52v16tUpXCUAAAAAoC/z+40mV3qDJ+PhOF5fb9qxAQCQuIwJtxsaGhQMBjVz5sy49g8EAjr77LP1xBNPJHllAAAAAADsUznRKD8/9oDbcaSCAm9/AACQuIwJt1977TUdd9xx+vjHPx73MT7zmc/otddeS+KqAAAAAADoKBAwql5gZEz0AbfjSMZI1QuMAgHCbQAAkiFjwu3du3fr8MMPT+gYgwcP1u7du5O0IgAAAAAAOldWarRooVFBQc8Bd6Rie/FNRqUnEWwDAJAsGRNuH3roodq1a1dCx2hublZhYWGSVgQAAAAAQNfKSo1WLDeaWuUNmZQknyP5/d6fkjc8cmqVtGI5wTYAAMnmT/cCIo488ki9/PLLCgaDKo68K4jR3//+d40cOTK5CwMAAAAAoAuBgNH0aUZTq6zqNkhbtkpNTVZFRUYjS6TysQyPBAAgVTIm3D755JPVr18//e53v4trqGRra6vuu+8+nXHGGSlYHQAAAAAAXfP7jSrGSxWSJMJsAAB6Q8a0JcnLy9PXvvY1/fd//7ceeeSRmPYNBoO67LLL9Pbbb+vrX/96ilYIAAAAAAAAAMgUGRNuS9KVV16pvLw8XXXVVfrhD3+ojRs3ylrb6XNd19U///lP3XrrrTrrrLO0fv16nXfeefroRz/ay6sGAAAAAAAAAPS2jGlLIklDhgzRTTfdpMsvv1xr1qzRmjVrlJ+fr8MOO0yHHHKI+vXrp9bWVu3Zs0fvvPOO9u7dK0my1uqEE07Q3Llz0/wZAAAAAADQtVDIan2d15u7udmqsNDrzT2unN7cAADEKqPCbUk65ZRTdOONN+pHP/qRmpub1dLSoq1bt3Z4zoHV3CeccIJ+85vfKC8vrzeXCgAAAABAVBobrWrXWq2ulYJByeeTjPF+vw2HpeJiaXKlVeVEo0CAkBsAgGhkVFuSiK9+9au67777VF5eLsn7YR/5b3+O4+i8887TypUrNXz48HQsFQAAAACAbtU3WE2pslpW4wXbkhQOS6GQ96fkPb6sRppSZVXf0Hl7TgAA0FHGVW5HfOxjH9Pvfvc7vfjii3r00Uf1t7/9TY2NjQqFQjr88MNVVlamiRMnauTIkeleKgAAAAAAnapvsJo528payXW7f67rSq2t0szZVosWSmWlVHADANCdjA23Iz75yU/qk5/8ZLqXAQAAAABATBobrebMs3JdyUZZjO26kuNIc+dbrVguWpQAANCNjGxLAgAAAABAtqtda9XaGn2wHeG6UkuLtz8AAOhaxlduv/LKK3riiSf06quvKhgMKi8vTyUlJTr55JP1hS98gSGSAAAAAICMEwp5wyN7akXSFdeV1tRKU6us/H6qtwEA6EzGhttvvPGGfvKTn6i+vr7Tj99zzz0aMmSIrrrqKp199tm9vDoAAAAAALq2vm7f8Mh47QpKdRukivHJWBEAALknI9uS/P73v9c3vvEN1dfXy3Zx/5a1Vo2Njfrxj3+s2bNnq7m5uZdXCQAAAABA57ZslXy+xI7hc7zjAACAzmVcuP3AAw/o+uuvV1tbW3uwba2Vz+dTIBDQwIEDOwTe1lr98Y9/1KxZs9K1ZAAAAAAAOmhutjIJdhMxjtTURN9tAAC6klFtSTZu3Khrr71Wkhdan3TSSZo8ebJOPvlkfeQjH2l/3u7du/XXv/5V69at09q1a9Xa2qonnnhCd955py666KL0LB4A+rhQyGp9nVdd1NxsVVhoNLJEGlcu+kQCAIA+p7DQdHkncrSsKxUV8T4KAICuZFS4feONNyoUCumoo45SdXW1PvOZz3T6vEMOOUQVFRWqqKjQlVdeqZ/97Gd65JFHdOutt2rSpEkaNmxYL68cAPquxkar2rXewKRg0Lv91hjvImU4LBUXS5MrrSonGgUC/HIGAAD6hpElUjic2DHCrnccAADQuYxpS7J161a98MILOumkk7RmzZoug+0DDR06VLfccoumTp2q1tZW/eEPf0jxSgEAEfUNVlOqrJbV7BuYFA5LodC+X+aCQWlZjTSlyqq+gdtqAQBA3zCu3LvIn4hBxVL52GSsBgCA3JQx4XZ9fb38fr8WLlyoAQMGxLz/D3/4Q33iE5/Q008/nYLVAQAOVN9gNXO2VWur5LrdP9d1pdZWaeZsAm4AANA3+P1GkyslJ87fuh1HmlRJezcAALqTMeH2jh079IlPfEJHHXVU3MeYMmWK/vnPfyZxVQCAzjQ2Ws2ZZ+W6PQfbEa4rWSvNnW/V2EjADQAAcl/lRKP8/NgDbseRCgq8/QEAQNcyJtwuKCjQIYccktAxjj76aDX9f/buPD6q+uz///vMTEISFgMMiAsBwQ3qlghKKKmCFWtriFi1Upsb+WFdKq2lchcUbbW2aCx+wd5aN6ySVEpRgUht1brUjWClyX3bKq5QoChLMMOWjZnz+f1xzMCEkMw+k+T1fDx4wJmc85nPJHwy51xzneuqr4/TjAAAh1O5ysnYjrRHkm1LjY3O8QAAAF2d12upbJ4lywo/wO1yOf1LyubRrwQAgI6kTXD76KOP1pYtW2Iaw+fzqX///nGaEQCgLX6/0zwy3Izt1mxbWlnpjAMAANDVFeRbWjDfUlZWxwHulozthfdayj+DwDYAAB3xpHoCLcaMGaMtW7bo3//+t4YOHRrVGFVVVe02otyyZYvuv/9+3XXXXVHOEgcLBAKqqanR5s2btWPHDvXq1UuDBg1SQUGBcmPtnAIgba2uOtA8Mlp1PqlqjVQ0Lh4zAgAASG8F+ZaWlDt3r62odM6l3C7JcknGlgK20zzy4hKnFAkZ2wAAhCdtgtu9evXSRRddpAceeEC//vWvIz5+06ZNeuqpp/T4448fdp8tW7Zo5cqV3TK4vXfvXn3rW9/S1q1bQx4vLy/X2WefHdFYzc3Neuihh7Rs2TLt2LHjkK9nZGRo/Pjxuummm6L+oAJA+tq4SXK7pUAg+jHcLmecovhNCwAAIK15vZamT7M0tdSoao1zLlRfb5STY2lInlQ4huaRAABEKm2C25L04x//WCUlJfr973+v733ve2Eft3XrVn3/+9/XFVdcofz8/MPu9+GHH8Zjmp3S/PnzDwlsR2Pz5s364Q9/qHXr1h12n/379+vFF1/Um2++qV/84hcqLi6O+XkBpI+GBiMrxusuy+VczElcwAEAgO7F47FUNK7lQ37OhQAAiEXaBLc///xz/ec//9G0adP0q1/9SuvWrdPo0aM7PG7nzp16+OGHlZubq5NOOkkrV65sc789e/bokUceifOsO4fq6motXbo05nH27Nmja665RuvXrw8+lp2drfHjx2vw4MHy+XyqqqrSpk2bJEn19fWaPXu2cnNzVVREfibQVWRnWzKRdpJsxdhSTg4XcwAAAAAAIHppE9x+4YUXVFZWJkkyxmj58uVavnx5WMcaY7Rnzx7dcsstHe5nxZpu2Mk0NzfrtttuCwaiBgwY0GYpkXDMnTs3JLB99tlna+HCherXr1/wsUAgoCeeeEK//vWvZYxRIBDQzJkz9fzzz8vr9cb2YgCkhSF5sZUkkZy6kkPy4jMfAAAAAADQPXXQqzl5cnNzQzIBjTFh/wl3/+7o4Ycf1ieffCJJ+trXvqZx46Lr3vbuu+/qhRdeCG4ff/zxWrRoUUhgW5LcbremT5+uGTNmBB/bs2ePHn744aieF0D6GVsoxdoztm+uU1cSAAAAAAAgWmmTuX3EEUcE/52fnx/3RoT79u3Ta6+9pubm5riOm84++eSTYFA5KytLP/vZz/TAAw9ENdaDDz4Ysn3bbbcpMzPzsPtfe+21qqysDJYoWbp0qa6//vpDguEAOh+Px9LkEqPFFZJtR368yyVdXELDJAAAgI74/Uarq5zmkw0NRtnZTvPJsYWcSwEAIKVhcLuoqChhtbF/85vfHBKk7aqMMbr11lu1f/9+SdINN9ygwYMHRzXWvn379Oabbwa3hw8frjFj2k+5zMjI0GWXXaZ7771XklMe5ZVXXtGll14a1RwApJeSYktLlxk1NUUW4Ha5pKws53gAAAC0rbbWqHKV0YpKyeeT3G7JsvRl6UfnLrrJJUYlxZa8Xs6rAADdV1qVJZGcOs6JcuaZZyZs7HSzZMkS1dTUSJJOPPFETZs2Leqx3njjjZCM9wsuuCCs477xjW+EbL/88stRzwFAavj9Rq+/YVTxpNEji2xVPOls5+ZKZfMsWZYTsA6Hy+VclJXN4yIMAADgcKprjKaUOnfJ+XzOY4GA5Pcf6Hvi80mLK6QppUbVNd2zBCcAAFIaZW737dtXRx99tI466qiEPYfX603o+Oli69atwYxpy7J0++23KyMjI+rx1q5dG7Kdn58f1nF5eXnq37+/du7c2eY4ANJXeNlC0u23SXfdIzU2tp/B3ZKxXTbPUv4ZBLYBAADaUl1jNHOWkTEd3x1n21JTkzRzltGC+VJBPudYAIDuJ62C26+88kpCn+Okk05K+HOkg9tvv1379u2TJF122WUxZ6yvX78+ZHvkyJFhHztixIhgSZPdu3drx44dGjBgQEzzAZBY1TVGs28JLTnSkiXUoiVbqEcP6ZbZ0voNOhAId0mWSzK2FLCd5pEXl4jbZgEAANpRW+ucg9m2ZMJMxrZtJ4lgzlyjJeXiXAsA0O2kTXA7Hnbt2qVXX31VF198caqnkjJ//vOf9eqrr0qS+vXrp1mzZsU85sHB7czMTPXv3z/sY48++uhDxiK4DaSvaLKFbr9TWjDf0tRSqWqN0/Covt4oJ8dpeFQ4hoZHAAAAHalc5SQXhBvYbmHbzl10lauMpk/jnAsA0L10qeD2+vXrdfPNN3fb4PauXbv0q1/9Krg9Z86cYKPOWGzfvj3470GDBsmywj9hOvLII0O2t27dGvN8ACRG7NlClorGWSqSJHFhBQAAEC6/3ykHF0mj7oPZtrSyUppaakgqAAB0K10quP3555+negopVVZWptraWklSYWGhSkpKYh6zsbFRgYPqEeTk5ER0fK9evUK26+vro5pHJAF1IBIH/9/q7v/PYs0WevZPIluom2IddSVt/fwsfq5JwloCYtdZ11HVGsnni60xZJ1PWvO2k2wAxKKzriMg3bCWkiOtg9u7du1SfX29TBiRloaGBv3hD39IwqzS05o1a/TMM89IckqH3H777XEZt3UwukePHhEdn5mZ2e544crNzY3qOCAS8bjTobPav99o5bN1sWULPSv9aMYRysjgTbs7687rqEtwuw95yON28z6cAqwlIHadaR1t294gt7v+kD4nkXC7pW3bs5Sbmx2/iaHb60zrCEhnrKXESbvg9r///W/df//9euONN7R79+6IjjXGdMtPQpqamvSzn/0suH3ttddq6NChcRv7YBkZGREd3zq43djYGPOcAMTf62/sV11dbNlCX3xh9Mab+zVhfGbHOwMAACCovsEo1ktZy5L21cd2PgcAQGeTVsHtd999V9OmTQtm94aTsZ0uJkyYoC1btiRs/JtuuknXXHNNm1/7n//5H23cuFGSdNxxxx12v2i0ztTev39/RMc3NzeHbGdlZUU1D5/PF9VxQEcsywp+grpr165O9Xsnnt5fZ8vtVmzZQi7p/XV7VZDvit/E0CmwjrqOXoHAISeH/kBAe3kfTgrWEhC7zrqOXJYdcWm41owtuV2N8vmaO94ZaEdnXUdAumEttS3ed4WmVXD75ptv1r59+4LbOTk5Yb/ghoYG1dXVJWhm6euDDz7Q448/Hty+/fbbD8mWjkXrGtutM7k70jq4HWnN7hb8AkAyGGO67f+1+vo4ZAu5pH37uu/3EI7uvI66hrZ+dvxMU4G1BMSuM62jvMGxJRlIUsB2xuksrxmdQ2daR0A6Yy0lTtoEt9999119+umnGjlypK699lp99atfPaQZYUfmzp2r5cuXJ2iG6ScQCGju3Lny+/2SpMmTJ2vMmDFxfY6srCy53e5gU8mDP3wIx969e0O2ow1uA0is7Gwr5jdaY0s5Od2vNBQAAECsxhZKublSLDfK9M2VCuN7OQgAQNpLm+D2e++9p969e6u8vDzioHaLr3/96ykLbt93330RZzVH4thjjz3ksT/96U/617/+JclJ6f/pT3+akOceOHCgPv/8c0nStm3bIqptvnXr1pDtQYMGxX1+AGI3JC8+2UJD8uIzHwAAgO7E47E0ucRocYWiavDtckkXlzjjAADQnaRNcHv37t067bTTog5sS1L//v1TluJ/6qmnJv05Dy7DsmvXLo0bN67DY+xWZ0pXXXVVSKD6iSee0FlnnRWyz/Dhw4PB7ebmZtXW1mrAgAFhzbHluIPHApB+yBYCAABIrZJiS0uXGTU1RRbgdrmkrCzneAAAupu06frVs2fPiJsVtjZixAi9/PLLcZpR52KMUSAQ6PBP6+C/bdvtfl2Shg0bFrL9/vvvhz2vdevWBf/dp08feb3eCF8ZgGRwsoWci6NokC0EAAAQG6/XUtk8S5YV/jmZyyVZllQ2z5LXy3kYAKD7SZvg9mmnnaYPP/wwWD86GhkZGTrmmGPiOCtI0plnnhmyXVNTE9ZxGzdu1M6dO4Pbo0aNiuu8AMRXSbGlHj0iD3CTLQQAABAfBfmWFsy3lJXV8TlZyznYwnst5Z/BeRgAoHtKm7Ikp512moYMGaKnn35aV1xxRVRjbNiwQT//+c9VXl4e59mlp6uuukpXXXVVRMfMmTNHK1asCG6Xl5fr7LPPbveYoqIiZWZmqrm5WZL0wgsv6Mc//nGHz/X888+HbJ933nkRzRVA4vj9RqurpI2bpIYGo+xsS0PypHl3SrNmOxdL4dwOS7YQAABAfBXkW1pSLlWuMlpR6ZSNc7sky+U08A7YTjm4i0uc5ALOwQAA3VnaBLcl6Ve/+pWuvvpqDR8+XKNHj474+O3bt+udd95JwMy6t549e6qoqChY8mX9+vVas2aNxow5fHHd/fv36+mnnw5uZ2ZmasKECQmfK4D21daa0AsltxOcdkobOXW3z/+69NprUlNz+wHulmyhsnlkCwEAAMST12tp+jRLU0uNqtY4CQn19UY5OU5CQuEYysEBACClWXD7hBNO0L333qubbrpJl112ma666qqIGkweXN8Z8XXdddeF1DO/8847tWLFCmVmZra5/8MPP6xNmzYFt6+44gr169cv4fMEcHjVNUazbwltUhQIhO7j80kv/lXKzJQmni+teZtsIQAAgFTxeCwVjZOKJEmccwEA0FpCg9uffvqp/vnPf0Z83FVXXaWHH35Yjz/+uM466ywdd9xxysnJafeY+vp6LV++PNqpogOnnXaaLrjgAr3wwguSpE8++URXX321Fi5cGBK0tm1bTzzxhO6///7gY71799a1116b9DkDOKC6xmjmLCNjOi43YttSc7P015ek+WVSY6NFthAAAAAAAEg7CQ1u/+///q9uvfXWqI83xuhvf/ub/va3v4W9v2URbEmUX/7yl/roo4+0YcMGSdLbb7+tCRMmaMKECRo8eLDq6upUVVUVkrHtdru1YMECeb3eVE0b6PZqa52MbduWjAnvGNt2yo7M/Zm0pFwqGmeJbCEAAAAAAJBOEhrcPuKII4IBZxNuRKWVaI9D/PXp00ePPvqoZsyYoQ8++ECS1NDQoOeee67N/XNycnTHHXeoqKgomdME0ErlKqcUSaS/Tm1bamx0jp8+jcA2AABAujpcs/CxhdxtBwDo2hIa3M7NzQ3+e/To0Tr99NOVlZWVkOfat2+fli9frt27dydkfDgGDx6sp556Sg8++KCeeuop7dix45B9MjIydO655+qmm27Scccdl4JZAmjh9zvNIzsqRXI4ti2trJSmlhoujAAAANJMOM3CJ5cY+qQAALqshAa3+/btK0k666yztHjx4kQ+lSTpyCOPVFlZWcKfpzO7++67dffdd8c0RmZmpm688UbNmDFD1dXV2rx5s2pra9WzZ08NGjRIBQUFwZ89gNRaXeVc6MSizidVrZGKxsVjRgAAAIiHcJuFL66Qli4zKpsnFeQT4AYAdC1Jydw+5ZRTEvk0QSNGjEjK88Dhdrs1evRojR49OtVTAXAYGzc5GTytL3Qi4XY541BgCAAAID1E2iy8qUmaOctowXwC3ACArsWVyMGPOOIIjR49Wscff3winyZo4MCBGjVqVFKeCwA6g4YGo1j77Fouqb6e/gcAAADp4OBm4eGWnmtpLD5nrlFtLed1AICuI6GZ2x6PRxUVFYl8ihDHHXdcUp8PANJddnb0DX1bGFvKySHDBwAAIB3QLBwAgAMSmrkNAEitIXmxlSSRpIDtjAMAAIDUilezcL+f7G0AQNfQqYPbH330kbZt25bqaQBA2hpbKH3Z/iBqfXOlwjHxmA0AAABiEc9m4QAAdAVpF9yurq7Wtddeq+LiYj300EPt7rtixQqNHz9eP/3pT1VXV5ekGQJA5+HxWJpcIrmi/G3vckkXlzjjAAAAILVamoXHoqVZOAAAXUFaBbfff/99XXXVVXr99df18ccf67777tPatWsPu//s2bO1dOlS7dixQ9/+9rfJ4gaANpQUW+rRI/IAt8slZWU5xwMAACD1aBZ+KL/f6PU3jCqeNHpkka2KJ51tSq8AQPeQ0IaSkXrggQfUr18/bd26VdaX79i7du1q95jTTjtNjz32mG699VbdcMMNeuqpp4LHAgAkr9dS2Txp5iwjlyu8Go0ul2RZUtk8S14vv1MBAADSQTyahdsBadt2qeJJo4YGo+xsS0PynHJ2neluvdpao8pVTg1yn8/JaLcsyRijQMApzTe5xKikmPNZAOjK0iZze9++fXrrrbf08MMPa+TIkTLGaMyYMTrnnHM6PNblcunOO+9UU1OT/vznPydhtgDQuRTkW1ow31JWVscZ3C0Z2wvvtZR/BhcCAAAA6SIezcJtI73worTod0ZLljp/33Kb0cWXGj32uK3a2vTPeK6uMZpSarS44kAN8kBA8vsPfH98PmlxhTSl1Ki6Jv1fEwAgOmkT3K6urtaAAQN00kknafny5aqqqtLjjz8ujye85HK3260rrrhCzz77bIJnCgCdU0G+pSXllqaWHmgy6XZJHo/zt+Q0j5xaKi0pJ7ANAACQbuLRLLxFZw0GV9cYzZxl1NTU8R2Jti01NTl3MKbzawIARC9typJs3bpVxx57bHC7b9++EY8xYsQI/fa3v43ntACgS/F6LU2fZmlqqVHVGqeZUH29UU6Ocztq4ZjOdTsqAABAd+I0C3cylsMpNRepg4PBC+Y7yRHppLbWaPYtRrYthVudxbadOxPnzDVaUi5KlABAF5M2we0vvvhCPXr0iGkMt9vdYY1uAIBzYVQ0TiqSJHGCDwAA0FmUFFtauiy8zOVopHMwuHKV87ojLTtu21Jjo3P89Gnp83oAALFLm7IkWVlZ2rlzZ0xjrF+/XtnZ2XGaEQAAAAAA6cVpFm7JsjrupRKtg4PB6cLvd5pHRhvQt21pZaUzDgCg60ib4PawYcO0bt06bdu2Leoxli9fruOOOy6OswIAAAAAIL1E0iw8WukWDF5ddaB5ZLTqfFLVmnjMBgCQLtImuD169GhlZmbqtttuk9/vj/j4Rx55RGvXrlVRUVECZgcAAAAAQPoIp1l4rNIpGLxxk+R2xzaG2+WMAwDoOtKm5nZWVpa+/e1vq6KiQldccYXuueceDRs2rMPjdu/erXvvvVd//OMflZmZqcsuuywJswUAAAAAILXaaxa+YYPRS69IgUD047cEg9MhhayhwciKsVy25XK+P/ScAYCuI22C25I0Y8YMvfLKK3rvvfd00UUX6ayzztL555+vkSNH6thjj1WfPn20f/9+ffHFF3r//fe1Zs0arVq1SvX19bIsSzfccIMGDRqU6pcBAAAAAEDStNUs/JFFXSsYnJ1tyUTaSbIVOyBt2y5VPGnU0GCUnW1pSJ40ttD5HgIAOp+0Cm4fccQRevDBB3XFFVeovr5eb7/9tt5+++12j2l5c5s4caKuvfbaZEwTAAAAAIC0Fq9g8IcfSY8sslMeCB6SF1sWuiTZRnrhRcntdgL/xhgFAk5Zl8klRiXFlrxegtwA0JmkTc3tFieeeKIqKio0dOjQ4BuxMeaQPy2PS9J3vvMdzZ8/P2VzBgAAAAAgncQrGPzOWmnJUmnR74xuuc3o4kuNHnvcVm1tchtNji08UFs8VoGA5Pcf+P74fNLiCmlKqVF1TXo00AQAhCftgtuS9JWvfEUrV67U9OnTlZOT0+Y+xhgdd9xxuv/++3XHHXcoMzMzybMEAAAAACA9xSsYbNvpEQj2eCxNLpFcCYpi2LbU1CTNnEWAGwA6E8vEep9SgjU2Nuqtt97Sv/71L+3cuVNut1vHHnusRo0apdNPPz3V00OS1NXVpXoK6KIsy1Lul2f9Pp8v5ls3ge6IddR19K6aKI9vbchj/txR2lP4Yopm1L2wloDYsY5CPfa4rcUVTuA23lwuybKkBfMtFeQnp5RHba3RlFKjpqbEvCbJeV1ZWdKS8u5booR1BMQHa6ltffv2jet4aVVzuy1ZWVk677zzdN5556V6KgAAAAAAdBolxZaWLktMMNi2nUDwnLlGS8oV90Cw32+0ukrauEkhzR/n3SnNmu08dyIC3LYtNTZKlauMpk/rnsFtAOhM0j64DQAAAAAAIuf1Wiqb55TaSEQwOBGB4Npao8pVRisqnRIobrcOaf54/tel116TmpoTF+BeWSlNLTUpaZ4JAAhfWtbcBgAAAAAAsSvIt7RgvqWsrMTUq24JBPv9sd9uX13jlB1ZXOEEtqW2mz+++FfJSJp4/oG64m6X5PE4f8dDnU+qWhOfsQAAiZNWmdufffaZBg4cKI+n/WlNmjRJ+/btk9vtVt++fXXaaadp8uTJGjlyZJJmCgAAAABA51CQb2lJuUIzol2S5ZLsgGTHGJduCQQXjYt+jOoao5mzjIzpOBvbtqXmZumvL0nzy6TGRksbN0n19UY5OZY2bDB66ZUDAfFouF1OSZSiDvY7XPmUsYUi6xsAkiCtgtvnnXeeVqxYoZNPPrnd/a655hrt379fgUBAtbW1evfdd3XFFVfosssu06233irL4g0EQHrjJBgAAADJ5PVamj7N0tRSo6o1CgaDP/xIemdtbOU9wg0EH05trdHsW4xsWwq331pLze+5P5OWlEtF4yxJznn0I4uMYg0LWC7n+9MyZltz7qh8yuQSo5Li7tuYEgCSIa2C2+F2Db3ooosOeWz79u26/vrrtWjRIn3/+9+P99QAIC44CQYAAEAqeTyWisa1BKItPbLI1j+qYwtudxQI7kjlKqfpZbiB7RaHq/mdnW2FHV84HGNLOTltv57qGicYf3CjztZZ4j6ftLhCWrrMqGyekz0PAIi/LlNze+DAgfrRj36kZcuWpXoqANCmcGsILq6QppQaVdfEXrcQAAAAaI8TCI5tjPYCwR3x+53Ej2iD623V/B6SF1tJEkkK2NKGDUaPLLJV8aTR628Y+f0mWD7l4MB2e3NranIaenJuDwCJkVaZ27Hq2bOntm3bluppAMAhIq0h2HISvGA+WR4AAABInHgFgofkRXfs6qoDiR/Ral3ze2yhc0dkrOO+9EroXZZ9+kj19YqqfMqcuUZLysXdmQAQZ10mc9sYo9///vfq379/qqcCACEOriEYbkZKywnznLlGtbVkeQAAACAxWgLBseibKxWOie7YjZucUn2xaKn53cLjsTS5xAkqx6L1XZa7dzvbsZRPAQDEV9Iytz/77DNt2bKlw/3ee+897dmzJ6wxbdtWXV2dPvroIz3//PPasGGDLr744hhnCgDxFe8aggAAAEC8OIFgp3ReNKVBXC7p4pLom6I3NCSm+WNJsaWly8IrH5IMLeVTppYaGsgDQBwlLbi9fPly3X///bI6eNe69dZboxrfGKOsrCxdffXVUR0PAIkQrxqCnAQDAAAgUaINBLtcUlaWc3y0EtX80eu1VDbPKfXncqVHgLt1+ZTuxO83Wl3lZNg3NBhlZ1sakufcOcB1DoBYJC24PWPGDF111VXavn27Pv74Y7311lt66aWX9MUXX4TsF+2bWk5OjubPn6/hw4fHY7oAEBeJqCEIAAAAxFM0gWCXy6lHXTbPiqmOdCJrfhfkW1ow3yn119iY+gB3S/mUotROI6lqa40qVzkJPz6fU4Lm4DrmubnS5BKjkuLY/h8B6L6S2lCyV69e6tWrl4YNG6YLLrhAt912m5YvX64FCxZo165dkqSRI0cqJycnrPFcLpeOOOIInXbaabrkkkvUr1+/RE4fACLWUkMwlhP27ngSDAAAgOSKJBDckrFdNs9S/hmxBSTj0fyxvZrfBfmWlpQrNMDqckqZ2AHJTmIZ7LbKp3Rl1TVO76GD7whofV3k80mLK6Sly4zK5jk/LwCIRFKD261lZGToO9/5jgoLC/Xd735XO3fu1K9+9SudfPLJqZwWAMRNomoIAgAAAPHWXiDY2E6GdN9cp8Z2vDJtk1Hz2+u1NH2apamlRlVrnMSR+nqjbdulF16MYfIRsgPShx9Jjyyyu0RZjvZKjbz7T+dOAGM6/rnattTU5Oy/YD4BbgCRSWlwu0VeXp5uvPFG/exnP0v1VAAgrhJVQxAAAABIhMMFgnNynMBl4Zj4B2OTVfPb47FUNK7ljkhLFU8aud0m5rIo4bKN9M5a6R/VnbssR0elRvr0kerrnZ9luJdCtu38POfMNVpSrk7zvQCQemkR3Jak8ePHxxwAAoB0k8gaggAAAECitA4Ex0N7mb5l86yk1/yOx12WkbLt0NfX2cpyhFNqZPfu6Ma2bamx0blzYPq09P4+AEgfaRPc9nq9Ki8v15AhQ1I9FQCIm0TXEAQAAADSXXhNBaXbb5PuukdJq/kdj7ss46GzlOWorjFhlxqJlm1LKyulqaWm05ZrAZBcrlRP4GBnnXWWsrOzUz0NAIgbp4agcwIejXBqCAIAAADpqrrGaEqpU1O7JeEjEJD8/gMZvy3Zy/PKpJt/Kk0tdQLeklPz2+Nx/pacxI+ppdKS8tibWcbjLst4aSnhMWeuUW1t6gPurdXWOhnbrTPPE6HOJ1WtSexzAOg60iZzOx527dqlV199VRdffHGqpwIAQcmqIQgAAACkwuHKjWRnG82arYiaCt5+p7RgvqWppUp4ze943GUZT+lclqNylXM9k4xEd7fL+bkXJf6pAHQBXSq4vX79et18880EtwGkFa/XUtk8Jb2GIAAAAJBIHZUbiVRoU0FLReOsuNb8bs25y9LJKk90NnK40rEsh9/v/IyT9T2yXM4HGon6uQPoWtKqLEmsNm7cmOopAECbCvItLZhvKSur4xIlLRnbC++N/VZLAAAAIBHCKTcSjYOzl5OhpNhSjx6RlxG0LKdcSp8+znZL+RRXHE7f060sx+qq5Ga3G1vKyeE6CEB4Ep65bYzRM888o3Xr1ik/P18XXXRRm/u98MILamhoiPp56uvr9fjjj0d9PAAkWkG+pSXlCs1ucTmZCcaWArZTQ/DiEuckm4xtAAAApKNENxZMZvZyLHdZLphv6dRTQsunfPiR9M7a2L4v6VaWY+MmJys/WfXJA7ZTDx0AwpHw4Pbtt9+uZcuWSZKWLFmi9957T7Nnzz5kv9/85jdav359TM9ljJFlEQwCkL68XkvTp1maWmoSXkMQAAAAiLeDGwsmsv5yS/Zy0bjEPUcL5y5LpxxKY2P7gemWuyzL5h24y7JonILlUx5ZZOsf1bEFt9OtLEdDg1EyQy19c53rIgAIR8KD288++6wkJ/AsSc8880ybwe1+/frp008/TfR0ACAteDxWyEkwAAAA0Bkkq7FgsrOX43WXZXa2FYx/RMsOSNu2SxVPmpAGnWMLU5MIE4/XFC6Xy/kek/ADIFwJD26PGDFC1dXVsiznl+Hxxx/f5n59+/aVJPXu3VsXXnihvF6vXBEUvdq3b5+WL1+u3bt3x2XeANDZHK5LfapOggEAANC1JLOxYCqyl+Nxl+WQvNjLd9hGeuFFye02IQ06c3OlySUm6SUM4/GawtGSFV9SzLULgPAlPLg9f/583XLLLfq///s/nXHGGfrlL3/Z5n65ubmyLEt33HGHvvnNb0b1XEceeaTKyspimS4AdDoddalP1UkwAAAAupZkNhZMZVPBWO6yHFvonH/H4/vUOqDs80mLK6Sly4zK5jnZ5skQz9d0OC11zMvmcc0CIDIJD24fffTReuKJJzrcryVz+5RTTon6uUaMGBH1sQCQrtrLyH73n9LsW5xbQ1syaNLlJBgAAABdSzIbC3bWpoIej6XJJUaLKxLXbLOpyWmAuWB+cs7tE/2a2qpjDgDhSnhwO1yFhYVqaGhQ//79ox5j4MCBGjVqVBxnBQCp01FGds+eUn29s29HJfBScRIMAACAriWZjQU7c1PBkmJLS5eFJqDEk207AeE5c42WlCspmc7RvibLcq5jcnKk3bujq2MOAO1Jm+D2mDFjNGZMbO9cxx13nCoqKuI0IwBIneoa02FG9r59kY2ZipNgAAAAdB3JaizY2ZsKer2WyuY5iSUuV+IC3I2NTgPM6dMS/32K5jW1lBpZMN/Sqaco6jrmANCe8Ds2JsHKlSvlS1YBLwBIU9U1RjNnJSbT4+CTYAAAACASyWgs2FWaChbkW1ow31JWlvOaEsG2pZWVThnDZIjkNbX8HBfe65QaceqYW/redy1dc7VL3/uus01gG0Cs0iq4ffPNN+sf//hHqqcBAClTW+tkbNt24rrQJ/skGAAAAF1DS2PBROlqTQUL8i0tKbc0tfTA983tkjwe5+94qPM5GdHJEs5r6psrTS2VlpRTQxtA4qVNWRLJqSP7zDPP6Lzzzkv1VAAgJSpXORnbib7bs+UkuGhcYp8HAAAAXUciGwt21aaCXq+l6dMsTS01h5Tl2LDB6KVXYsuGd7ucMYviN+UOtfeaKDUCINnSKrgtSa+++qrKyso0c+ZMZWZmpno6ABARv99odZVzgtfQYJSd7ZzgjS3s+ATP73eaRyYqY/tgqTgJBgAAQOcXj2aJ3bGpoFOWo+X823mNjyyKvUGn5XICyy1jJlNbrwkAki3tgtuS9Pjjj2vVqlWaNGmSSkpKdNJJJ6V6SgDQrtpao8pVTnDa53M6gluWc0dKIODcsje5xLR7wr66yjk2GVJ5EgwAAIDOK5bGgvfeIzU0WGT6fikeDTrtgPThR9Iji+yIEmvSVSzJQgC6p7QLbmdkZOj6669Xbm6uXnzxRT3xxBMaPny4SkpKdNFFF2nQoEGpniIAhKiucepkH5y90vrWQp9PWlwhLV1mVDbPqVXX2sZNTlA80U16JCdLJieHk0MAAABEzmksKM2Za9TY2H6Au61yI2T6OuLRoNM20jtrpX9UR5ZYk27ikSwEoHtKq4aSknTdddfp+uuv15QpU/T444/r1VdfVUlJiZ599llNmDBB//Vf/6VnnnlGe/fuTfVUAUDVNUYzZ4V3W6ZtS01NTpZLdc2hGRoNDbHflhiugO2cTAMAAADRoLFg7OLVoNO2Jb//QKC8JbFmSmnb1x3pprrGaEqpU8u95U7WQKBzvyYAyWOZWO+BiaPS0lLddtttOvHEE9v8+gcffKDKyko999xz2rVrl84991xNmjRJ55xzjjyetEtCRxzV1dWlegrooizLUu6XZ5Q+ny+i2wJra52TsMbGyBpAtmSvLCkPzTqoeNJo0e9MUjK3++ZKK562uLUPcRHLOkJ66V01UR7f2pDH/LmjtKfwxRTNqHthLQGxYx2lht9PY8FoPfa4nZAGndKBcjAL5ltt3jl6OMlcRy3JQsZEVuIm0tcEpALvSW3r27dvXMdLq4hwRUVFu18/+eSTdfLJJ+unP/2p3nrrLa1atUr//d//rczMTF144YUqLi5WQUFBkmYLoLurXOVkbEf6/mTbUmOjc/z0aQdOyOJxW2I4XC6nYQ8XGgAAAIgHGgtGLx4NOg/Htp1z/zlzjZaUK+3KedTWOuUdbTv8a6pEvyZqfgOdT1oFt8NlWZbGjRuno446Sr1799aSJUu0dOlSLV26VCeddJJWrlyZ6ikC6OL8fqceXLQnoLYtrayUppaa4ElSy22JiWwq2ZI1XlLMiRkAAACQatE06IzE4RJr0kG8k4ViQc1voPNKu5rbHdm5c6cWL16sSy65RBdddJGefPJJGWOCfwYOHJjqKQLoBlZXxR6ErvNJVWsObHs8liaXOAHoRGi5ha9sHidkAAAAQLpwGnRayspKzLVAS2KN358+JRHilSwUj9dEzW+gc0urzO0RI0boj3/8o0477bSQxxsbG/XXv/5Vzz77rKqqqhT48rdLS62a4447TsXFxZo0aZKOPfbYpM8bQPezcZPzaX4sZUTcLmecooMeS9RtiW11qQcAAACQHpwGnQrNHnZJlkuyA5IdYzy1JbGmaFz7+7XUT9+2vUH1DUYuy1be4PiX5YhnslBHr6k9kdT8tm2pqcnJsl8wX9T8BtJEWgW3jTHauHGjTjvtNBljtHr1aj377LP661//qoaGhuA+kuT1enXhhRdq0qRJOvXUU1M5bQDdUEODkRXjuYzlchruHFyXMJrbElvm0bOntHfvgZNgY0sB22keeXGJuIUOAAAASGNer6Xp0yxNLQ1t0PnhR9I7a2NLfmkrseZgoWU5jNzu+i/LcighZTkSlSwUiXSs+Q0gcmkV3JakBQsWaO3atXrllVdUW1sr6UBAOzs7W+edd54mTZqkcePGyZWoe/cBoAPZ2VbMnY6NLeXkHHoy5NyW6JwwNTa2fxJ7cEb2qaeILvUAAABAJ9e6Qecji2z9ozq24HZbiTUtqmucIO/Bd4+2Djq3lOVYusyobF7sWcuJShaKRDrV/AYQvbQLbn/++edatmxZMGjk8Xg0ZswYFRcXa+LEicrOzk7xDAFAGpIXW5aB5GRVD8lr+2vt3ZbYXkY2XeoBAACAriUeiTV2QNq2Xap40qihwSg720mEyc42mjVbSS/LkchkoXDEq+b31FJDIhGQYmkX3JacTO2TTz5Z+/fv1/r169Xc3Kzm5uZgrW0ASLWxhc6tebHUieub62RVH87hbkskIxsAAADoPuKRWGMb6YUXJbfbfFluxEQ1ZrzKciQ6Wagj6VLzG0Ds0i64nZeXp7vvvlv5+fmSpPfff1/PPvusfvOb3+jOO+/Uueeeq0mTJumcc85RRkZGimcLoLvyeCxNLnE6akfzab/L5WRdhxOcbn1bIgAAAIDuIx6JNS3ikTMYj7IcyUgWak861PwGEB9pV7T6Bz/4QTCwLUkjR47UnDlz9Prrr+vBBx9UTk6OZs+era9+9au67bbb9Pe//z2FswXQnZUUW+rRwwlUR6KlTnZJMYFqAAAAAO1zEmsiv+5IpJayHH5/dKVFYn1NkSQLtSW+Nb8BpFIa/Wp0DB06tM3HLcvSV7/6Vd19991avXq1fv7zn2vHjh2aPn26xo8fr3vvvVcffvhhcicLoFvw+41ef8Oo4kmjRxbZqnjS2c7NdRo5Wlb4J2Uul2RZznF01gYAAAAQjmgTaxKppSxHtFKZLOTU/I76cEmx1fwGED9pVZakvLxcJ554Yof79ejRQ2eccYY2b96sjz/+WFu2bNGiRYu0aNEinXnmmfr973+fhNkC6Opqa01oQ0e3QurT5eZKk0uk22+T7rrHuTWvvRIlLSdhZfMs5Z/BSRAAAACA8Hi9lsrmOc0cXa7oGyHGU6xlOaJ5TfFKFkp1zW8A8ZNWwe3PPvtMJ510krKzs9v8us/n01/+8hetWrVKNTU1wcct60CXXSvW+0oAQFJ1jdHsW4yamg6cZLU++fH5pMUVUo8e0i2zpfUbdCAQ7nJuUzO2c9LTN9e5ba6kmIxtAAAAAJEryLe0YL7TzLGjxJpkOFCWI/rrm0heUzyThVJd8xtA/KRVcPvmm29WRUWFRo0aFXysqalJL7/8sp599lm9+eabCnwZXTIH3T9y1FFH6Vvf+pZKSkp0wgknJH3eALqW6hqjmbOMjOn4hNG2paYm6fY7pQXzLU0tdW7N27jJOdHLybE0JM856Ym2HhwAAAAASE4weEm5Qu8wbZVYkyzxKssRzmuKd7KQU/PbaHFFdB8SxFrzG0D8pFVw2xij1atXq6CgQG+99ZZWrVqll156SQ0NDcGvt+jdu7cuuOACTZo0SWeddVaqpgygi6mtdTK2bVth12CzbefkZs5coyXllorGWV/emseJDgAAAID48notTZ9maWqpOSSxZsMGo5deib3kRjjiWZajvdeUqGShkmJLS5eF3q0bjnjU/AYQP2kV3JakBx98UI8//rgaGxslhQa0MzIy9LWvfU2TJk3S+PHjlZmZmappQlIgEFBNTY02b96sHTt2qFevXho0aJAKCgqUm5ub6ukBUalc5ZzcRNpcxLadmtuVq4ymT+MkBwAAAEBieTyWisYpJLHmkUVGyarWmoiyHG29pkRJZc1vAPGTdsFtScFMbcmpoZ2fn69Jkybpwgsv1BFHHJHCmaWnt99+W//1X/8V1bEFBQX6wx/+ENExzc3Neuihh7Rs2TLt2LHjkK9nZGRo/PjxuummmzR06NCo5gWkgt/v3AYXbe0625ZWVkpTSw23pwEAAABIuuxsKyRJMFG6SlmOVNX8BhA/aRnclqRhw4apuLhYkyZN0jHHHJPq6eBLmzdv1g9/+EOtW7fusPvs379fL774ot5880394he/UHFxcRJnCERvdVVsDUUkqc7n1NwuGhePGQEAAABA+IbkJb4kSVcry5GKmt8A4iftgtuDBw/W3XffrYKCglRPpdNyuVyywrwPyeMJ/7/Anj17dM0112j9+vXBx7KzszV+/HgNHjxYPp9PVVVV2rRpkySpvr5es2fPVm5uroqKiiJ7EUAKbNxk5HbHdjLodjn14fgfDwAAACDZxhZKubmxJ+0cTjqV5fD7jVZXOddfDQ1G2dlOfe6xhZFnlKei5jeA+Ei74PYNN9xAYDtGTzzxhM4+++y4jzt37tyQwPbZZ5+thQsXql+/fsHHAoGAnnjiCf3617+WMUaBQEAzZ87U888/L6/XG/c5AfHU0KCY69NZLuckiGaSAAAAAJLN47E0ucRocUX05RYPJ13KctTWmtAsa7dzHefEIJzg/uQSE1WWdTJrfgOID1eqJ9AaNZrT07vvvqsXXnghuH388cdr0aJFIYFtSXK73Zo+fbpmzJgRfGzPnj16+OGHkzZXIFrZ2ZE3kmzN2FJODidBAAAAAFKjpNhSjx5OMDpabrfk8Th3pkpOWY6ppdKS8tQGtqtrjKaUOsH7luz0QEDy+w/cgevzSYsrpCmlRtU1ia8/DiC10ipzu7y8XCeeeGKqp4E2PPjggyHbt912mzIzMw+7/7XXXqvKyspgiZKlS5fq+uuvPyQYDqSTIXmWAoHYTn4CtlPnDgAAAABSweu1VDZPmjnLyOUKL4O7pdzIvfdIjY0ubduepX31Rm5Xo/IGp0dZjuoao5mzjIzp+DXZttTU5HwPFsx36moD6JrSKnP7rLPOUnZ2dqqngVb27dunN998M7g9fPhwjRkzpt1jMjIydNlllwW3m5ub9corryRsjkA8tNSni0XfXOfEDwAAAABSpSDf0oL5lrKyOs7gbik3svBeS6POdKlonKWr/79s3TgjR9/7rrOd6sB2ba3R7FuMbDv8ciu27dyZO2euUW0tGdxAV5VWwe1w1NXV6e6779bXv/51nX766ZowYYJ+9rOf6bPPPkv11LqsN954Q83NzcHtCy64IKzjvvGNb4Rsv/zyy3GdFxBvTn266G/fc7mcDtqpPvEDAAAAgIJ8S0vKLU0tPZDE43alZ7mRjlSuMmpqiryMpG1LjY3O8fHk9xu9/oZRxZNGjyyyVfGks+33E0QHki1typI8+eST+uUvf3nI41deeaVuvfVWSdLGjRs1bdo0ff755zJf/kb77LPPtGzZMj333HNatGiR8vPzkzrv7mDt2rUh2+F+j/Py8tS/f3/t3LmzzXGAdFRSbGnpMufEKZIGLC3ZDiXF6XtCCAAAAKB78XotTZ9maWqpUdUaaeMmqb7eKCfH0pC89Cg30hG/32keGW2DTNuWVlZKU0tNzK81kc0sAUQnbYLbl112mf72t7/pjTfeUJ8+fXTppZeqoKBAI0eOlCTt379fP/zhD4MZ2qeddppmzpypI488Uh988IH+3//7f7rxxhv1l7/8RT179kzlS+ly1q9fH7Ld8jMJx4gRI4IlTXbv3q0dO3ZowIABcZ0fEC2/3znB27a9QfUNRi7LVt5gad6d0qzZirg+Xdk8TmAAAAAApB+Px1LROKlIktS5rllWVx1oHhmtOp9UtUYqGhf9GNU1TmmUgxOhWppYtmhpZrl0mVHZPGp9A8mQNsHtzMxMjR07Vps3b9bixYt15JFHhnx95cqV+uijj2RZloYOHary8nJlZWVJkoYNG6b8/HxdeOGFWrFihb73ve+l4iWkjT/+8Y964IEH9O9//1u7du1STk6O+vbtqxEjRmj06NH65je/qT59+oQ93sHB7czMTPXv3z/sY48++uhDxiK4jVQL/bTdyO2u//LTdgU/bT//69Jrr0lNze0HuFsytsvmpfdtfAAAAADQGW3c5GRItw4kR8LtcsYpivJ4mlkC6Sttam7v2bNHDzzwgH79618fEtiWpGXLlgX/fcsttwQD2y2OOuooTZo0Sa+++mrC55runnvuOb399tvatm2bGhsb9cUXX+jTTz/Vn/70J/385z/X+PHjdd9992n//v1hjbd9+/bgvwcNGiTLCv8Xc+uf5datW8M+FkiE6hqjKaVGiysOfPofCEh+/4GTJZ9PevGvkpE08fzOX58OAAAAADqrhgajCMIQbbJcTjmWaNDMEkhvaZO5/eabb8rr9erUU0895Gu7du3Sv/71L1mWpf79+2vcuLbvIyksLNSvfvWrRE+109u7d69++9vfqqqqSr/97W/Vr1+/w+7b2NiowEEfj+bk5ET0XL169QrZrq+vj2yyX4okoA4cTqSftjc3S399Sbr3HkuNjZY2bjKqr5dycqQheVanqE8HJMPBv6P5fd3ZtfXzs/i5JglrCYgd6wiIXbqto5wcK9h3LVp2QPrwI+nRx4yys53rubGF4V3PxdrM8tk/SdOnpf77iORLt7XUVaVNcHvz5s3Ky8tr82sfffSRjDGyLEunnXbaYf9DHHXUUdq1a1cip5nW8vPzNWHCBJ1xxhkaNmyY+vTpo/3792vHjh2qrq7WU089perq6uD+NTU1+sEPfqDFixerR48ebY7ZOhh9uP0OJzMzs93xwpXbkjoLRGn7dluzb6kLK7DdwradsiNzbzP6U2Wuii9Km5tdgLR1xBFHpHoKiIXbfchDHreb9+EUYC0BsWMdAbFLh3U0ckSzAoE9MY1hG+mdtdI/qs2X5SiN+va1dMXlPXT5pVkaOLDta739+41WPlsXWzPLZ6UfzThCGRkEN7uzdFhLXVXaRGoyMzPV2NjY5tc++uij4L9HjBhx2DH2799/SLmS7mDo0KH605/+pKVLl+qaa67RWWedJa/Xq8zMTPXs2VNDhw7VJZdcoj/84Q+6++67QwLUNTU1+u1vf3vYsZuamkK2MzIyIppb6+D24X7GQKIte7pRjY2Rd9i2bamhUXrqGf7vAgAAAECyfa0oQ337xh4Ytu3QcpR1dUYPP9qgb5XU6e/vtF229fU39quuLras8S++MHrjzfDKwgKIXNpkbvfv31/btm1r82sHZxufcsophx3j3Xff1QknnBD3uYVjwoQJ2rJlS8LGv+mmm3TNNde0+bUjjzyyzTrlbZk8ebIyMzP1k5/8JPhYeXm5pk6d2mZ5ktaZ2uHW6W7R3Nwcsh3thw++WFsjo1vz+43+8Ec7pk/b/7C0Qd+5rIkyJEAbLMsKZiLs2rUr5ttGkTq9AoFDTg79gYD28j6cFKwlIHasIyB26biOLp4kLa6IPFmpIy2lQ66+drcW3us6pPnj++vsuDSzfH/dXhXkp01+KZIkHddSOoj3XaFpE9w+9dRTtWnTJm3evFmDBw8OPr579+5gk0iPx6PRo0e3eXxTU5OWLFmi73//+0mZb2f2rW99S8uXL9ebb74pySkV8sorr+jSSy89ZN/WNbZbZ3J3pHVwO9Ka3S34BYBYvLXaKNa4TJ1PWl1lVNR2yX8AXzLG8Du7U2vrZ8fPNBVYS0DsWEdA7NJlHZUUS0uXSU1NiQlwu1zS7FtsLSm35PUeCHDX18enmeW+fenxfUTqpMta6orS5mOjoUOH6vjjj9ejjz4a8vg999yj+vp6WZaliRMnHtKgUHICqDNnztQRRxzRZoAWh2r9faqqqmpzv6ysLLkPqr+5b9++iJ5n7969IdvRBreBWGzc1GYZ2Yi4Xc44AAAAAIDk8notlc2zZFlOIDreWjK4K1eFBh+zs62IG0m2ZmynKSaAxEibzG1J+sEPfqCZM2dq48aNOvXUU/V///d/Wrt2rSzLUlZWln784x+H7G/btl566SUtXLhQGzZs0HXXXSePJzUv6b777os4qzkSxx57bFzHy8/PD9n+7LPPDrvvwIED9fnnn0uStm3bFmzuGY6tW7eGbA8aNCjCmQKxa2iIz6ft9fVGEiclAAAAAJBsBfmWFsyX5sw1UfVT6ohtSysrpamlJliOckhebCVJJClgO+MASIy0Cm5feOGF2rBhgx544AG9/fbbwcezs7N13333BcuVfPHFF/rFL36ht99+Wz6fL5jW/9BDD6mxsVGzZ89O+txPPfXUpD9nLFrX166rqzvsvsOHDw8Gt5ubm1VbW6sBAwaE9Twtxx08FpBszqftsX3czqftAAAAAJBaBfmWlpQ7GdYrKiWfz7nL1nJJdkCyY8yyrvNJVWsULEc5tlDKzVVMZS775kqFY2KbF4DDS6vgtuRkb0+cOFEvv/yytm7dqqOPPlqTJ0+W1+sN7hMIBJSdna1zzz33kOMbGhqSONvOq7GxMWS7dePIgw0bNixYn1uS3n//fZ1zzjlhPc+6deuC/+7Tp0/IzxFIFj5tBwAAAICuweu1NH2apamlRlVrnPKR9fVGH34kvbM2tozulnKURV9uezyWJpeYqJtZulzSxSUKZoIDiL+0C25L0vHHH6/jjz/+sF8fMGCA7rrrriTOqOvZvHlzyHb//v0Pu++ZZ56p8vLy4HZNTU1Ywe2NGzdq586dwe1Ro0ZFMVMgdnzaDgAAAABdi8djqWhcSyDa0iOLbP2jOrbgdlvlKEuKLS1dZiJuZulySVlZzvEAEidtGkoiuV577bWQ7ZNPPvmw+xYVFSkzMzO4/cILL4T1HM8//3zI9nnnnRfBDIH4cT5tj77xCJ+2AwAAAEB6S1Tzx2iaWbpckmVJZfMseb1cRwKJRHC7G9qzZ48qKipCHisqKjrM3lLPnj1Dvr5+/XqtWbOm3efYv3+/nn766eB2ZmamJkyYEOWMgdiVFFvq0SPyADeftgMAAABA+ktkOUqnmaWlrKyOrylbriEX3msp/wyuI4FES0hw+4033tD//M//JGLouNm2bZtuuOGGVE8jZps2bYqoznhTU5N+/OMf64svvgg+dvLJJ2vMmPbrLVx33XUh23feeaeam5sPu//DDz+sTZs2BbevuOKKQ5pYAsnEp+0AAAAA0HW1lKOMRXvlKJ1mlpamlh54HrdL8nicv1uOn1oqLSknsA0kS0KC21/5ylf03HPPac6cOQrE+rFZAnz66ae64oorNHTo0FRPJWavvPKKzjvvPN1///3asGFDu/u+8847+s53vhPSHNLlcmnOnDmyrPZ/6Z522mm64IILgtuffPKJrr766pAguSTZtq3f/e53uv/++4OP9e7dW9dee20kLwtICD5tBwAAAICuKRnlKJ1mli6tfNrSXb+09P2rLX33Cun7VzvbK552vk5yFJA8ljGxViRq25YtW/Td735XxxxzjMrKyjR48OBEPE3EnnnmGc2bN08TJ07sEk0pn3jiiZDXccwxx2jEiBE66qij1Lt3bwUCAe3YsUPV1dX697//fcjxP/vZz3TllVeG9Vy7d+/W5ZdfHhJEz87O1oQJEzR48GDV1dWpqqoqJGPb7Xbr4YcfbrfsSTjq6upiOh44WG2tUeUqoxWVTpNJt9vJ0Da2cxta31znpKakmIxtIByWZSn3y/QVn8+nBJ1aIAl6V02Ux7c25DF/7ijtKXwxRTPqXlhLQOxYR0DsOvM6qq01mlIaffPHJeVcAyJ+OvNaSqS+ffvGdTxPXEc7yDHHHKPFixfruuuu06RJk3TTTTdpypQpcrvdiXrKdm3atEl33XWX/va3v+nSSy/VHXfckZJ5JNqWLVu0ZcuWDvfLzc3VL3/5S51//vlhj92nTx89+uijmjFjhj744ANJUkNDg5577rk298/JydEdd9wRc2AbiDfn03ZLU0uN1rxtadv2LO2rN3K7GpU32LkNjeaRAAAAANC5OOUopZmzjFyu8ALclKMEOreEZW632Lt3r2666Sa99tprGjx4sG644QYVFxcnLci9efNm/e53v9NTTz0lSbr55pvDzlTuDNatW6eKigq98847IRnTh3Psscfq8ssv1+WXXx71JyXNzc168MEH9dRTT2nHjh2HfD0jI0PnnnuubrrpJh133HFRPUdrZG4jUfgkFYgd66jrIHM7tVhLQOxYR0DsusI6qq4xmjPXqLGx/QB3S8Z22TzKUSL+usJaSoR4Z24nPLgtScYY/eEPf9DChQu1Z88e9evXT5MmTdKkSZM0YsSIuD/fnj179Prrr2v58uWqqqqSbdsaOXKkbr/9dp122mlxf750sWfPHn388cf67LPPVFtbq4aGBrndbvXp00der1ennnqqjjzyyLg9XyAQUHV1tTZv3qza2lr17NlTgwYNUkFBQdz/oxLcRqLwZgPEjnXUdRDcTi3WEhA71hEQu66yjg4pR+mSLFfyy1H6/Uarq6SNm6SGBqPsbEtD8pwGmNwx3LV1lbUUb50yuN1i586dmj9/vlatWhVsNNm/f3+dffbZGjVqlE488USdeOKJ6t27d0Tj/uc//9G6dev0/vvva+3ataqpqVEgEJAxRv369dP111+vK6+8Uq5ouwog5QhuI1F4swFixzrqOghupxZrCYgd6wiIXVdbR36/UdUaJ7hcX2+Uk+MElxNdjvKwvZ6MFAhIubnSZHo9dWldbS3FS6cObrf4/PPP9dhjj2nFihXat2+fMxHrwELu06ePBgwYIK/Xq549e6pHjx7KzMxUIBBQU1OTmpqatGvXLm3btk07duwIBsolBf+jDBkyRFOnTtW3v/1t9ejRI7kvEHFHcBuJwpsNEDvWUddBcDu1WEtA7FhHQOxYR7GrrjGafUvHjS1dLqlHD6csSkE+Ae6uhrXUti4R3G7R3Nysv/3tb/rLX/6i1atXa9euXSFfPzjg3Vpb0x46dKgmTJigCy+8UKeeemrc54vUIbiNROHNBogd66jrILidWqwlIHasIyB2rKPYVNcYzZxlZExkDS0XzCfA3dWwltoW7+C2J66jRSgzM1MTJ07UxIkTJUkff/yxampq9PHHH2vz5s3asmWLfD6fGhoagvWjs7Oz1bNnTw0cOFDHHnus8vLy9JWvfEX5+fnq169fKl8OAAAAAAAAuqnaWidj27ad8iPhsG0nwD1nrtGSclGiBIhQSoPbrZ1wwgk64YQTUj0NAAAAAAAAICKVq5xSJJEm6Nq21NjoHD99GsFtIBJ0WAQAAAAAAABi4Pc7zSPDKUXSFtuWVlY64wAIH8FtAAAAAAAAIAarqySfL7Yx6nxS1Zp4zAboPghuAwAAAAAAADHYuElyu2Mbw+1yxgEQvrSquX2wjz76SO+9955qa2uVkZGho446SqeccoqOOeaYVE8NAAAAAAAACGpoMLJiLJdtuaT6eiOJuttAuNIuuP3aa6/pnnvu0fr169v8+vHHH69LLrlEl156qXr37p3k2QFIFb/faHWV8yl2Q4NRdralIXnS2ELJ4+GNHwAAAACQOtnZlkyknSRbMbaUk8P1LRCJtApuP/bYY5o/f/4hvwws68AviE8++UT33HOPHnnkEf30pz/V5MmTUzFVAElSW2tUucppzOHzObd5WZZkjFEgIOXmSpNLjEqKLXm9nAQAAAAAAJJvSJ4UCMQ2RsB2xgEQvrSpub127Vr9+te/liSdcsop+ta3vqWJEyfq9NNPV05OTnA/Y4yMMaqrq9Mtt9yi0tJS1dbWpmraABKousZoSqnR4ooDjTkCAcnvP3DS4PNJiyukKaVG1TV0lQYAAAAAJN/YQif5KhZ9c6XCMfGYDdB9pE3m9qOPPqphw4bpf/7nfzR8+PBDvv7RRx/pnXfe0dtvv623335bu3btkjFGa9eu1X/9139p8eLFGjBgQApmDiARqmuMZs4yMkay7fb3tW2pqUmaOctowXypIJ8MbgAAAABA8ng8liaXOMlZHV3DtsXlki4uoewmEKm0ydx+7733dNttt7UZ2JakE088UVdeeaV+85vfaPXq1Xr44Yd17rnnSpLWr1+v733ve9q5c2cSZwwgUWprjWbfYmTb4Z8U2LZkjDRnrlFtLRncAAAAAIDkKim21KOHE6iOhMslZWU5xwOITNoEtxsbG3XssceGta/b7dY555yjhx56SOXl5RoyZIg2btyouXPnJniWAJKhcpVRU5MTrI6EbUuNjc7xAAAAAAAkk9drqWyeJcsKP8Dtcjl9pcrm0UcKiEbaBLePP/54ffjhhxEfN3r0aD3zzDMaPXq0XnvtNb399tsJmB2AZPH7neaR0dzGJTnHrax0xgEAAAAAIJkK8i0tmG8pK6vjAHdLxvbCey3ln0FgG4hG2gS3v/Od7+ixxx6L6thevXrp0Ucf1fHHH6+nnnoqzjMDkEyrqw40j4xWnU+qWhOP2QAAAAAAEJmCfEtLyi1NLT3QZNLtkjwe52/JaR45tVRaUk5gG4hF2jSUnDRpkpYtW6b58+dr1qxZER+flZWlGTNm6O67707A7AAky8ZNktstBQLRj+F2OeMUxW9aAAAAAACEzeu1NH2apamlRlVrnGvU+nqjnBxLQ/KkwjE0jwTiIW2C2263W/fee6+uvPJKuVwu/eQnP4l4jJEjR9JUEujkGhqMrBjf3y2Xc9IgcaIAAAAAAEgdj8dS0biW5CuuUYF4S5uyJJJ09NFH68Ybb9Qjjzyi6dOn69VXX9WePXvCPv4///mPBgwYkMAZAki07Gwr4kaSrRlbysnhpAEAAAAAAKArS5vM7ebmZs2aNUt//etfZVmWVq9erdWrV8vlcumkk07S6NGjddZZZ2n06NHq06fPIcd/8cUXuueee/Ttb387BbMHEC9D8mIrSSJJAdsZBwAAAAAAAF1X2gS3H3/8cb344ouHPB4IBLRu3TqtW7dO5eXlsixLJ554okaPHq2zzz5bgwYN0muvvaby8nKNGjVK11577WGfY+/evbrrrrv0q1/9KpEvBUAMxhY6DTdiaSrZN9epXwYAAAAAQGfg9xutrnJqczc0GGVnO7W5xxZSmxtoT9oEt5cvX66vf/3ruvTSS+VyubR582a98847Wrt2rWpra4P7GWP04Ycf6sMPP9Tvf//74ONHHXWULrzwQu3YsUODBg1q8znq6uq0fPlygttAGvN4LE0uMVpcIdl25Me7XNLFJbz5AwAAAADSX22tUeUqoxWVTpKX2y1ZlhP/CgSc5K/JJUYlxZa8Xq5zgdbSJri9detWPfTQQzruuOOCj1155ZWSpA0bNmjt2rXBYPdnn30WcqxlWfr888/13//935KcQHdBQYHOPPNMnXnmmTrxxBMlSdu3b0/SqwEQi5JiS0uXGTU1RRbgdrmkrCzneAAAAAAA0ll1jdHsW0KvfVuX6fT5pMUV0tJlRmXzpIJ8rneBg6VNcPsrX/mKXnzxxTbLihx33HE67rjjdNlll0mSPv/8c/39738PBrz//e9/h+z/+eef67nnntNzzz0nSerTp49OP/107d69O+GvA0DsvF5LZfOkmbOMXK7wAtwul/Ppdtk8Ps0GAAAAAKS36hqjmbOMjOn4mte2paYm5xp5wXwC3MDBLGOMSfUkJOmTTz7R97//fY0cOVKXX365vvrVr8rjCS/2vnPnzmBW9zvvvKOPP/5YdqvfDJZlyRgjy7K0bt26RLwEJFBdXV2qp4AUqK4xmjPXqLGx/Tf7loztsnmW8s+I7E3esizl5uZKknw+n9LkVyLQqbCOuo7eVRPl8a0NecyfO0p7Cg/ti4L4Yy0BsWMdAbFjHSVeba3RlFLnWjeSb2/Lte+ScpK6OgPWUtv69u0b1/HSJnP7+OOP17PPPqsHHnhAs2bNkiQVFhbq/PPPV3FxcbvH9u/fX9/4xjf0jW98Q5K0Z8+ekDIm77//vvx+f8JfA4D4Ksi3tKRcofXHXJLlkowtBWyneeTFJaL+GAAAAACgU6hc5ZQiiTTWadtSY6Nz/PRpXP8CUhplbh9s//79WrNmjVavXi2fz6e77rorpvEaGhpUVVWlBQsW6JNPPiFzuxMicxt+v1HVGqdzdH29UU6O0zm6cExszSP5JBWIHeuo6yBzO7VYS0DsWEdA7FhHieX3G118qZHPF/0YfXOlFU9bMV0LI/FYS23rspnbB8vIyFBRUZGKioriMl52drYmTJigPn36qLS0NC5jAkguj8dS0TjJ+a3AGzgAAAAAoPNZXaWYAtuSVOeTqtZIRePiMSOgc3OlegLJdPTRR/MpCQAAAAAAAFJi4ybJ7Y5tDLfLGQdANwxuP/DAA6meBgAAAAAAALqhhgYjK8abkS2XU64TQJqWJUmk8847L9VTAJBAfr/R6irnU+yGBqPsbKc299jC2GpzAwAAAAAQq+xsK+aqAnZA2rZdqnjScN2Lbq/bBbcBdE21tUaVq4xWVDr1y9xuybIkY4wCASk3V5pcYlRSbMnr5c0eAAAAAJB8Q/KkQCC2MWwjvfCi5HYbrnvR7XWrsiQAuqbqGqMppUaLKw405ggEJL//wEmDzyctrpCmlBpV13D7FgAAAAAg+cYWOkHoeOC6FyC4DaCTq64xmjnLqKlJsu3297VtqalJmjmLN3oAAAAAQPJ5PJYml0iuBEXkuO5Fd5N2we29e/emegoAOonaWqPZtxjZdseB7Ra2LRkjzZlrVFvLGz0AAAAAILlKii316JHYADfXvegu0ia4vWvXLl100UUaO3as/vWvf8U01meffaYnnnhCd9xxh+655x7985//jNMsAaSTylVOxnakvThsW2psdI4HAAAAACCZvF5LZfMsWVZiA9xc96I7SJuGkqtWrdInn3wiSdq4caNOOeWUqMZZsmSJ7rrrLvn9/uBjixcv1q233qopU6bEZa4A4sPvN1pdJW3cpIg7PPv9TvPIcDO2W7NtaWWldNV/8UYPAAAAAEiugnxLC+Y72dWNjdFf27an5bp3aqnp8Bob6KzSJri9f/9+jRw5Ut/+9rd1/vnnRzXG3//+d/3yl7+U/eVvhOHDhysjI0MffPCBfvWrX+mss87S8OHD4zltAFGorTWqXOUEp30+ye1WxB2eV1cdaB4ZrTqfVLVGKr4otnEAAAAAAIhUQb6lJeUKvT52SZZLMrYUiEPAu+W6t2hc7GMB6Shtgtt5eXnau3evrrzyyqjH+PnPfy7btuXxeLRw4UJ9/etflyRVVVXp+uuvV1lZmR555JF4TRlAFKprnDrZBzeAbOns3KKlw/PSZUZl85w3/NY2bnKC4q2PjYTbJW3cROY2AAAAACA1vF5L06dZmlpqVLXGudatrzfKybG0YYPRS6/E47pXKorflIG0kjbB7bPOOks7duzQ5s2blZmZqUceeUSvvvqq6urqdOyxx+qiiy5SaWmpcnJy2jz+X//6lzZs2CDLsjR+/PhgYFuSCgsLdf311+u+++7Ttm3bdOSRRybrZQE4SHWN0cxZRsZ0fMvVwR2eF8w/NMDd0GBkxXhXleWS6utjGwMAAAAAgFh5PJaKxrUEoZ2L3UcWxeu61wTHBLqatGko2bt3b1166aW6/fbbddFFF2nJkiX6/PPP1dDQoE8++UQLFy7U5Zdfru3bt7d5/OrVq4P/Pvvssw/5+rRp05STk6O//vWvCXsNAA6vttbJ2Lbt8GuJtdfhOTvbiriRZGvGlg7zeRkAAAAAACkVv+teAtvoutImuC1Jl1xyid566y3t2bNHxhiZL1dwy78//fRT/eAHPwg+frANGzYE//2Vr3zlkK9nZmZq/Pjx+t///d+EzR/A4VWuckqRRPrGfLgOz0PyYrs1S3Lqlw3J400eAAAAAJB+4nfdG5/5AOkobcqSSNLChQslSSeccIKKi4s1ePBg5ebmateuXXr//fe1YsUKvffee3r66ad12WWXhRz72WefBf999NFHtzl+fn6+/vCHPyRs/gDa5vc7zTGi7f7cVofnsYVO48lYmkr2zZUKx0R/PAAAAAAAicJ1L9CxtMnc3rJli15//XX95Cc/0apVq3TNNdfowgsvVGFhob7xjW/oJz/5if7yl7/o1FNP1dNPP33I8fv27Qv+u2fPnm0+x3HHHacdO3Yk7DUAaNvqqtjejKUDHZ5beDyWJpdIrih/i7lc0sUlCgbLAQAAAABIJ1z3Ah1Lm+D2O++8o6OOOkrXXHPNYffp1auXbr75Zr377rtqbGwM+VpDQ0PIfm3p3bu39u7dG58JAwjbxk2S2x3bGC0dng9WUmypR4/I3+hdLikryzkeAAAAAIB0xXUv0L60CW5v375dw4cP73C/r3zlKzLGaNu2bSGP22HUO2hoaFB2dnbUcwQQnYaGeHZ4PsDrtVQ2z5Jlhf9G73JJliWVzbPk9fImDwAAAABIX1z3Au1Lm+B2jx49DsnGbsvevXtlWZZcUdyTsWXLFvXt2zea6QGdit9v9PobRhVPGj2yyFbFk8623x9jm+UoJbLDc0G+pQXzLWVldfxG3/LJ9cJ7LeWfwRs8AAAAACD9cd0LHF7aNJQcPny4Fi5cqN27d6tPnz6H3e9vf/ubsrOzdcwxx0T8HP/61780bNiwWKYJpLXaWqPKVU7zRp/PKQViWZIxRoGA04hicolRSXFyP71NdIfngnxLS8oV+tpdTra3sZ1j++Y6tcaS/doBAAAAAIgV171A29ImuD1q1Ch5PB7dcMMNuu2223TiiScess9LL72ku+++W+PHjw/J3A4EAtq6dWtwe+/evW3W3X755Zc1efLkxLwAIMWqa4xm32LU1CS1VOlpHVD2+aTFFdLSZUZl85w3x2RIRodnr9fS9GmWppYaVa1x6nPX1xvl5FgakuccSxMNAAAAAEBnxXUvcKi0CW5nZWXpiiuu0KOPPqqSkhINGzZMgwcPVp8+fbR79259+OGH2rp1q9xut6677rqQY+fPnx/SUHL16tWaOHFiyD4vvPCCtm7dqnPPPTcZLwdIquoao5mzjIw5ENg+HNuWmpqkmbOMFsxPToDb6fBstLii4/m1JZIOzx6PpaJxUpEkiTd1AAAAAEDXwnUvcIBlTKyVcOOnsbFRl112mT7++GNZrbrPtUxz2LBhysnJ0ahRoxQIBFRVVaVPP/1UxhiNGDFC/fv314YNG7RkyRIdeeSRkqSdO3fq0ksvlcfj0V//+tekvy7Erq6uLtVTSFu1tUZTSo0aGxVRXeuWOlxLypNzu1LLPA/OLA9HoudpWZZyc3MlST6fT2n0KxHoNFhHXUfvqony+NaGPObPHaU9hS+maEbdC2sJiB3rCIgd6wiID9ZS2+LdDzFtMrclJ3v7iSee0I033qi1a0MvrLKzs3Xrrbfq29/+tl588UX95S9/0SeffCLbtjVu3Dh9/etf1yWXXKL33ntPU6ZM0UUXXaQLL7xQ2dnZeu6557Rz507dc889KXplQOJUrnICxpH+jrRtqbHROX76tPgFjf1+o9VVzu1RDQ1G2dnO7VFjC51OzTNnGblc4QW46fAMAAAAAACAw0mrzO2DvfXWW6qqqtLevXt13HHH6Zvf/KYGDBgQ1rH/7//9Pz3yyCPB7G9jjL72ta/pkUceSeSUkUBkbrfN7ze6+FITcy3rFU9bMdflOnwzSx3UzFIadpx01z1OYL29AHdLxnbZvMR2eOaTVCB2rKOug8zt1GItAbFjHQGxYx0B8cFaaluXztw+2Fe/+lV99atfjerYn/zkJxo4cKBWrFih/fv3a8KECfrBD34Q5xkCqbe6KrYmjZJU55Oq1khF46IfI5Jmlj16SLfMltZvEB2eAQAAAABIkPburKbxJLqKtA1ux+p73/uevve976V6GkBCbdzkZEi3DiRHwu1yximK8vhomlnefqe0YL6lqaWiwzMAAAAAAHF0+DurzUF3VhsSytAldNngNtAdNDQYWTG+D1kuJ7AcTYfl2lonY9u2w6/5bdtOyZE5c42WlFsqGmfR4RkAAAAAgDiI5M7qpcuMyuZJBflcj6PzSvvgtt/v15o1a/Tuu+9q+/btcrlcGjRokEaNGqWCgoJUTw9IqexsK+aaTcaWcnKieyNLt2aWAAAAAAB0V9HcWT1zltGC+QS40XmlbXA7EAho0aJFeuKJJ+Q7TFHhoUOH6qabbtLXv/715E4OSBND8mIrSSI5Na6H5EV+nN/v3OLU0Rvm4di2tLJSmlpqKEECAAAAAEAMYr+zWpQoQafkSvUE2vKf//xHU6ZM0cKFCw/bTdQYow0bNuiHP/yh7rrrLgVijfABndDYQqdWViz65jo1riMVz2aWAAAAAAAgevG4sxrojNIuuP3555/rO9/5jv75z3/KGBMMbLf8++DHWh4vLy/XzTffnKopAynj8ViaXOJ80hoNl0u6uCS65o0tzSxj0dLMEgAAAAAARCded1b7/QS40fmkVVmSpqYm3XDDDdq5c6eGDBmiSy+9VKNGjdLRRx+tXr16KTMzU01NTdqzZ482b96sd999V6+99prWrl2rVatWafTo0brssstS/TKApCoptrR0WWiziHC4XFJWlnN8NFLdzBIAAAAAAMT3zuqicfGYEZA8aRXcfuyxx/T+++9r+vTp+slPfiJ3G2mhGRkZ6tWrl4466iidddZZuvrqq/XBBx/opz/9qe6++25NnDhRRxxxRApmD6SG12upbJ7TBMLlCi/A7XJJliWVzbOirqmV6maWAAAAAADgwJ3VsVTsbbmzuih+0wKSIm3KkgQCAVVUVOjcc8/Vf//3f7cZ2D6ck08+Wb/73e/Uo0cPrVixIoGzBNJTQb6lBfMtZWV1XKKkJWN74b2W8s+IPrCcymaWAAAAAADAEd87q4HOJW2C2zU1NfL5fJo5c2ZUx3u9Xl166aV69dVX4zwzoHMoyLe0pNzS1NIDTSbdLsnjcf6WnOaRU0ulJeWxBbal1DazBAAAAAAADufO6tjG4M5qdFZpU5bko48+0gknnKCTTjop6jHOPPNMPfXUU3GcFdC5eL2Wpk+zNLXUqGqNc0tRfb1RTo6lIXlOIDma5pFtcZpZGi2uiK5pRSzNLAEAAAAAgIM7q9GdpU1we8+ePTrqqKNiGqNfv37as2dPnGYEdF4ej6WicS21shIXPE5VM0sAAAAAAOBoubM6lqaS3FmNziptypIcccQRqquri2mMhoYGZWdnx2lGADriNLO0ZFkd1/puEY9mlgAAAAAAwOHcWR3+dXlr3FmNzixtgtvHHHOM1q1bJ18MHzP985//1JAhQ+I3KQAdSkUzSwAAAAAAcEBJsaUePSIPcHNnNTq7tAlun3322crIyNDjjz8e1fFNTU364x//qMLCwjjPDOi6/H6j198wqnjS6JFFtiqedLb9/sg6USS7mSUAAAAAADiAO6vRXaVNze3MzExddNFFeuyxx3TKKafo/PPPD/tYn8+nm266SVu2bNEll1ySwFkCXUNtrVHlKqMVlU5NLrfbeUMzxigQcALUk0uMSorDf4NLZjNLAAAAAAAQyrmzWpoz16ixsf3eWC0Z22XzSEBD52YZYyJL0UygnTt36vzzz1dTU5MmTZqkKVOm6NRTT5VlHbrIbNvWhg0b9Pzzz+uPf/yjduzYoSlTpuhnP/tZCmaORIu1HjsOqK4xmn1Lx00gXS6pRw/nja4gv+u+0VmWpdwv0819Pp/S6Fci0GmwjrqO3lUT5fGtDXnMnztKewpfTNGMuhfWEhA71hEQO9ZR53dIQptLslySsaWA7dxZfXGJIkpoQ+RYS23r27dvXMdLq+C2JL366quaMWOG7C+jbj169NCRRx6p3r17KyMjQ01NTdq3b58+//xz7d+/X5KTbTpy5EgtXbpUmZmZqZw+EoTgdnxU1xjNnGVkTPuB7RYttygtmN91A9y82QCxYx11HQS3U4u1BMSOdQTEjnXUdfj93FmdSqyltsU7uJ02ZUlajB8/Xvfcc49uvfVWNTQ0qLGxUZs2bQrZp/V/hpEjR+q3v/0tge02BAIBvf/++/r4449VW1urQCCgnj176uijj9YJJ5wQUwPOQCCgmpoabd68WTt27FCvXr00aNAgFRQUBBcv0kdtrZOxbdtSuL9PbdsJcM+Za7SkXHyiCwAAAABAJ+HxWCoaJxVJkrieR9eUdsFtSfrWt76lE044QXfddZeqqqpCgtkHlyhxuVy67LLLNHfuXALbrXzxxRd69NFHtXz5cvl8vsPu17dvX40bN0633npr2AHp5uZmPfTQQ1q2bJl27NhxyNczMjI0fvx43XTTTRo6dGh0LwBxV7nKKUUS6QeFti01NjrHT5/GmyEAAAAAAADSQ9qVJWntX//6l1566SX93//9n2pra+X3+3XUUUepoKBAxcXFMWUed1V//vOf9bOf/Ux79uyJ6Jjhw4d3uN/mzZv1wx/+UOvWretw35ycHP3iF79QcXFx2PM4HMqSOLcTra5ybidqaDDKznZuJxpb2PHtRH6/0cWXGrXzOUeH+uZKK562utytS9wmBMSOddR1UJYktVhLQOxYR0DsWEdAfLCW2tbly5K0dsopp+iUU05J9TQ6jccee0z33HNPyGM5OTkqLCzUMccco969e2v37t369NNP9e6772rv3r1hj71nzx5dc801Wr9+ffCx7OxsjR8/XoMHD5bP51NVVVWwjEx9fb1mz56t3NxcFRUVxecFdkOHNIJwO3WwjTEKBKTcXGlyiWm3EcTqKsUU2JakOp9UtUYqGhfbOAAAAAAAIL3EklAHpFLaB7cjsWXLFt1///266667Uj2VlPjTn/4UEtjOycnRj370I333u99Vjx49Dtm/ublZb731ln7/+9+HlHs5nLlz54YEts8++2wtXLhQ/fr1Cz4WCAT0xBNP6Ne//vWXwdeAZs6cqeeff15erzfGV9j9VNc4dbKbmg40gAwEQvfx+aTFFdLSZUZl89Rm48eNm5ygeOtjI+F2OePwMQUAAAAAAF1DPBLqgFRypXoC8fT5559r5cqVqZ5GSuzcuVO/+MUvgtu9evVSRUWFpk2b1mZgW5IyMzM1fvx4PfbYYxo2bFi747/77rt64YUXgtvHH3+8Fi1aFBLYliS3263p06drxowZwcf27Nmjhx9+OJqX1a1V1xjNnBUa2D4c25aamqSZs4yqaw69zaWhwSiMzy/aZbmc7soAAAAAAKDzq64xmlJqtLjiwN3egYDk9x9IjmtJqJtS2na8AUi1LhXc/vTTT1M9hZS56667tGvXruD23XffHddyLg8++GDI9m233dZuE89rr71WeXl5we2lS5fqiy++iNt8urraWidj27Y7Dmy3sG2nWeScuUa1taFvONnZVsSNJA8ZPyBt2y5VPGn0yCJbFU8avf6Gkd/PmxsAAAAAAJ1JPBPqgFRKaFmSTz/9VP/85z8T+RRB+/bt02OPPZaU50o3n332mZ577rng9tixY3X++efHbfx9+/bpzTffDG4PHz5cY8aMafeYjIwMXXbZZbr33nslOSVQXnnlFV166aVxm1dXVrnKeYOJNCBt21Jjo3P89GkHUrWH5MVWkkSSbCO98KLkdhtuUQIAAAAAoJM6OKEu3LiDbUsul5NQt6RcXP8jbSQ0uP2///u/uvXWWxP5FCGMMWHVju5qnnnmGdkHfcx25ZVXxnX8N954Q83NzcHtCy64IKzjvvGNbwSD25L08ssvE9wOg9/v1LoKN2O7NduWVlZKU0tNsOnD2EInCB1rU0kpuprfAAAAAAAgPcQ7oQ5IpYSWJTniiCNkvlwpxpiE/+mu/vSnPwX/3bt3b33ta1+L6/hr164N2c7Pzw/ruLy8PPXv3/+w46Btq6tiD0LX+aSqNQe2PR5Lk0ucT1kTgVuUAAAAAABIf/FKqKNEKdJFQjO3c3Nzg/8ePXq0Tj/9dGVlZSXkufbt26fly5dr9+7dCRk/Xe3atUv//ve/g9unn356u7Wwo7F+/fqQ7ZEjR4Z97IgRI4IlTXbv3q0dO3ZowIABcZ1fV7Nxk9OdOJYyIm6XM07RQY+VFFtauiy8elrR4BYlAAAAAADSWzwT6orGxWNGQGwSGtzu27evJOmss87S4sWLE/lUkqQjjzxSZWVlCX+edPKvf/0rZLuliaQxRq+//rqeffZZvf/++9q6dasyMzPVv39/nX766Tr33HN1/vnnyxVGKu/Bwe2WMcJ19NFHHzIWwe32NTQ4Na1jYbmk+noj6cBAXq+lsnlOdrXLlbgAN7coAQAAAACQnhKVUAekSlIyt1sCrok2YsSIpDxPOvnkk09CtgcPHqwtW7Zozpw5+vvf/x7ytfr6evl8Pn366adavny5hg8frl/84hcaNWpUu8+xffv24L8HDRoUUV3zI488MmR769atYR/bXWVnWzGX2TG2lJNz6M+pIN/SgvlOdnVjY+IC3K1rfgMAAAAAgNRLVEIdkCoJr7k9evRoHX/88Yl8mqCBAwd2GKjtanbt2hWy7ff7dcUVVxwS2G7Lp59+qquuukrPPffcYfdpbGxU4KCP83JyciKaX69evUK26+vrIzq+OxqSF9snqJIUsJ1x2lKQb2lJuaWppU6TScn51NXjcf6Oh9Y1vwEAAAAAQOo5CXWxjXG4hDogFRKaue3xeFRRUZHIpwhx3HHHJfX50kHrGuPz58/Xnj17JEnDhg3TddddpzFjxqhv377y+Xx6++239dBDDwUzvvfv3685c+Zo6NCh+spXvnLI+K2D0T169Ihofq3rf0cb3I4kW7yz++pYKTfXxFQDq2+uNLbQOuz3bcAAS1f/f9JV/2VUtUbauMmovl7KyZE2bJD++rKJ+RalTZs7x8/t4Dl2hvkC6Yh11JW09fM7/PsJ4ou1BMSOdQTEjnXUtQ0dIgUCsUW3A7Y0dAjniB1hLSVHQoPbSLzWweKWwPY555yj+++/PyS4PHDgQBUXF+uCCy7Qj370I7366quSpObmZt12221avnz5IeM3NTWFbGdkZEQ0v9bB7cbGxoiOb3Fwc9LuYMp36vXwow1RlQ1xuaQpV2TL6w0vy774otDt++6vl2U1RP7EB7FcUsDOUm5uZJn+qXbEEUekegpAp8c66uTc7kMe8rjd3e59OB2wloDYsY6A2LGOup4Lv2F0z711qquLPsDdr5+lb1yQq4wMArbhYi0lDsHtOJkwYYK2bNmSsPFvuukmXXPNNYc83lYm9ZFHHql77733kMByi8zMTM2fP18XXXSRPv/8c0nSe++9p6qqKhUWFrY7/v79+yOad3Nzc8h2VlZWRMd3V5dfmqXFFQ0R18V2uaTsLOmyb0f/fc6Jxy1KRurJLUoAAAAAAKSVjAxLV1yeFVNC3RWXZxHYRtoguN3JtVUDu7S0VL179273uF69eumqq67SXXfdFXzslVdeOSS43Xr81pncHWkd3I60ZncLXyw1OjqhzEypbJ5LP77JlssVXoDb5ZIsSyq7y6XMzN1RlzU5cmBsJUkkp2b4kQMb5fNF9v8lFSzLCn6CumvXrpibeQLdEeuo6+gVCBxycugPBLS3m70PpwprCYgd6wiIHeuo67tgotET5VJTU+QJdVlZ0sTzm+TzNXd8QDfHWmpbvO8KJbjdyfXs2fOQxyZMmBDWsRMmTAgJbv/jH/84ZJ+srCy53e5gU8l9+/ZFNL+9e/eGbEcb3O6OvwDyz5AWzLc0Z67pMIO75Q2mbJ6lM06P7ftVOMYoN1cx1/wec7aJOQM82Ywx3fL/GhBPrKPOrq2fHT/TVGAtAbFjHQGxYx11Td7+Tvxg5iwTeULdPEve/t0zThML1lLiENyOk/vuuy/irOZIHHvssW0+PmjQoJBtj8ejYcOGhTVmXl6esrKygnWwt2/f3uZ+AwcODJYv2bZtm4wxYRfC37p1a7vzRfsK8i0tKZcqVxmtqHQCzm6XU9Pa2E4Th7650sUlUkmxJa839tuCPB5Lk0uMFldE9gluC5fLmY/Hwy1KAAAAAACko4J8SwvmK+KEuvwzuNZHeiG4HSennnpqSp73+OOPD9nu1atXRB1Y+/TpEwxuH670x/Dhw4PB7ebmZtXW1mrAgAFhjd9y3MFjITJer6Xp0yxNLTWqWiNt3CTV1xvl5FgakicVjol/ILmk2NLSZSbqW5RKinmzAwAAAAAgnaUioQ6IN4Lbndzw4cNlWVbw1obWNa47cvD+bTWnlKRhw4bpzTffDG6///77Ouecc8Iaf926dcF/9+nTR16vN6L54QCPx1LROKlIkpTYNxSv11LZPEV/ixJveAAAAAAApL1UJNQB8eRK9QQQm549e2rkyJHB7fr6eu3ZsyesYxsaGrR79+7gdr9+/drc78wzzwzZrqmpCWv8jRs3aufOncHtUaNGhXUc0oNzi5KlrCwncN2elozthfdyixIAAAAAAJ2Nk1Bn6XvftXTN1S5977vONoFtpDuC213A+eefH7JdXV0d1nH/+7//K/uglNwRI0a0uV9RUZEyMzOD2y+88EJY4z///PMh2+edd15YxyF9OLcoWZpaKrU0s3W7JI/H+VtyblGaWiotKSewDQAAAAAAgOShLEkXcOGFF+o3v/lNMFD9zDPPhFU25KmnngrZ/upXv9rmfj179lRRUZFefvllSdL69eu1Zs0ajRkz5rBj79+/X08//XRwOzMzUxMmTOhwTkg/3KIEAAAAAACAdERwuwsYOnSoiouLVVlZKcnJrH7ttdfaDXC/+eab+vOf/xzczs3N1UUXXXTY/a+77rpgcFuS7rzzTq1YsSIko/tgDz/8sDZt2hTcvuKKKw5b9gSdQzJrfgMAAAAAgPTj9xutrnIS3xoajLKzncS3sYUkviE1KEvSRfzoRz9STk5OcPvGG2/UqlWr2tz3z3/+s374wx8Gm1BK0owZM9SzZ8/Djn/aaafpggsuCG5/8sknuvrqq/XFF1+E7Gfbtn73u9/p/vvvDz7Wu3dvXXvttRG/JgAAAAAAAKReba3RY4/buvhSo1tuM1r0O6MlS6VFv3O2L77U+Xptrel4MCCOLHNwhBOd2iuvvKIbbrghpI72sGHDdPbZZ6tfv37y+Xxas2aNPv3005DjvvnNb2rBggUdjr97925dfvnl2rBhQ/Cx7OxsTZgwQYMHD1ZdXZ2qqqpCMrbdbrcefvhhFRUVxfTa6urqYjoeOBzLspT7ZUFxn88nfiUCkWMddR29qybK41sb8pg/d5T2FL6Yohl1L6wlIHasIyB2rCO0Vl1jNPsWo6Ym6aCQ0yFcLqlHD6lsnqWCfLK4WUtt69u3b1zHI7jdxaxatUo///nPtW/fvrD2nzJlim699VZ5POFVqNm8ebNmzJihDz74oMN9c3JydMcdd2jSpElhjd0egttIFN5sgNixjroOgtupxVoCYsc6AmLHOsLBqmuMZs4yMqb9wHYLl0uyLGnBfALcrKW2xTu4TVmSLqal9vZFF12krKysNvexLEujRo3S448/rttvvz3swLYkDR48WE899ZR+8IMfaMCAAW3uk5GRofPPP1/Lly+PS2AbAAAAAAAAyVVb62Rs23Z4gW3J2c8Yac5cQ4kSJAUNJbugwYMH695779XevXv1j3/8Q1u3blVdXZ169eqlgQMHatSoUTE1d8zMzNSNN96oGTNmqLq6Wps3b1Ztba169uypQYMGqaCgIO6fwgAAAAAAACB5Klc5pUgiTTi2bamx0Tl++rTunb2NxCO43YX16tVL55xzTsLGd7vdGj16tEaPHp2w5wAAAAAAAEBy+f1GKyrDz9huzballZXS1FIjj4cANxKHsiQAAAAAAAAAglZXST5fbGPU+aSqNfGYDXB4BLcBAAAAAAAABG3cJLndsY3hdjnjAIlEcBsAAAAAAABAUEODkRVjNRHLJdXX01QSiUVwGwAAAAAAAEBQdrYVcSPJ1owt5eRQbxuJRXAbAAAAAAAAQNCQPCkQiG2MgO2MAyQSwW0AAAAAAAAAQWMLpdzc2MbomysVjonHbIDDI7gNAAAAAAAAIMjjsTS5RHJFGTl0uaSLS5xxgEQiuA0AAAAAAAAgREmxpR49Ig9wu1xSVpZzPJBoBLcBAAAAAAAAhPB6LZXNs2RZ4Qe4XS7JsqSyeZa8XoLbSDyC2wAAAAAAAAAOUZBvacF8S1lZHQe4WzK2F95rKf8MAttIDk+qJwB0d36/0eoqaeMmqaHBKDvb0pA8p3kDtakAAAAAAEAqFeRbWlIuVa4yWlEp+XyS2yVZLsnYUsB2mkdeXOKUIiFjG8lEcBtIkdpaE/rG4HZu3THGKBBwuhJPLjG8MQAAAAAAgJTyei1Nn2ZpaqlR1RonQa++3ignx0nQKxxDgh5Sg+A2kALVNUazbzFqapJs23ksEAjdx+eTFldIS5cZlc1zPikFAAAAAABIFY/HUtE4qUiSRJwCqUfNbSDJqmuMZs4KDWwfjm1LTU3SzFlG1TUmORMEAAAAAAAAOgGC20AS1dY6Gdu23XFgu4VtS8ZIc+Ya1dYS4AYAAAAAAAAkgttAUlWucjK2TYQxatuWGhud4wEAAAAAAABQcxtIGr/faR4ZbsZ2a7YtrayUppYamjQAAAAAAIC05vcbra5ymk82NBhlZzvNJ8cW0nwS8UNwG0iS1VVOk8hY1PmkqjVS0bh4zAgAAAAAACC+amuNKlc5CX4+n+R2S5YlGWMUCEi5udLkEqOSYkteL0FuxIayJECSbNzk/EKPhdvljAMAAAAAAJBuqmuMppQaLa44kOAXCEh+v/O35Dy+uEKaUmpUXUP5VcSG4DaQJA0NRlaMH0haLqm+nl/8AAAAAAAgvVTXGM2c5fQa66gkq21LTU3SzFkEuBEbgttAkmRnWxE3kmzN2FJODrfsAAAAAACA9FFbazT7FiPbDr/XmG1Lxkhz5hrV1hLgRnQIbgNJMiTvwC040QrYzjgAAAAAAADponKVk7EdaVKfbUuNjc7xQDQIbgNJMrbQaZoQi765UuGYeMwGAAAAAAAgdn6/0zwy3Izt1mxbWlnpjANEiuA2kCQej6XJJZIrylXnckkXlzjjAAAAAAAApIPVVQeaR0arzidVrYnHbNDdENwGkqik2FKPHpEHuF0uKSvLOR4AAAAAACBdbNwkud2xjeF2OeMAkSK4DSSR12upbJ4lywo/wO1ySZYllc2z5PUS3AYAAAAAAOmjocHIijFcYbmk+nrKkiByBLeBJCvIt7RgvqWsrI4D3C0Z2wvvtZR/BoFtAAAAAACQXrKzrYgbSbZmbCknh7gHIkdwG0iBgnxLS8otTS090GTS7ZI8HudvyWkeObVUWlJOYBsAAAAAAKSnIXlSIBDbGAHbGQeIlCfVEwC6K6/X0vRplqaWGlWtcWpL1dcb5eRYGpInFY6heSQAAAAAAEhvYwudxL1Ymkr2zXXiIECkCG4DKebxWCoaJxVJkghmAwAAAACAzsPjsTS5xGhxhWTbkR/vckkXl5Dgh+hQlgQAAAAAAABA1EqKLfXo0XFvsdZaeo2VFBPYRnQIbgMAAAAAAACImtdrqWyeJcsKP8DtckmWJZXNs+T1EtxGdAhuAwAAAAAAAIhJQb6lBfMtZWV1HOBuydheeK+l/DMIbCN6BLcBAAAAAAAAxKwg39KScktTS50mk5Lkdkkej/O35DSPnFoqLSknsI3Y0VASAAAAAAAAQFx4vZamT7M0tdSoao20cZNUX2+Uk2NpSJ5UOIbmkYgfgtsAAAAAAAAA4srjsVQ0TiqSJBHMRmJQlgQAAAAAAAAA0OkQ3AYAAAAAAAAAdDqUJQEAAAAAAACQEn6/0eoqpzZ3Q4NRdrZTm3tsIbW50TGC2wAAAAAAAACSqrbWqHKV0YpKyeeT3G7JsiRjjAIBKTdXmlxiVFJsyeslyI22UZYEAAAAAAAAQNJU1xhNKTVaXOEEtiUpEJD8fudvyXl8cYU0pdSousakaqpIcwS3AQAAAAAAACRFdY3RzFlGTU2Sbbe/r21LTU3SzFkEuNE2gtsAAAAAAAAAEq621mj2LUa23XFgu4VtS8ZIc+Ya1dYS4EYogtsAAAAAAAAAEq5ylZOxbSKMUdu21NjoHA8cjOA2AAAAAAAAgITy+53mkeFmbLdm29LKSmccoAXBbQAAAAAAAAAJtbrqQPPIaNX5pKo18ZgNugqC2wAAAAAAAAASauMmye2ObQy3yxkHaEFwGwAAAAAAAEBCNTQYWVZsY1guqb6esiQ4wJPqCQAAAAAAAADo2rKzLZlIO0m2YgekbduliieNGhqMsrMtDcmTxhZKHk+MkXN0SgS3AQAAAAAAACTUkDwpEIhtDNtIL7woud1OFrgxRoGAlJsrTS4xKim25PUS5O5OKEsCAAAAAAAAIKHGFjpB6HgIBCS//0Cw3OeTFldIU0qNqmsoW9KdENwGAAAAAAAAkFAej6XJJZIrQdFI25aamqSZswhwdycEtwEAAAAAAAAkXEmxpR49EhvgNkaaM9eotpYAd3dAcBsAAAAAAABAwnm9lsrmWbKsxAa4GxulylUEt7sDgtsAAAAAAAAAkqIg39KC+ZayshIb4F5ZKfn9BLi7OoLbAAAAAAAAAJKmIN/SknJLU0sPNJl0uySPx/k7Hup8UtWa+IyF9OVJ9QQAAAAAAAAAdC9er6Xp0yxNLTWqWiNt3CTV1xvl5FjasMHopVekQCD68d0uZ8yi+E0ZaYjgNgAAAAAAAICU8HgsFY1rCUJbkqRHFhlZVmzjWi4nWN4yJromypIAAAAAAAAASBvZ2ZZMjOWyjS3l5BDY7uoIbgMAAAAAAABIG0PyYitJIkkB2xkHXRvBbQAAAAAAAABpY2zhgUaT0eqbKxWOicdskM4IbgMAAAAAAABIGx6PpcklkivKyKXLJV1c4oyDro3gNgAAAAAAAIC0UlJsqUePyAPcLpeUleUcj66P4DYAAAAAAACAtOL1WiqbZ8mywg9wu1ySZUll8yx5vQS3uwOC2wAAAAAAAADSTkG+pQXzLWVldRzgbsnYXnivpfwzCGx3FwS3AQAAAAAAAKSlgnxLS8otTS090GTS7ZI8HudvyWkeObVUWlJOYLu78aR6AgAAAAAAAABwOF6vpenTLE0tNapaI23cJNXXG+XkWBqSJxWOoXlkd0VwGwAAAAAAAEDa83gsFY2TiiRJBLNBWRIAAAAAAAAAQCdEcBsAAAAAAAAA0OlQlgQAAAAAAABAl+H3G62ucmpzNzQYZWc7tbnHFlKbu6shuA0AAAAAAACg06utNapcZbSiUvL5JLdbsizJGKNAQMrNlSaXGJUUW/J6CXJ3BZQlAQAAAAAAANCpVdcYTSk1WlzhBLYlKRCQ/H7nb8l5fHGFNKXUqLrGpGqqiCMytxG1QCCgmpoabd68WTt27FCvXr00aNAgFRQUKDc3N9XTAwAAAAAAQDdQXWM0c5aRMZJtt7+vbUtNTdLMWUYL5ksF+WRwd2YEtzu5//znPzrvvPPiMtbLL7+sY489tsP9mpub9dBDD2nZsmXasWPHIV/PyMjQ+PHjddNNN2no0KFxmRsAAAAAAADQWm2t0exbjGxbMmEmY9u25HJJc+YaLSkXJUo6McqSQJJkWZZycnI63G/z5s26/PLL9cADD7QZ2Jak/fv368UXX9TkyZO1atWqeE8VAAAAAAAAkCRVrjJqago/sN3CtqXGRud4dF5kbndylmXJ7XZHfJxt2zIHrfpRo0apX79+7R6zZ88eXXPNNVq/fn3wsezsbI0fP16DBw+Wz+dTVVWVNm3aJEmqr6/X7NmzlZubq6KioojnCAAAAAAAAByO3+80j+yoFMnh2La0slKaWmrk8ZC93RkR3O7kjjnmGL3//vsRH3f99dfrlVdeCW5Pnjy5w2Pmzp0bEtg+++yztXDhwpCgeCAQ0BNPPKFf//rXX3aiDWjmzJl6/vnn5fV6I54nAAAAAAAA0JbVVQeaR0arzidVrZGKxsVjRkg2ypJ0Q1988YXeeOON4HZOTo6+8Y1vtHvMu+++qxdeeCG4ffzxx2vRokWHZHu73W5Nnz5dM2bMCD62Z88ePfzww3GaPQAAAAAAACBt3CRFUdAghNvljIPOieB2N/Tss89q//79we2JEyeqZ8+e7R7z4IMPhmzfdtttyszMPOz+1157rfLy8oLbS5cu1RdffBHljAEAAAAAAIBQDQ1GVozVRCyXVF9P3e3OiuB2N7Ry5cqQ7Y5Kkuzbt09vvvlmcHv48OEaM2ZMu8dkZGTosssuC243NzeHlEEBAAAAAAAAYpGdbUXcSLI1Y0s5OdTb7qwIbnczH3zwgdatWxfcPuaYY3T22We3e8wbb7yh5ubm4PYFF1wQ1nO1LnXy8ssvRzBTAAAAAAAA4PCG5EmBQGxjBGxnHHROBLe7mRUrVoRsl5SUyOrg/o21a9eGbOfn54f1XHl5eerfv/9hxwEAAAAAAACiNbZQys2NbYy+uVJh+wUKkMYIbncjfr9ff/rTn0Ie66gkiSStX78+ZHvkyJFhP+eIESOC/969e7d27NgR9rEAAAAAAADA4Xg8liaXSK4oI5wul3RxiTMOOieC293I66+/rtra2uD2qFGjQpo+Hs7Bwe3MzMyQbOyOHH300YcdCwAAAAAAAIhFSbGlHj0iD3C7XFJWlnM8Oi+C291IpI0kW2zfvj3470GDBnVYxuRgRx55ZMj21q1bwz4WAAAAAAAAaI/Xa6lsniXLCj/A7XJJliWVzbPk9RLc7sw8qZ4AksPn8+mVV14JbmdnZx/S8LEtjY2NChxUmT8nJyei5+3Vq1fIdn19fUTHt4gkoA5E4uD/W/w/A6LDOupK2vr5Wfxck4S1BMSOdQTEjnWEzujMAksL7zWafYutxkbJtg+/b0vG9j13uZR/RuL+j7OWkoPgdjfx3HPPaf/+/cHtiRMnHhJ4bkvrYHSPHj0iet7MzMx2xwtXbqzdAYAwHHHEEameAtDpsY46Obf7kIc8bjfvwynAWgJixzoCYsc6QmcyYbz0XKWtp55p1B/+2Ki6OiO328nQNkYKBKR+/SxdcXmWLvt2lgYOTF5BC9ZS4hDc7iZWrFgRsh1uSZKmpqaQ7YyMjIiet3Vwu7GxMaLjAQAAAAAAgHAMHOjSDdfn6Jqrs/XGm/u1fkNA++qNeuZYGnacW0XjMpSRQRZ1V0JwO04mTJigLVu2JGz8m266Sddcc01Ux3766af65z//Gdw+5phjNGbMmLCObZ2pfXD2dziam5tDtrOysiI6voXP54vqOKAjlmUFP0HdtWuXjDEpnhHQ+bCOuo5egcAhJ4f+QEB7eR9OCtYSEDvWERA71hG6ioJ858/B9u1L3vOzltoW77tCCW53A8uXLw/ZLikpCbvWT+sa260zuTvSOrgdac3uFvwCQDIYY/i/BsSIddTZtfWz42eaCqwlIHasIyB2rCMgPlhLiZO84jJICdu29eyzz4Y8Fm5JEsnJtHYfVH9zX4Qfce3duzdkO9rgNgAAAAAAAAAcjMztOLnvvvsizmqOxLHHHhvVcW+99Za2b98e3B41apTy8vIiGmPgwIH6/PPPJUnbtm2TMSbszO+tW7eGbA8aNCiiP9f9fgAAORZJREFU5wYAAAAAAACAthDcjpNTTz011VNoU+tGkhdffHHEYwwfPjwY3G5ublZtba0GDBgQ1rEtxx08FgAAAAAAAJAO/H6j1VXSxk1SQ4NRdralIXnS2ELJ46H5ZLojuN2F7dmzRy+//HJwOzs7WxdeeGHE4wwbNkxvvvlmcPv999/XOeecE9ax69atC/67T58+8nq9ET8/AAAAAAAAEE+1tUaVq4xWVEo+n+R2S5bl1McOBKTcXGlyiVFJsSWvlyB3uqLmdhf2l7/8RY2NjcHt888/X7169Yp4nDPPPDNku6amJqzjNm7cqJ07dwa3R40aFfFzAwAAAAAAAPFUXWM0pdRocYUT2JakQEDy+52/JefxxRXSlFKj6hqaQaYrgttd2PLly0O2L7nkkqjGKSoqUmZmZnD7hRdeCOu4559/PmT7vPPOi+r5AQAAAAAAgHiorjGaOcuoqUmy7fb3tW2pqUmaOYsAd7oiuN1Fbdy4MSTD+uijj9aYMWOiGqtnz54qKioKbq9fv15r1qxp95j9+/fr6aefDm5nZmZqwoQJUT0/AAAAAAAAEKvaWqPZtxjZdseB7Ra2LRkjzZlrVFtLgDvdENzuolo3kiwpKZFlRV8f6LrrrgvZvvPOO9Xc3HzY/R9++GFt2rQpuH3FFVeoX79+UT8/AAAAAAAAEIvKVU7GtokwRm3bUmOjczzSC8HtLsgYo2effTbkscmTJ8c05mmnnaYLLrgguP3JJ5/o6quv1hdffBGyn23b+t3vfqf7778/+Fjv3r117bXXxvT8AAAAAAAAQLT8fqd5ZLgZ263ZtrSy0hkH6cOT6gkg/tasWaMtW7YEt88880wNGTIk5nF/+ctf6qOPPtKGDRskSW+//bYmTJigCRMmaPDgwaqrq1NVVVVIxrbb7daCBQvk9Xpjfn4AAAAAAAAgGqurDjSPjFadT6paIxWNi8eMEA8Et7uglStXhmzHmrXdok+fPnr00Uc1Y8YMffDBB5KkhoYGPffcc23un5OTozvuuCOkXjcAAAAAAACQbBs3SW63FAhEP4bb5YxDpCt9UJaki9m3b59efPHF4HZ2drYuvPDCuI0/ePBgPfXUU/rBD36gAQMGtLlPRkaGzj//fC1fvlyTJk2K23MDAAAAAAAA0WhoMIqhHZ0kyXJJ9fWUJUknZG53MT179lRNTU1CnyMzM1M33nijZsyYoerqam3evFm1tbXq2bOnBg0apIKCAvXt2zehcwAAAAAAAADClZ1tyUTaSbIVOyB9+JH0yCJb2dmWhuRJYwsljyfGqDmiRnAbUXO73Ro9erRGjx6d6qkAAAAAAAAAhzUkL7aSJJJkG+mdtdI/qiVjjAIBKTdXmlxiVFJsyeslyJ1slCUBAAAAAAAA0KWNLXQC0bGybcnvPxAo9/mkxRXSlFKj6hpKliQbwW0AAAAAAAAAXZrHY2lyieRKQDTUtqWmJmnmLALcyUZwGwAAAAAAAECXV1JsqUePxAW4jZHmzDWqrSXAnSwEtwEAAAAAAAB0eV6vpbJ5liwrcQHuxkapchXB7WQhuA0AAAAAAACgWyjIt7RgvqWsrMQFuFdWSn4/Ae5kILgNAAAAAAAAoNsoyLe0pNzS1NIDTSbdLsnjkVxW7OPX+aSqNbGPg455Uj0BAAAAAAAAAEgmr9fS9GmWppYaVa2RNm6S6uuNPvxIemetk4EdLbdL2riJzO1kILgNAAAAAAAAoFvyeCwVjZOKJEmWHllk6x/VsQW3LZdUXx+nCaJdlCUBAAAAAAAAAEnZ2ZZMjEnXxpZycuIzH7SP4DYAAAAAAAAASBqSJwUCsY0RsKUheXEo3o0OEdwGAAAAAAAAAEljCw80mYxW31ypcEw8ZoOOENwGAAAAAAAAADk1uCeXSK4oo6Yul3RxiTMOEo/gNgAAAAAAAAB8qaTYUo8ekQe4XS4pK8s5HslBcBsAAAAAAAAAvuT1WiqbZ8mywg9wu1ySZUll8yx5vQS3k4XgNgAAAAAAAAAcpCDf0oL5lrKyOg5wt2RsL7zXUv4ZBLaTieA2AAAAAAAAALRSkG9pSbmlqaUHmky6XZLH4/wtOc0jp5ZKS8oJbKeCJ9UTAAAAAAAAAIB05PVamj7N0tRSo6o10sZNUn29UU6OpSF5UuEYmkemEsFtAAAAAAAAAGiHx2OpaJxUJEkimJ0uKEsCAAAAAAAAAOh0CG4DAAAAAAAAADodypIAAAAAAAAAQJz4/U597m3bG1TfYOSybOUNlsYWUp873ghuAwAAAAAAAECMamuNKlcZraiUfD4jt7teliUZIwUCUm6uNLnE/P/t3XmcjXX/x/H3mY3BMMYww+AWZaeUYrQIlZSduCXuqBQile7olixDdKfFktLdMhGyRrLFj5Qt6z2DiAiNdYaxjTHb+f0xj7nuuc6cc+bMPpdez8ejx32+1/ley9yP83bNfM73+n7VqYNNwcEUufMD05IAAAAAAAAAQB7s3mNXrz52Rc6W4uPTt6WmSikp6f8rpW+PnC316mPX7j32orrUmwrFbQAAAAAAAADIpd177Hp5uF03bkhpae77pqVJN25ILw+nwJ0fKG4DAAAAAAAAQC7Extr1+ht2paVlX9jOkJaWPlXJiH/ZFRtLgTsvKG4DAAAAAAAAQC4s+y59xLY9hzXqtDQpMTF9f+QexW0AAAAAAAAAyKGUlPTFIz0dse0oLU36dln6cZA7FLcBAAAAAAAAIIe2bP3f4pG5dTFe2rotP67mr4niNgAAAAAAAADk0PETkrd33o7h7ZV+HOQOxW0AAAAAAAAAyKHr1+2y2fJ2DJuXlJDAtCS55VPUFwAAAAAAAAAAVuPvb5M9pytJOkhLlQ79Js36T5r8/W36W3WpRbjk45PHqvlfBMVtAAAAAAAAAMihv1WXUlPzdow0u7Rjp7Rrt2S325WaKgUGSl062dWpg03BwRS53WFaEgAAAAAAAADIoRbh6YXovEpLk1JS/lcoj4+XImdLvfrYtXsPU5a4Q3EbAAAAAAAAAHLIx8emLp0krwKosKalSTduSC8Pp8DtDsVtAAAAAAAAAMiFTh1sKlGi4Arcdrs04l92xcZS4HaG4jYAAAAAAAAA5EJwsE2TJ9pksxVcgTsxUVr2HcVtZyhuAwAAAAAAAEAu3dnEpvfftalkyYIrcH+7TEpJocDtiOI2AAAAAAAAAOTBnU1smvuVTf/o879FJr29JR8fycuW9+NfjJe2bsv7cW42PkV9AQAAAAAAAABgdcHBNj3Tz6Z/9LFr23abzp4rqWsJdv33v9e1Y2f6COzc8vaSjp+Q7s+/y70pUNwGAAAAAAAAgHzi42PT/ffZFBjoL0l6591E7dptz1Nx2+YlJSTYJeXDMPCbCNOSAAAAAAAAAEAB8feX7HmcLtueJpUqRWHbEcVtAAAAAAAAACggf6tuU2pq3o6Rmib9rXr+XM/NhOI2AAAAAAAAABSQFuH/W2Qyt8oHSuHN8+Nqbi4UtwEAAAAAAACggPj42NSlk+SVy0qsl5fUuVP6cWBGcRsAAAAAAAAAClCnDjaVKJHzAreXl1SyZPr+yIriNgAAAAAAAAAUoOBgmyZPtMlm87zA7eUl2WzS5Ik2BQdT3HaG4jYAAAAAAAAAFLA7m9j0/rs2lSyZfYE7Y8T2B1NsanIHhW1XKG4DAAAAAAAAQCG4s4lNc7+y6R99/rfIpLeX5OOT/r9S+uKR/+gjzf2KwnZ2fIr6AgAAAAAAAADgryI42KZn+tn0jz52bd0mHT8hJSTYVaqUTX+rLoU3Z/FIT1HcBgAAAAAAAIBC5uNj0/33SfdLkihm5wbTkgAAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsx2a32+1FfREAAAAAAAAAAOQEI7cBAAAAAAAAAJZDcRsAAAAAAAAAYDkUtwEAAAAAAAAAlkNxGwAAAAAAAABgORS3AQAAAAAAAACWQ3EbAAAAAAAAAGA5FLcBAAAAAAAAAJZDcRsAAAAAAAAAYDkUtwEAAAAAAAAAluNT1BcAAHlx7do17du3T8ePH9elS5dkt9sVEBCgsLAwNW7cWIGBgfl2rqSkJEVHR+v3339XfHy80tLSFBAQoKpVq6p27dqqXLlyno69a9cuxcTE6MKFCwoMDFRoaKiaNm2qUqVK5dvPALhSGFmKjY1VVFSUTp8+ratXr8rHx0dly5ZVrVq1VL9+fZUsWTLP5yBLKErXr183Pn/x8fEqU6aMQkJC1LhxY1WqVCnfzhMVFaU//vhDZ8+elb+/v3GOkJCQfDk+OUJRK8gspaam6o8//tDhw4d17tw5Xbt2TaVKlVJgYKDq16+vW2+9VTabLV9+DrKEolRY96SCRo5Q1AozS9QccofiNoACce3aNR04cEBRUVGKiopSdHS0YmJijPfDwsL0f//3f7k+fnR0tD799FOtX79eKSkpTvvYbDaFh4erf//+uv/++3N9rpMnT2rWrFlasWKFEhISXPYLCQnRAw88oLFjx8rb29ujY1+9elUffPCBli9frkuXLmV5v1SpUmrbtq1effVVVaxYMdc/A6zrZsjSqlWrFBkZqT179rjsU6JECbVr104DBgxQrVq1cnwOsgR3CjpHx44d0/Tp07V27VolJSVled/b21vNmzfX4MGDddddd+XqHGlpaZo9e7Zmz56tkydPZnnfy8tL4eHhGjZsmBo3bpyrc5AjZMeqWYqNjdXatWu1adMm7dixQ1evXnXZNygoSD169NA//vEPBQUF5ernIEtwx6o58sSpU6f0+OOPZ/mbaf369apatWqOjkWOkJ2bKUvUHPLGZrfb7UV9EQBuHl988YWWLFmiI0eOKC0tzWW/vNxopk2bppkzZyo1NdXjfbp27arx48fLxydn3+lFRkbq3XffdXozcyUqKkolSpTItt/+/fs1ZMgQ0w3YlaCgIE2ZMkUtWrTw+DpgbTdDlhISEvTKK69ow4YNHh/fz89PI0aMUO/evT3ehyzBlcLI0cKFCzV27FglJydn29fb21sDBgzQsGHDcnSOixcvatiwYdq2bVu2fX19ffXKK6+of//+OToHOYI7Vs7St99+qzfeeCNH9zpJqlChgiZOnKgHH3wwR/uRJbhi5Rx5asCAAfrxxx+zbM9pcZscwZ2bLUvUHPKOkdsA8tWOHTv022+/Fdjxp06dqhkzZpi2lS1bVi1atFD16tXl7e2tM2fOaNu2bTp9+rTRZ8mSJUpKStKUKVM8Ptf48eM1Z84c07bAwEA1b95clStXlr+/v+Lj4/Xbb79p3759SkxM9PjYp06d0oABAxQbG2tsK1eunFq1aqXQ0FCdP39emzZt0vnz5yVJFy5c0ODBgzVv3jzVrVvX4/PAuqyepdTUVL3wwgvavn27aXtYWJiaN2+uSpUqKSUlRSdOnNDmzZuNUXRJSUkaN26cfHx81LNnz2x/DrIEdwo6R3PmzNH48eNN2ypWrKj77rtPoaGhun79uv773/9q7969stvtSk1N1cyZM+Xr66vBgwd7dI7k5GQNGTJEO3bsMLb5+PioZcuWqlWrlq5du6adO3fq0KFDRv/JkycrICBATzzxhEfnIEfIjpWzFB8fn6WwXapUKTVp0kTVq1dX+fLldf36df3666/asWOH0TcuLk6DBw/W1KlT1aZNG49+DrIEd6ycI0+sWLHCaWE7p8gRsnMzZYmaQ/6guA2gwJUqVUoNGjTQ/v373T5ik51Dhw7p448/Nm3r3bu3hg8fnmWOqNTUVM2fP19vv/228W3rihUr1K5dOz300EPZnuuTTz4x3WQCAwM1YsQIdejQwemI1YSEBG3YsEGzZ8/O9th2u11Dhw413WTat2+vcePGqXTp0sa2jALil19+aZxj0KBBWrVqlUff0uLmY6UszZ8/31TY9vX11VtvvaVu3brJy8u8nvXVq1c1adIkLVy40Ng2adIkPfjgg27nECZLyI38ylF0dLQmTZpk2jZw4EANGjRIfn5+pu179uzRyy+/bHxRNHXqVDVq1EgPPPBAtud57733TIXt2rVra+bMmVlGwC1fvlxvvPGGkdOxY8eqcePGqlOnjtvjkyPkltWy5OPjo1atWqlnz55q3ry5fH19s/Q5efKk3njjDf3yyy+SpJSUFA0fPlxr1qzJdl5VsoTcsFqOXImPj9fEiRMlpU+TFRQUZMqCp8gRcsuKWaLmkH+8su8CAJ4rUaKEGjdurN69e+vtt9/WihUrtGvXLs2ZM0fly5fP07Hnzp1rGnnTvn17jR492uniB97e3urdu7dGjhxp2j5v3rxsz3PkyBFNmzbNaIeEhGjx4sXq0qWLy6kYSpUqpccff1zz58/P9iawevVqRUdHG+0WLVro3XffNd1kpPTpGUaOHKmuXbsa22JiYjz6GWB9Vs+S4wiEN998U0888USWwrYklSlTRhEREWrbtq2xLSEhQd9++63bc5AlZKcgc/T++++bHlUdPHiwhg0bluUPH0lq0qSJvvrqK9Nn89///rfbR2kl6cyZM6YsVahQQV999ZXTR7s7duyoiIgIo52cnKwPP/ww25+DHMETVs6St7e32rdvr9WrV2v69Om6//77nRa2JalatWr67LPPdPfddxvbEhISNHPmzGx/DrKE7Fg5R9mZNGmS4uLiJEk9e/ZUzZo1c3UccgRP3AxZouaQv5hzG0Chad26tTHXU27mv2rbtq3++OMPo71y5cpsF55LTU1Vy5YtjUdtfH19FRUV5bTAlqFXr17avXu3pPSRBwsXLlTDhg1zdK3udOzY0Xh83MvLS6tXr9bf/vY3l/0vXbqk1q1bG9M2BAcH68cff8zx/OG4eRT3LJ09e9Y0YqFixYratGmT29xJ0uHDh9W+fXuj3aJFC33xxRcu+5Ml5EVecnT06FG1a9fOaIeFhWnt2rXZfpZmzZplmtLnww8/1KOPPuqyf0REhGl0zsSJE9WtWze353jqqadMI72XLVvm9tFScoS8Ku5ZSklJyfHn89ixY2rXrp0y/lQODg7Wzz//LJvN5nIfsoS8KO45cmfLli3q16+fpPTf+VatWqVBgwYZT0BIns+5TY6QV1bJEjWH/MXIbQCWcfbsWeN1QEBAtsU4KX20TqNGjYx2cnKy4uPjXfbfuXOncZORpG7duuXrTeaPP/4wbjKSdN9997m9yUjp82I9/vjjRjs2NtZUuAByqqCzlPn4ktS4ceNsC9uSdNttt6lMmTJG+9y5cy77kiUUpa1bt5ranTt39uiX/+7du5uKYytXrnTZ1263a+3atUa7XLlypi9/XOnVq5epvWbNGpd9yRGKWmFkKTd/mN9yyy2qX7++0Y6NjdWpU6dc9idLKEqFkSNXrl+/rtGjRxvtkSNHKiAgIMfHkcgRil5hZYmaQ/6juA3AMjI/3lOyZEmP93M21YIrixYtMrWfeuopj/f1xPr1603tzNMwuJP5G2RnxwFyoqCz5PhQmL+/v8fnyNzX3Qg5soSitH//flO7SZMmHu0XFBSkGjVqGO2ffvpJN27ccNp33759pi+KHnzwQY/mPmzTpo1pygV3n3FyhKJWGFnKLcdCQMaUC86QJRSloszR1KlTdfLkSUnpBbTMxbGcIkcoaoWVJWoO+Y/iNgDLyPwoW3x8vMcrBWc8liSlfyPpah6ulJQU0wi3WrVq5fsqwTt37jS1Pb1hNm7cWN7e3i6PA+REQWfJ8bFTd6PdMrt+/bouXrxotKtXr+6yL1lCUcr8OZXkduFTR5n7JiQkaN++fU777dq1y9T29DNesmRJ1atXz2gfOnRIly9fdtqXHKGoFUaWcuvatWumtrvRe2QJRamocrR//35FRkZKSr/3jBkzxuN9nSFHKGqFkSVqDgWD4jYAy7j//vuN18nJyfrhhx+y3efkyZOmhRRatmzpcjTob7/9ZlpZuWnTpnm4WueOHj1qvC5ZsqTHi62ULl3aVOg7duxYltGxgKcKOksVKlQwPc4dFRXlUYF7zZo1SklJMdqtWrVy2ZcsoSg5jsZxtsiQK46jr3///Xen/Ry3Z85UdjIXtyVzXlxtJ0coCoWRpdyw2+06fPiwaVtoaKjL/mQJRakocpSamqpRo0YZC5QPHDhQ1apV8/i8zpAjFLXCyBI1h4JBcRuAZfTt29c0LcLkyZONx+CcSUhI0Ouvv24Uy/z8/PTCCy+47O/47WrG/MLJyclatWqVBg8erEceeURNmjRRixYt1LFjR40ZM0Y//fSTR9efnJysP//802iHhoa6nXbBUZUqVYzXiYmJplG0QE4UdJYk6fnnnzdep6SkaMSIEW5HiB87dkzvvPOO0a5Ro4Y6duzotC9ZQlFznE/U1choZxz7uvrjx7EgXblyZY/Pkfkz7uxYEjlC8VAYWcqNHTt2mL6UrV27toKCgpz2JUsoakWRo88//1wHDhyQJN1666165plnPD6nM+QIxUFhZImaQ8GguA3AMsLCwhQREWEsTHf+/Hl169ZNn3zyiX7//XclJSUpNTVVp06d0sKFC9WpUyfjsW5vb29NmDDB7cJ5R44cMbWrVq2qQ4cOqXv37ho2bJjWrVun48ePKyEhQXFxcTp06JDmzZunZ599Vj169MgywsdRbGysaVRqTgoVUtbHos6cOZOj/YEMBZ0lSXr00UdNC9tt375dXbp00dKlS3XmzBmlpqYqKSlJhw8f1owZM9StWzdjPtPy5ctr2rRpLucXJksoapUqVTK1He8frtjt9ix9T58+7bRv5vm2fXx8VLFiRY+vz3GEqbPPODlCcVAYWcqN6dOnm9qPPvqoy75kCUWtsHN04sQJIyM2m01jx441rfWQG+QIxUFhZImaQ8GguA3AUh5//HH95z//MR57u3Tpkt577z099thjatSokerXr69WrVpp1KhROnHihCSpTp06ioyMdDkKNMOlS5dM7djYWPXq1UsHDx7M9rr++9//6u9//7u2b9/usk/mx4+knC10KaU/JuTueEBOFGSWMrz11lsaOXKkypQpIyl99OiIESPUsmVL1a9fX40aNVL79u01depUY27TVq1aacmSJapdu7bL45IlFLU777zT1N64caNH++3cuVNXrlwxbXP1+cu83d/fP0ejbjz5jJMjFAeFkaWcWrhwoen3ucDAQLeLfZElFLXCztHo0aONp/G6deuWL9MqkCMUB4WRJWoOBYPiNgDLuffee7Vy5Ur179/ftOCBM+3atdOsWbN09913Z3tcx0eJxo4daxTcbr/9dk2fPl1btmxRdHS0NmzYoHHjxpm+Cb169aqGDh3q8ltax4WJXI1KdcWxv1VuNCi+CipLGWw2m55++mmtXLnS7fzZkuTr66shQ4bovffeyzKlgiOyhKIWHh6ukiVLGu3169dnO5JGkmbOnJllmyfF7Zx+xh3niHR2DnKE4qAwspQThw8f1oQJE0zbXn/9dZUrV87lPmQJRa0wc7R48WJt3bpVUvqTdq+99loOr9Y5coTioDCyRM2hYFDcBmA5GzduVKdOnfT5558bi5i4smrVKj300EOaOHFilgUiHDn+w53x7WuPHj30zTff6OGHH1aFChXk5+enKlWqqGfPnlq+fLluv/12Y5/4+HhNnDjR6fGTkpJM7Zw+vudYrHA3fzHgiYLKUoa0tDR9/vnn6tixozZs2OC2b3JysqZNm6bWrVvrm2++cduXLKGoBQYGqlu3bkY7JSVFw4YNU2xsrMt9pk2bps2bN2fZ7urzlzlnBfEZJ0coDgojS566ePGiBg8erOvXrxvb2rZtq65du7rdjyyhqBVWjuLi4kzro4wYMUKBgYG5u2gH5AjFQWFkiZpDwaC4DcBSPvroIz3//PPG4lhBQUF65ZVXtHz5cu3evVtRUVFat26dJkyYoNtuu01SetEsMjJSffv2zfJNZmbOvtWsV6+e3nrrLZePg5ctW1Yffvih6fGddevW6Y8//sjS1/FGkZycnO3Pm5njjSrzt8pAThVklqT0z+vAgQM1efJkxcfHS0pfkGvChAlat26doqOjtXv3bi1btkwvv/yysVDXxYsXNXr0aI0fP97lsckSioMhQ4aYRtIcOXJEnTp10pw5c3Tq1Cmlpqbq6tWr2rJli5577jljflLHxz0d2xky35MK4jNOjlBcFHSWPHH9+nW98MILOn78uLGtbt26LosHmZElFAeFkaOIiAjjd7p77rlHnTt3zrfrJ0coLgrz97sM1BzyjuI2AMtYuXKlPvzwQ6Ndr149LV++XM8//7zq1Kmj0qVLq0SJEqpWrZq6d++uJUuWmH7p2rt3r0aPHu3y+M7moxowYIB8fHzcXlflypVN3/CmpaU5nZ/L8Qbn6ehXV/1zOn8WkKGgsyRJEyZMMOWgc+fOWrJkibp3765q1arJz89PpUuXVt26dfXCCy9o+fLlqlevntF/zpw5WrBggdNjkyUUB+XLl9f06dNVvnx5Y1tsbKzGjx+vVq1aqX79+rrrrrvUr18/bdq0SVL66Jlx48aZjhMQEOD0+Jk/lzn9jDv+YeLsM06OUFwUdJayk5ycrCFDhmjv3r3GtqpVq+rTTz811oxwhyyhOCjoHG3cuFErV66UlF48Gzt2bL5ePzlCcVGYv99loOaQdxS3AVhCcnKyafRMiRIl9NFHH6lixYou9/Hz81NERITq1KljbFuxYoWio6Od9ne8EXh5eally5YeXV/r1q1N7d27d2fp43hjyG7kqyPH/la50aB4KYwsHTp0yDS1SN26dRUREeH2sbiKFStqxowZptEM7733ntNfyMgSiouGDRtq4cKFHs1FX6VKFX322We69dZbTdtdzeWb+XN5/fp1paWleXxdnnzGyRGKk4LMkjtpaWn65z//qZ9++snYVrFiRX3xxReqVKmSR8cgSyguCipH165d05gxY4z2gAEDVLNmzTxfb2bkCMVJQd6TqDkUDIrbACzh559/1vnz5412+/bts110Tkr/FrV///6mbcuWLXPaNzQ01NQOCwvz+BHX2rVrm9pnz57N0ic4ONj0jeyZM2c8Orar/o7XC3iiMLL07bffym63G+1+/fp5NN9bWFiY2rdvb7QvXrxojIjIjCyhOKlWrZrmzJmjyMhIPfnkk6pdu7YCAwPl6+ur0NBQhYeHa/z48VqxYoWaNWumP//807R/rVq1nB43JCTEeJ2SkuJ2vkdHjosMOfuMkyMUNwWVJXfGjBljjEaV0osR//nPf1S9enWPj0GWUJwURI4iIyON+0qNGjX0/PPP5/t1kyMUNwV1T6LmUDDcj3sHgGIi86OiUvo8b55y7Ltv3z6n/RxvQGXLlvX4HI59M+ajy8zX11dVq1Y15sY6c+aM7Ha7y7m1HGUuVvj7+yssLMzj6wMyFEaWHM/RrFmzHJ1j8eLFRjs6OloPP/ywqQ9ZQnHUvHlzNW/ePNt+UVFRpnajRo2c9qtVq5Z27txptE+dOuXxSFLH4razP7DIEYqr/M6SK++8847pKaNSpUpp1qxZqlu3bo6OQ5ZQHOVnji5evGi8Pn78uO64445sj+u4UPkjjzxiav/www+mzzo5QnFVEL/fZUbNIX8wchuAJVy4cMHUdjeFgqPg4GBTO/MvaJllLJqXISeLLzjOb+psoQjJfDNLTEw0FvPLztWrV02LHNWoUcPjGxSQWWFkyfEcjvvlxznIEqwq8yOkPj4+atCggdN+jo98HzhwwONzOPZ19fg4OYKVeZolZ2bOnKnPPvvMaPv5+emjjz7yqGjnDFmCVeU0R3a7Xampqdn+58jx/cxP+GUgR7AyT7NEzaFgUNwGYAmO/3AnJiZ6vK9jX39/f6f9atWqpQoVKhhtZ4/5uOL4+E5QUJDTfnfddZep7WyeLGeioqJM8602bdrU42sDMiuMLDmu0p2ThUw8PQdZghWdPn1au3btMtoPPvigywXrHD/je/bs8egciYmJOnjwoNGuU6eOy0WNyBGsKidZcvT111/rgw8+MNo+Pj764IMPFB4enuvrIUuworzkqCCQI1hVTrJEzaFgUNwGYAmO/3D//vvvHu975MgRUzvzzSQzLy8v0yINly5d8vg8jkWHevXqOe3Xpk0bU3vNmjUeHX/16tVujwN4qjCy5Li9IM5BlmBF8+bNM/3R8MQTT7js27BhQ9O82xs3bvToi6J169aZRgG5+4yTI1hVTrKU2bJlyzR+/Hij7eXlpcmTJ+f5M0yWYEWe5uhf//qXDh06lKP/HKeyW79+ven9qlWrZjkPOYJV5eSeRM2hYFDcBmAJjRs3NrVXrVrl8b4rVqwwtd09cvr444+b2osWLfLoHI797r33Xqf9atSoYZrLcfPmzaZHf5y5dOmSabGj4OBgj1ZuBpwpjCw5nuP777/36Ph2uz1LX1fnIEuwmhMnTujLL7802nXq1NH999/vsr/NZlPbtm2N9uXLl7Nk0Jn58+eb2pmP4YgcwYpymqUM69ev1xtvvGGaDmHcuHGmhYxziyzBanKbo4JEjmBFuckSNYf8R3EbgCXcfffdpgUUDhw4oK+//jrb/fbs2aMFCxaYtrVq1cpl//DwcNPjN7Nnz9avv/7q9hwLFiwwfYtaq1YttWjRwmX/gQMHGq/T0tI0ZswYp/POZZg0aZKuXLlitJ977jnTCshAThRGljKPRpDSi22uFp/M7Msvv9Rvv/1mtAMDA9WkSROX/ckSrCIuLk4DBgwwRl57eXlp/Pjx8vb2drvfM888Y5rmZ8qUKS7noZekb7/9Vjt27DDabdq0yXZxPHIEK8ltlrZt26aXX35ZKSkpxraRI0d6POLbE2QJVpHbHBUGcgQryW2WqDnkP4rbACyhRIkSeuaZZ0zbIiIiNGPGDKdzBtvtdn333Xd69tlnTY9nt2rVSg0bNnR7rtdee824ISUnJ6t///7avHlzln5paWmaPXu2xowZY9r+6quvysvL9T+vbdu2Na2evGXLFg0fPlzXrl0z9UtKStLbb7+tJUuWGNvCwsLUq1cvt9cPuFMYWbrjjjtMIwlu3Lih/v37a/Xq1U5/qUpISND777+vyZMnm7Y///zzWebvzowsoaj17dtXCxcu1OXLl52+n5aWprVr16pr1646duyYsb1///66/fbbsz1+aGionnrqKaMdFxenvn376s8//8zSd/ny5Ro1apTR9vX11UsvvZTtOcgRioOCzNK+ffs0aNAg07Q+Q4cO1dNPP50v156BLKGoFfQ9qTCQIxQHhZElag75y2Z3V7oHgByKiYnRww8/7PQ9x5WzXX2j+eWXX2aZp01K/4f3mWee0S+//GLaHhgYqBYtWqhq1ary9vbWuXPntG3bNsXExJj6Va5cWd98841pDlNXvv76a40bN860rUGDBrrzzjsVEBCg2NhYbd68Ocs5nnvuOQ0fPjzb4586dUrdu3dXXFycsa1cuXJq3bq1QkJCFBsbqx9//FHnz5833i9VqpTmzZuX7Sg83BysnqWYmBj17NnT9BmWpOrVq+uee+5RpUqVlJKSouPHj2vbtm26dOmSqd99992nTz75JNsRA2QJ7hRkjiSpWbNmio+Pl6+vrxo2bKg6deooKChIN27cMPLjmIGOHTtq8uTJbv8gySwpKUn9+vXTzp07jW2+vr5q2bKlatasqYSEBO3YsUOHDh0y7RcREeHxqFRyhOxYOUsjR440/dHu7hrdmThxojp37uy2D1mCO1bOUU716dPH9Hvm+vXrnc6z7Qw5QnZulixRc8g/1hljDsAS7HZ7lhuKK676ufrOzc/PTx999JFGjhypH374wdgeHx9vmh/KmXr16umDDz7wqLAtSb1799aNGzf03nvvGaNV9+/fr/379zvtb7PZNHToUA0aNMij41epUkWzZs3S0KFDjZvVpUuXtHTpUqf9y5cvrylTpljuJoPcs3qWwsLCFBkZqWHDhpmmGjlx4oROnDjhdt/HHntMERERHj0KR5bgTkHmKLPk5GTt2bMny0I/mXl7e2vQoEEaPHiwbDabR9ckped12rRpeumll4xCQXJystatW+e0v4+Pj15++eUcTbdAjpAdK2fJ2Xk9/Vkyy7xYmCtkCe5YOUeFiRwhOzdLlqg55B+mJQFgKQEBAZo+fbpmzJihZs2aZXsDufXWWzV69GgtWLBANWrUyNG5+vfvr0WLFqlVq1by9fV12sfHx0cPPvigFi1a5PFNJkPDhg21bNky9enTR+XKlXPax9/fX507d9Z3333ncsEIIDcKI0u1atXS4sWLNWrUKNWsWdNtXy8vL4WHh+vjjz/W+++/r9KlS3v6o5AlFJmePXuqbt26bvNTokQJdejQQcuXL9eLL76YqyJCUFCQIiMjNXLkSFWrVs1pHy8vL7Vo0ULz5s3Ts88+m+NzkCMUpcLKUmEgSygq5AjIH4WZJWoO+YNpSQBY2pUrVxQVFaU///xTly9fVlpamsqUKaOQkBA1atTI45Ha2blw4YL27Nmjs2fP6vLlyypbtqxCQ0N19913KyAgIM/HT0pK0s6dOxUTE6MLFy6oXLlyqly5spo2bZqjIh+QW4WRpTNnzig6Olrnzp3T1atX5eXlpbJly6patWpq3LixypQpk+dzkCUUhYsXL2rfvn06efKkMT9j2bJldcstt+iOO+6Qv79/vp3LbrcrOjpax44d07lz51SyZEmFhITo9ttvz7d7HjlCUSnMLBUGsoSiQI6A/FHYWaLmkHsUtwEAAAAAAAAAlsO0JAAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcn6K+AAAAAAA3r8OHD2vv3r2Ki4uTv7+/QkND1axZMwUGBuboODExMdq/f7/OnTunhIQEVapUSXfeeaeqV6/u0f5JSUmKi4tTXFycLly4YPzXp08f+fr6SpL27NmjPXv2yM/PT+Hh4apVq1ZOf1wAAAAUIpvdbrcX9UUAAAAAKBzbt29X37593fZ58cUXNWTIENO2Pn366JdffnHaf/369apatapp2+bNm/Xuu+/qwIEDCgsL0y233KLz58/r6NGjSktL02OPPabXXntNISEhbq9l+fLl+v777xUbG6uyZcuqRIkSSk5O1uHDh3X27Fk1aNBAL730klq2bOn2OK1bt1ZMTEyW7bt375YkDRs2TDt27FCjRo20b98+3bhxQ//85z/19NNPuz0uAAAAig7FbQAAAOAv5Nq1azp8+LBOnTqluXPnaseOHcZ7bdu2Vc+ePXXrrbdmKTrv27dPc+bM0dKlSyVJAQEB6t27t5o1a6amTZvKz8/P6Dtz5kx9+OGHCggI0IQJE/TII48Y7x09elTDhw/X/v37FRISoi+//FI1a9Z0eq1Tp07VjBkzFBYWpilTpqhJkybGe2lpaVq1apXGjBmjy5cv6+9//7vGjBkjm83m9Fgff/yxTp8+rZ07d+rIkSPG9l27dun111+XzWbThAkTtHv3br3wwguSJC8vL23evFlBQUGe/t8LAACAQkRxGwAAAPiLSkxMVNu2bXXmzBlJ6QXgVq1aud3n4Ycf1uXLlzV37lyn03a88847+uyzz2Sz2fTZZ5/p3nvvzdInNjZWnTt31vnz51W7dm0tXrzYVByXpBs3bqhp06ZKSkqSJDVp0kTz58/PcqxffvlFffv2ld1uV79+/TRixAi315+UlKRHH33UGMU9duxYzZ49W0uXLpWfn5+++OILTZo0yei/dOlS1a9f3+0xAQAAUDRYUBIAAAD4iypZsqR69OhhtBcuXOi2f2pqqq5evaphw4Y5LWxv3bpVn3/+uSTp0UcfdVrYlqTg4GD169dPkvTbb79pyZIlWfrcuHFDycnJRtvb29vpse655x7jPJGRkTp58qTbn8HPz0+NGzc22p9++qlGjRplFNfbtWunSpUqSZLuu+8+1a1b1+3xAAAAUHQobgMAAAB/YT169DAWVNy4caNOnTrlsu+GDRuUmpqqLl26ZHkvNTVVb775pjIeDO3du7fb87Zv3954vXjx4izvly1bViNGjFC5cuVUo0YNvfHGGy6PlTGyOi0tTT///LPb80rpRf0MaWlpat68udEODQ3VDz/8oNWrV+vTTz+Vlxd/MgEAABRX/KYGAAAA/IVVrFhRDz30kKT0AvU333zjsu+8efPUpUsXU3E4w8aNG41R0/7+/qb5sZ0JCQlRaGioJOnAgQNKSEjI0ufpp5/WL7/8ojVr1qhBgwYuj5V5SpO4uDi353XUokWLLPN0lyxZUrfccguFbQAAgGLOp6gvAAAAAEDRevLJJ7Vq1SpJ6VOTDB48OMsc2MePH9eWLVs0atQop8fYuHGj8To0NFQ+Ptn/qVGxYkWdOXNGKSkpiomJ0W233ea2f3x8vH788UcdOHBAv/76q06dOqXLly/rypUrRp+cLilUr169HPUHAABA8UFxGwAAAPiLu+eee3Tbbbfp8OHDiouL05o1a9ShQwdTn3nz5ql58+a65ZZbnB7j4MGDxutjx46pTp06OboGZyO3M2zfvl2RkZHatGmTkpOTVaVKFbVo0UKdOnVSaGioVq9erQULFuTofBkyRo8DAADAeihuAwAAAFCvXr00btw4SdLcuXNNxe3ExEQtXbpU48ePd7n/pUuXjNd169bVpEmTPD63zWZzOmr78uXLmjx5shYtWiRJqlmzpoYOHapHHnnEtMDk7t27PT6Xo9KlS+d6XwAAABQtitsAAAAA1KlTJ02ZMkXXrl3T7t27dfDgQdWtW1eS9P3336tEiRJq3bq1y/1LlChhvLbZbHme7uPChQt66qmn9Pvvv0uSWrdurX//+98qU6ZMno7riHm1AQAArIvf5AAAAACoTJky6tixo9GeO3eu6XWPHj3czqNdrVo143VOF3V0ZsyYMUZhu0GDBpo6dWq+F7YBAABgbRS3AQAAAEhKX1gyw3fffacrV64oKipKBw8e1BNPPOF23+bNmxuvz507p/j4+Fxfx9mzZ7V27VqjPWjQIPn6+rrs72oRyblz5+rnn3/O9XUAAACgeKO4DQAAAECSVLt2bTVt2lRS+gKPS5cu1dy5c9WmTRuFhIS43bd9+/YqWbKk0d68ebNH50xNTdXQoUN18uRJY9u+fftMBeu7777b7THOnz/vdPuqVau0Z88ej64DAAAA1kNxGwAAAIAh8+jtr776SitXrlSvXr2y3S8oKEjPPfec0V6yZIlH59uwYYN++uknBQcHG9uuX79u6uPv7+9yf7vdri1btnh0LgAAANxcKG4DAAAAMDzyyCNGofnkyZOqUqWKwsPDPdp34MCBuueeeyRJP//8s7Zv3+62/9WrVzV58mQ9/fTTpgL2bbfdZuq3d+9el8dYunSpYmJijHbmEd8pKSmm0eQAAAC4uVDcBgAAAGDw9fVV9+7djbYno7YzeHt764MPPlCTJk0kSa+++qoOHTrktG9sbKyeffZZVapUSQMHDjS9V6dOHbVu3dpoT5o0SdeuXctyjK1btyoiIkJvvvmmURz/888/JaUXuU+cOKHbb789y34JCQnG68TERI9/PgAAABQvNrur1VcAAAAA/CWdPn1abdq0kZ+fnzZt2qSyZcvmaP/k5GRNnjxZX3/9tXx9fdW5c2c98MADqlixoq5cuaLt27drwYIFuu+++xQREeF02pHExESNHj1ay5YtkyTVqFFDzz33nGrXrq3z58/rhx9+0MqVK/Xiiy9qwIABmjx5sj7//HP5+/vr7bff1uHDhxUdHa1PP/1UknTw4EHFxcVp7969mjVrllHUDg0N1ZNPPqm6deuqfPnyql69ugIDA/P2fyAAAAAKBcVtAAAAAFl06dJF9evX14QJE3J9jKNHj2rRokXaunWrjh8/rhs3bqhChQpq2rSpevbsqWbNmmV7jP3792vJkiXatWuXYmJilJiYqMqVK6t58+Z66qmnVLt2bUnpBfX3339f3377rdLS0tShQwe9+uqrxrQkrVu3Nk1f4srbb7+trl275vpnBgAAQOGhuA0AAADA5Pjx42rbtq0WLVqkhg0bFvXlAAAAAE4x5zYAAAAAk/nz56tRo0YUtgEAAFCsUdwGAAAA/mIuXLigtWvX6syZM1neu3HjhpYsWZKjhSQBAACAouBT1BcAAAAAoPAkJCSoa9euOn36tAICArR8+XJVqVLFeH/evHkqXbq02rdvX4RXCQAAAGSPkdsAAADAX8jhw4d1+vRpSdKVK1e0d+9e4734+Hh98sknGjZsmPz8/IroCgEAAADPUNwGAAAA/kKqVq0qb29vSVJYWJjCw8MlSUlJSXrppZdUo0YNdejQoSgvEQAAAPAIxW0AAADgL6RChQp65pln5O3trSeeeEJHjx7V0qVL1blzZ8XHx2v69Omy2WxFfZkAAABAtmx2u91e1BcBAAAAoHDNnz9fkZGROnnypCpXrqyOHTvq2Weflb+/f1FfGgAAAOARitsAAAAAAAAAAMthWhIAAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5VDcBgAAAAAAAABYDsVtAAAAAAAAAIDlUNwGAAAAAAAAAFgOxW0AAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5VDcBgAAAAAAAABYDsVtAAAAAAAAAIDlUNwGAAAAAAAAAFgOxW0AAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5VDcBgAAAAAAAABYDsVtAAAAAAAAAIDlUNwGAAAAAAAAAFgOxW0AAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5fw/aVWfzwxojKIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AABybUlEQVR4nOzde5yVZb03/u8cOCoHURw8KwQo6ai4LTF34OZpi+ZD2hNFaYqJx60p+FRauk1jm+bGSgx6Qncqpu7cjynZDhUSTdEEQTHI4UlRPA2ggCQwzMCs3x/+XM1ac1oDM8xc8H6/Xr5ec91zndbtNTf3fNY91yrKZDKZAAAAAACAhBS39wQAAAAAAKClhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByStt7AjRt7dq17T2FVldUVBS9e/eOiIh169ZFJpNp3wlBAaxbUmTdkhprlhRZt6TIuiVF1i2pacs1u8cee7RaX6nz5DYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJKW3vCQAAALDzO2FEbXtPod08PddzZQDQFvwLCwAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkp7S9J9BWVqxYEUuXLo3Kysqora2NsrKyGDhwYAwaNKjVxli8eHG8/vrrsXLlyujWrVuUlZVFeXl5lJWVtdoYAAAAAADU12HC7UmTJsWMGTNyjp1++ulx4403tqifJ598MqZNmxaLFi1q8PuDBw+O8ePHx+jRo7dpnrW1tTFjxoyYMWNGvPnmm/W+X1xcHMOGDYvLL788ysvLt2kMAAAAAACa1iG2JXnxxRfjV7/61Xb1kclk4t/+7d/i/PPPbzTYjoioqKiIb33rWzFx4sSorq5u0Rhr166Nc845J2644YYGg+2Ij8LvZ555Jr72ta/Ff/zHf7SofwAAAAAACtPuT27X1NTENddcE7W1tdvVz+TJk+Puu+/OOTZ06NA44ogjoqSkJCoqKmLevHmRyWQiIuJ3v/tdlJSUxM0331zwPC+99NKYP39+9lhpaWkMHz48BgwYEBs2bIgFCxZERUVFtv5NN90UPXr0iDFjxmzXawMAAAAAIFe7h9u/+MUvYtmyZRER0bdv31i9enWL+3jiiSdi+vTp2XLPnj3j1ltvjWHDhuXUW7p0aVx00UVRWVkZEREzZ86MY445JsaOHdvsGLfccktOsD1o0KCYNm1a7L///jn1Zs6cGd/97nejpqYmIiKuu+66KC8vj8GDB7f4dQEAAAAA0LB23Zbktddei5///OcREdGtW7eYOHFii/vIZDJxyy23ZMtFRUUxderUesF2RMSQIUPizjvvjC5dumSP3XbbbVFVVdXkGJWVlXHPPfdky3vuuWfcfffd9YLtiIjRo0fHpEmTsuWampr46U9/2qLXBAAAAABA09ot3M5kMnHNNddk972++OKLY7/99mtxP7Nnz84++R0R8YUvfCGOPfbYRusfcsghce6552bLq1evjgceeKDJMW6//fac/bmvuOKK2GOPPRqtf9ppp+XMYc6cOfHKK680OQYAAAAAAIVrt3D7/vvvjwULFkTER1t8nHPOOdvUz6xZs3LKZ5xxRrNtxo4dGyUlJY32UVcmk4nHHnssW+7Vq1eceuqpzY7x1a9+Naf86KOPNtsGAAAAAIDCtEu4vXLlypg8eXJEfLSNyHXXXRedOnVqcT9btmyJp556KlveZ599ory8vNl2ZWVlcdRRR2XLixYtijVr1jRY989//nOsXLkyWx4xYkTOtiaNGTlyZM5rmjNnTrNtAAAAAAAoTLuE2z/4wQ/ib3/7W0REfPnLX46hQ4duUz/Lli2L9evXZ8tHH310wW3r1t26dWssXLiwwXovvPBCo+2a0rVr1zjssMOy5YqKipy5AgAAAACw7XZ4uP3YY4/F448/HhEffTDjFVdcsc19vfrqqznlumFyc4YMGZJTfu211woaI79dU/Ln09gYAAAAAAC0zA4Nt//2t7/FD37wg2z5yiuvjF69em1zf/lh8b777ltw23322afJvho7nt+uKfnzEW4DAAAAALSOHRpu/+hHP4pVq1ZFRMTxxx8fo0eP3q7+6u6FHRHRr1+/gtvm162srGx2jNLS0ujbt2+rjwEAAAAAQMuU7qiB5s+fHw888EBERHTu3Dmuvfba7e5z48aNOeXddtut4Lb5dfP7auh4t27doqioqNXHaEpLxktF3de0M74+dk7WLSmybkmNNUuKrFsK0dHWhnVLiqxbUmPN7hg7JNyurq6Oa665JjKZTEREXHjhhXHwwQdvd7/5YXHnzp0LbtulS5cm+2roeH6b5uTPZ1vC7d69e7e4TUq2Z1saaC/WLSmybkmNNUuKrNvmvN/eE2g3Hfn3OuuWFFm3pMaabTs7ZFuSn/3sZ7F8+fKIiDjkkEPivPPOa5V+N2/enFNuSbidX7eqqqrZMTp16tSC2RU+BgAAAAAALdPmT25XVFTEHXfckS1fd911LQqhm5L/JHV1dXXBbfPrdu3atdExNm3aFBERNTU1LZpfoWM0Zd26dS1u09EVFRVl37H64IMPsk/0Q0dm3ZIi65bUWLOkyLqlEB3t9zrrlhRZt6SmLddsR/6LoB2tTcPt2trauOaaa7Kh8Omnnx6f/vSnW63/7t2755RbEm7nP/Wd31fd4x+H2/ltmpM/n8bGaMrOfrHOZDI7/Wtk52PdkiLrltRYs6TIuqUxHXldWLekyLolNdZs22nTbUlmzJgRL730UkR89I7Ct7/97VbtPz8s3rBhQ8Ft8+s2FW5/bNOmTVFbW9vqYwAAAAAA0DJtFm5XVVXFT37yk2z529/+dvTp06dVxygrK8spV1ZWFtz23XffzSn369ev2TG2bNkS7733XquPAQAAAABAy7TZtiTV1dWxcePGbPmaa66Ja665psk2+Y/nP/TQQzFz5sxs+bTTTosbbrghWx4wYEBO/Xfeeafg+eUH4f3792+w3oABA2LBggU5Y+y9994FjZEfbufPFwAAAACAbdOm25LUtXXr1mb/y9/yI5PJNPn9/LB46dKlBc9nyZIlOeXGwu384y0ZI79uY2MAAAAAANAyOyzcbgsDBw6Mnj17ZssvvvhiwW0XLVqU/bqkpCSGDh3aYL1jjjmm0XZNqaqqildeeSVbHjx4cPTo0aPg+QEAAAAA0Lg225akZ8+eUVFR0aI2f/rTn+Kss87Klk8//fS48cYbG61fWloan/3sZ+ORRx6JiI+2AXnppZfiyCOPbHKclStXZj/oMiLi6KOPbnQ/8MMPPzzKyspi5cqVERExd+7c2Lx5c3Tp0qXJMWbPnh01NTXZ8siRI5usDwAAAABA4ZJ+cjsi4uSTT84p33vvvc22uf/++2Pr1q3Z8qhRoxqtW1RUFCeddFK2vH79+myY3twYddXtAwAAAACA7ZN8uD1y5MgYNGhQtvzwww/H/PnzG62/fPnyuOOOO7Llvn37xpgxY5oc49xzz43OnTtny5MnT461a9c2Wv+hhx7KmcPIkSPj0EMPbXIMAAAAAAAKl3y4XVRUFBMnTsyWM5lMXHzxxfHss8/Wq7t06dIYN25cbN68OXvskksuia5duzY5Rr9+/eLMM8/Mlt9///0466yz4q233qpXd+bMmXH11Vdny506dYrLLrusRa8JAAAAAICmtdme2zvSiSeeGOedd15Mnz49Ij7aOmTcuHExdOjQKC8vj+Li4qioqIh58+ZFJpPJths9enSMHTu2oDEmTJgQixcvjgULFkRExLJly2LUqFExfPjw6N+/f2zcuDHmz59fb5/xa6+9NgYPHtxKrxQAAAAAgIidJNyOiJg4cWJUVVXFjBkzsscWLlwYCxcubLD+KaecEpMmTSq4/86dO8eUKVPisssui+effz4iImpqamL27NkN1i8tLY0JEyY0u+UJAAAAAAAtl/y2JB8rLi6Oq6++On7xi1/EUUcd1Wi9QYMGxY9+9KP48Y9/HF26dGnRGH369Im77rorrrrqqjjggAMancfxxx8f9913X4wfP75F/QMAAAAAUJiiTN19OnYib7zxRixZsiRWrVoVW7dujbKyshg4cGCrbRGSyWTi5ZdfjuXLl8eqVauia9euUVZWFkceeWSUlZW1yhgR0eQHV6aqqKgoevfuHRER69ati510CbKTsW5JkXVLaqxZUmTdFu6EEbXtPYV28/TcjvVcmXVLiqxbUtOWa3aPPfZotb5St9NsS5LvoIMOioMOOqjN+i8qKory8vIoLy9vszEAAAAAAGhYx3r7GAAAAAAACiDcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJJT2t4TAAAA0nXCiNr2nkK7eXquZ4UAANqTuzEAAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJJT2t4TAAAA2NmcMKK2vafQLp6e6/kpAGDHcecBAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHJKd+RgtbW1sWLFinjjjTdi5cqVsX79+qiuro7u3btH796949BDD42BAwdGSUnJdo+1YsWKWLp0aVRWVkZtbW2UlZXFwIEDY9CgQa3wSj6yePHieP3112PlypXRrVu3KCsri/Ly8igrK2u1MQAAAAAAqK/Nw+01a9bEHXfcEQsXLoy//OUvsWnTpibr9+rVK0aPHh3nnntu7LPPPi0e78knn4xp06bFokWLGvz+4MGDY/z48TF69OgW9x3xUUA/Y8aMmDFjRrz55pv1vl9cXBzDhg2Lyy+/PMrLy7dpDAAAAAAAmtbm25K8/fbbcfvtt8fChQubDbYjIj744IOYMWNGnHLKKfHggw8WPE4mk4l/+7d/i/PPP7/RYDsioqKiIr71rW/FxIkTo7q6uuD+IyLWrl0b55xzTtxwww0NBtsRH4XfzzzzTHzta1+L//iP/2hR/wAAAAAAFGaHbksSEbHXXnvFoEGD4qCDDopevXpFSUlJrFu3Lv7yl7/Eiy++GLW1tRERsXHjxrjqqquiuro6xo4d22y/kydPjrvvvjvn2NChQ+OII46IkpKSqKioiHnz5kUmk4mIiN/97ndRUlISN998c0HzrqmpiUsvvTTmz5+fPVZaWhrDhw+PAQMGxIYNG2LBggVRUVGRrX/TTTdFjx49YsyYMQWNAQAAAABAYdo83C4pKYljjz02TjrppPjMZz4T/fv3b7Tu22+/Hddff33MnTs3e+yGG26I448/Pg488MBG2z3xxBMxffr0bLlnz55x6623xrBhw3LqLV26NC666KKorKyMiIiZM2fGMcccU1B4fsstt+QE24MGDYpp06bF/vvvn1Nv5syZ8d3vfjdqamoiIuK6666L8vLyGDx4cLNjAAAAAABQmDbflmTIkCFxzz33xNe//vUmg+2IiP322y+mTp0an/nMZ7LHNm/eHL/61a8abZPJZOKWW27JlouKimLq1Kn1gu2P53LnnXdGly5dssduu+22qKqqanJelZWVcc8992TLe+65Z9x99931gu2IiNGjR8ekSZOy5ZqamvjpT3/aZP8AAAAAALRMm4fbLVVSUhJXXHFFzrE//vGPjdafPXt2LFu2LFv+whe+EMcee2yj9Q855JA499xzs+XVq1fHAw880OScbr/99pz9ua+44orYY489Gq1/2mmn5cxhzpw58corrzQ5BgAAAAAAhetw4XZExCc/+cno3r17tvzuu+82WnfWrFk55TPOOKPZ/seOHRslJSWN9lFXJpOJxx57LFvu1atXnHrqqc2O8dWvfjWn/OijjzbbBgAAAACAwnTIcDsiYrfddst+/fGHQObbsmVLPPXUU9nyPvvsE+Xl5c32XVZWFkcddVS2vGjRolizZk2Ddf/85z/HypUrs+URI0bkbGvSmJEjR0anTp2y5Tlz5jTbBgAAAACAwnTIcHvTpk2xbt26bPmAAw5osN6yZcti/fr12fLRRx9d8Bh1627dujUWLlzYYL0XXnih0XZN6dq1axx22GHZckVFRc5cAQAAAADYdh0y3J41a1bU1NRkyyNGjGiw3quvvppTrhsmN2fIkCE55ddee62gMfLbNSV/Po2NAQAAAABAy3S4cPuVV16Jm266KVvu3bt3nH322Q3WzQ+L991334LH2WeffZrsq7Hj+e2akj8f4TYAAAAAQOsobe8JZDKZ+PDDD2PZsmUxa9asuP/++6O6ujoiIrp37x633npr7LXXXg22rbsXdkREv379Ch43v25lZWWzY5SWlkbfvn1bfQwAAAAAAFpmh4fbr732Wpx66qnZcm1tbYMfGDl8+PC46qqr4pBDDmm0r40bN+aU634IZXPy6+b31dDxbt26RVFRUauPAQAAAABAy+zwcDuTycTWrVsb/X5xcXGcccYZMX78+GafxM4Pizt37lzwPLp06dJkXw0dz2/TnPz5bEu43ZIwPRV1X9PO+PrYOVm3pMi6JTXWLKkpKiqybvM4Bw3raOfFuiVF1i2psWZ3jHbfliRfbW1tzJgxI+6///4488wzY+LEiY2G1ps3b84ptyTczq9bVVXV7BidOnUquP+WjNGU3r17t7hNSnr16tXeU4AWs25JkXVLaqzZlLzf3hNoN/n36rnrdtc8L03//rJrnpOIjv17nestKbJuSY0123Z2eLg9YMCAqKioyJarq6tj3bp18Ze//CVmzZoVv/3tb6OmpiZqamril7/8ZSxbtix+/vOfNxhc5z9J/fFe3YXIr9u1a9cG63Xp0iU2bdoUERE1NTUF99+SMQAAAAAAaJl2f3K7c+fOsffee8fee+8dw4cPj7PPPjsuvPDCePfddyMi4plnnonbbrstJk6cWK9t9+7dc8otCbfzn/rO76vu8Y/D7fw2zcmfT2NjNGXdunUtbtPRFRUVZd+x+uCDDxrccx06GuuWFFm3pMaaJTXr1q2zbvPsjL+/tIaOdl6sW1Jk3ZKatlyzHfkvgna0dg+38x166KExffr0OP3007NPSt91111xzjnnxB577JFTNz8s3rBhQ8Hj5NdtKtx+//2P/nxu06ZNUVtbG8XFxa06RlN29ot1JpPZ6V8jOx/rlhRZt6TGmiUF+WvUut35f3/ZVh35vFi3pMi6JTXWbNspLKXdwQYOHBinnHJKtlxVVRVPPvlkvXplZWU55crKyoLH+PjJ8I819uGVdcfYsmVLvPfee60+BgAAAAAALdMhw+2IiOOPPz6nXHef7o8NGDAgp/zOO+8U3H9+EN6/f/8G623PGPnhdn5fAAAAAABsmw4bbu+111455Q8//LBenfyweOnSpQX3v2TJkpxyY+F2/vGWjJFft7ExAAAAAABomQ4bbueH2T179qxXZ+DAgTnHX3zxxYL7X7RoUfbrkpKSGDp0aIP1jjnmmEbbNaWqqipeeeWVbHnw4MHRo0ePgucHAAAAAEDjOmy4nf/U8z777FOvTmlpaXz2s5/Nlt9999146aWXmu175cqVOfWOPvro6NOnT4N1Dz/88Jx9t+fOnRubN29udozZs2dnPxAzImLkyJHNtgEAAAAAoDAdMtyuqqqK3/72tznH8vfg/tjJJ5+cU7733nub7f/++++PrVu3ZsujRo1qtG5RUVGcdNJJ2fL69evjkUceKWiMuur2AQAAAADA9mnTcLu6ujpna45C1NbWxrXXXpvzwY1HHnlko/tVjxw5MgYNGpQtP/zwwzF//vxG+1++fHnccccd2XLfvn1jzJgxTc7p3HPPjc6dO2fLkydPjrVr1zZa/6GHHsqZw8iRI+PQQw9tcgwAAAAAAArXpuF2VVVVnHbaafHNb34znnjiiaiurm6y/ksvvRRnnXVWPPTQQ3+fYHFxfO9732u0TVFRUUycODFbzmQycfHFF8ezzz5br+7SpUtj3LhxOduKXHLJJdG1a9cm59WvX78488wzs+X3338/zjrrrHjrrbfq1Z05c2ZcffXV2XKnTp3isssua7J/AAAAAABaprStB8hkMvHoo4/Go48+Gt26dYtDDz00PvGJT0SvXr2iW7dusWHDhqisrIyXX3453nzzzZy2RUVFMWnSpDjyyCObHOPEE0+M8847L6ZPnx4RH20dMm7cuBg6dGiUl5dHcXFxVFRUxLx58yKTyWTbjR49OsaOHVvQ65gwYUIsXrw4FixYEBERy5Yti1GjRsXw4cOjf//+sXHjxpg/f35UVFTktLv22mtj8ODBBY0BAAAAAEBh2jzcrmvTpk2xaNGiWLRoUbN1y8rK4rrrrosTTzyxoL4nTpwYVVVVMWPGjOyxhQsXxsKFCxusf8opp8SkSZMKm3hEdO7cOaZMmRKXXXZZPP/88xERUVNTE7Nnz26wfmlpaUyYMKHZLU8AAAAAAGi5Ng23d9ttt7jpppvij3/8Y8yfPz9WrlzZbJshQ4bE6aefHl/84hdj9913L3is4uLiuPrqq+Mf//EfY+rUqfHiiy82WG/QoEExfvz4+MIXvlBw3x/r06dP3HXXXXH33XfHPffcU+9J84/ncdxxx8WECROivLy8xWMAAAAAANC8Ng23S0pK4rTTTovTTjstIiJWrVoVr776arz11lvxwQcfxObNm6N79+6x++67x/777x+f/OQno2fPnts15vDhw2P48OHxxhtvxJIlS2LVqlWxdevWKCsri4EDB273FiHFxcUxbty4OPvss+Pll1+O5cuXx6pVq6Jr165RVlYWRx55ZJSVlW3XGAAAAAAANG2Hbkuy9957x957771DxjrooIPioIMOarP+i4qKory83NPZAAAAAADtoLi9JwAAAAAAAC0l3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOaXtPQEAADqeE0bUttPI77fTuH/39FzPfwAAQArcuQMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkJzSHT3gunXrYtmyZfHGG2/EunXrIpPJRK9evWLfffeNo446Knr06NEq46xYsSKWLl0alZWVUVtbG2VlZTFw4MAYNGhQq/QfEbF48eJ4/fXXY+XKldGtW7coKyuL8vLyKCsra7UxAAAAAACor83D7dra2liwYEE8/vjj8dxzz8WyZcsarVtUVBTDhg2LcePGxfDhw7dpvCeffDKmTZsWixYtavD7gwcPjvHjx8fo0aO3qf/a2tqYMWNGzJgxI95888163y8uLo5hw4bF5ZdfHuXl5ds0BgAAAAAATWvzcHvUqFHxxhtvFFQ3k8nEvHnzYt68efH5z38+rr/++th9990LbnvDDTfE3Xff3WS9ioqK+Na3vhVz586NG2+8MTp37lxQ/xERa9eujcsvvzyee+65RuvU1tbGM888E88//3xMnDgxvvGNbxTcPwAAAAAAhWnzcHvNmjX1jh188MFRXl4ee+21V3Tp0iUqKyvj2WefjcrKymyd3/3ud7Fq1aq44447okuXLs2OM3ny5HrB9tChQ+OII46IkpKSqKioiHnz5kUmk8n2X1JSEjfffHNBr6OmpiYuvfTSmD9/fvZYaWlpDB8+PAYMGBAbNmyIBQsWREVFRbb+TTfdFD169IgxY8YUNAYAAAAAAIXZYXtu77fffjFmzJg4/fTTo1+/fvW+v3Xr1vj1r38dP/zhD2Pz5s0RETF//vz4yU9+Et/5znea7PuJJ56I6dOnZ8s9e/aMW2+9NYYNG5ZTb+nSpXHRRRdlQ/SZM2fGMcccE2PHjm12/rfccktOsD1o0KCYNm1a7L///jn1Zs6cGd/97nejpqYmIiKuu+66KC8vj8GDBzc7BgAAAAAAhSlu6wH23XffuOGGG+Lxxx+Piy66qMFgOyKipKQkvvrVr8aUKVOiuPjv05oxY0asXLmy0f4zmUzccsst2XJRUVFMnTq1XrAdETFkyJC48847c54Ev+2226KqqqrJ11BZWRn33HNPtrznnnvG3XffXS/YjogYPXp0TJo0KVuuqamJn/70p032DwAAAABAy7T5k9sPPvhglJYWPszw4cPj85//fPz2t7+NiI/C4Tlz5sTXvva1BuvPnj0750Mqv/CFL8Sxxx7baP+HHHJInHvuuTF16tSIiFi9enU88MAD8fWvf73RNrfffntUV1dny1dccUXssccejdY/7bTT4r/+67+yT3rPmTMnXnnllTj00EMbbQMAAMCu54QRte008vvtNO5Hnp7b5s/aAbALaPN/TVoSbH/s85//fE755ZdfbrTurFmzcspnnHFGs/2PHTs2SkpKGu2jrkwmE4899li23KtXrzj11FObHeOrX/1qTvnRRx9ttg0AAAAAAIXpkG+VHnjggTnl9957r8F6W7Zsiaeeeipb3meffaK8vLzZ/svKyuKoo47KlhctWtTgB19GRPz5z3/O2RZlxIgRBX3A5ciRI6NTp07Z8pw5c5ptAwAAAABAYTpkuL1hw4accmNPfy9btizWr1+fLR999NEFj1G37tatW2PhwoUN1nvhhRcabdeUrl27xmGHHZYtV1RU5MwVAAAAAIBt1yHD7YqKipxyYx9C+eqrr+aU64bJzRkyZEhO+bXXXitojPx2TcmfT2NjAAAAAADQMh0y3J45c2ZO+bjjjmuwXn5YvO+++xY8xj777NNkX40dz2/XlPz5CLcBAAAAAFpHhwu3n3/++Xj++eez5R49esQJJ5zQYN26e2FHNP6Ed0Py61ZWVjY7RmlpafTt27fVxwAAAAAAoGU6VLi9adOmuOaaa3KOnXPOObHbbrs1WH/jxo055cbqNSS/bn5fDR3v1q1bFBUVtfoYAAAAAAC0TMOf1NhOrrvuunj99dez5f79+8f48eMbrZ8fFnfu3Lngsbp06dJkXw0dz2/TnPz5bEu43ZIwPRV1X9PO+PrYOVm3pMi6hW3j54VCFRUVudbmcQ4a5rzU55zQUq63pMaa3TE6TLh91113xW9+85tsuXPnznHzzTc3GShv3rw5p9yScDu/blVVVbNjdOrUqeD+WzJGU3r37t3iNinp1atXe08BWsy6JUXWLS33fntPoN3s7Pdfrc9a+VjutXbXPC9N//zsmuckwnlpiGst28O9LamxZttOh9iWZNasWXHjjTfmHLv++uvj8MMPb7JdfvBdXV1d8Jj5dbt27drsGDU1NQX335IxAAAAAABomXZ/cvvZZ5+Nb33rW1FbW5s9dsUVV8Tpp5/ebNvu3bvnlFsSbuc/9Z3fV93jmzZtarBNc/Ln09gYTVm3bl2L23R0RUVF2XesPvjgg8hkMu08I2iedUuKrFvYNjvj/RdtY926da61efz8NMx5qc85oaVcb0lNW65Zf/3yd+0abi9evDguvvjinBD43HPPjfPPP7+g9vlh8YYNGwoeO79uU+H2++9/9GdimzZtitra2iguLuyB90LHaMrOfrHOZDI7/Wtk52PdkiLrFgrnZ4VC5a8V11o/P41xXupzTtgerrekxpptO+22LcmyZcvivPPOy/mQxTFjxsS3v/3tgvsoKyvLKVdWVhbc9t13380p9+vXr9kxtmzZEu+9916rjwEAAAAAQMu0S7i9YsWK+MY3vpHzZ0ijRo2K66+/vkX9DBgwIKf8zjvvFNw2Pwjv379/q4+RH27n9wUAAAAAwLbZ4eH2ypUrY9y4cbF69ersseHDh8e///u/F7zdx8fyw+KlS5cW3HbJkiU55cbC7fzjLRkjv25jYwAAAAAA0DI7NNxes2ZNjBs3Lt5+++3ssU996lNx6623RqdOnVrc38CBA6Nnz57Z8osvvlhw20WLFmW/LikpiaFDhzZY75hjjmm0XVOqqqrilVdeyZYHDx4cPXr0KHh+AAAAAAA0boeF2x9++GGMHz8+Xnvtteyx8vLymDZtWnTt2nWb+iwtLY3Pfvaz2fK7774bL730UrPtVq5cmVPv6KOPjj59+jRY9/DDD8/Zd3vu3LmxefPmZseYPXt21NTUZMsjR45stg0AAAAAAIXZIeF2VVVVXHjhhTlbgQwaNChuv/322H333ber75NPPjmnfO+99zbb5v7774+tW7dmy6NGjWq0blFRUZx00knZ8vr16+ORRx4paIy66vYBAAAAAMD2afNwe8uWLXHZZZfF/Pnzs8cOPvjg+OUvfxm9evXa7v5HjhwZgwYNypYffvjhnLHyLV++PO64445suW/fvjFmzJgmxzj33HOjc+fO2fLkyZNj7dq1jdZ/6KGHcuYwcuTIOPTQQ5scAwAAAACAwrVpuJ3JZOLKK6+MuXPnZo/tt99+ceedd8Zee+3VKmMUFRXFxIkTc8a8+OKL49lnn61Xd+nSpTFu3LicbUUuueSSZrdF6devX5x55pnZ8vvvvx9nnXVWvPXWW/Xqzpw5M66++upsuVOnTnHZZZe16DUBAAAAANC00rbs/J133onf/va39Y61dP/p/fbbLx5//PFGv3/iiSfGeeedF9OnT4+Ij7YOGTduXAwdOjTKy8ujuLg4KioqYt68eZHJZLLtRo8eHWPHji1oDhMmTIjFixfHggULIiJi2bJlMWrUqBg+fHj0798/Nm7cGPPnz4+Kioqcdtdee20MHjy4Ra8XAAAAAICmtWm4XTdIrnus7n7XhSik/sSJE6OqqipmzJiRPbZw4cJYuHBhg/VPOeWUmDRpUsFz6Ny5c0yZMiUuu+yyeP755yMioqamJmbPnt1g/dLS0pgwYUKzW54AAAAAANByO+QDJXeE4uLiuPrqq+MXv/hFHHXUUY3WGzRoUPzoRz+KH//4x9GlS5cWjdGnT5+466674qqrrooDDjig0Xkcf/zxcd9998X48eNb1D8AAAAAAIVp0ye3999//3rbdLS14cOHx/Dhw+ONN96IJUuWxKpVq2Lr1q1RVlYWAwcO3O4tQoqLi2PcuHFx9tlnx8svvxzLly+PVatWRdeuXaOsrCyOPPLIKCsra6VXAwAAAABAQ9o03G5PBx10UBx00EFt1n9RUVGUl5dHeXl5m40BAAAAAEDDdpptSQAAAAAA2HUItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDklLb3BAAA2tsJI2rbewrt4um5nnMAAADS5TcaAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOaXtPYG2sGLFili6dGlUVlZGbW1tlJWVxcCBA2PQoEGtNsbixYvj9ddfj5UrV0a3bt2irKwsysvLo6ysrNXGAAAAAACgYTss3N6wYUMsXbo0Fi9eHIsXL46XX3453n777ez399tvv/jDH/6wXWM8+eSTMW3atFi0aFGD3x88eHCMHz8+Ro8evU3919bWxowZM2LGjBnx5ptv1vt+cXFxDBs2LC6//PIoLy/fpjEAAAAAAGhem4fbv/zlL+PBBx+Mv/71r1FbW9smY2Qymbjhhhvi7rvvbrJeRUVFfOtb34q5c+fGjTfeGJ07dy54jLVr18bll18ezz33XKN1amtr45lnnonnn38+Jk6cGN/4xjcK7h8AAAAAgMK1ebg9f/78WLZsWZuOMXny5HrB9tChQ+OII46IkpKSqKioiHnz5kUmk4mIiN/97ndRUlISN998c0H919TUxKWXXhrz58/PHistLY3hw4fHgAEDYsOGDbFgwYKoqKjI1r/pppuiR48eMWbMmFZ6lQAAAAAAfKxd9tzu3r17fPKTn4wlS5bExo0bt6uvJ554IqZPn54t9+zZM2699dYYNmxYTr2lS5fGRRddFJWVlRERMXPmzDjmmGNi7NixzY5xyy235ATbgwYNimnTpsX++++fU2/mzJnx3e9+N2pqaiIi4rrrrovy8vIYPHjwNr8+AAAAAADqK27rAbp06RLl5eVxxhlnxA9/+MN45JFH4oUXXoh77rkn9thjj+3qO5PJxC233JItFxUVxdSpU+sF2xERQ4YMiTvvvDO6dOmSPXbbbbdFVVVVk2NUVlbGPffcky3vueeecffdd9cLtiMiRo8eHZMmTcqWa2pq4qc//WmLXhMAAAAAAM1r8ye3f/zjH7dZ37Nnz87Z8uQLX/hCHHvssY3WP+SQQ+Lcc8+NqVOnRkTE6tWr44EHHoivf/3rjba5/fbbo7q6Olu+4oormgzlTzvttPiv//qv7JPec+bMiVdeeSUOPfTQgl8XAAAAAABNa/Mnt9vSrFmzcspnnHFGs23Gjh0bJSUljfZRVyaTicceeyxb7tWrV5x66qnNjvHVr341p/zoo4822wYAAAAAgMIlG25v2bIlnnrqqWx5n332ifLy8mbblZWVxVFHHZUtL1q0KNasWdNg3T//+c+xcuXKbHnEiBE525o0ZuTIkdGpU6dsec6cOc22AQAAAACgcMmG28uWLYv169dny0cffXTBbevW3bp1ayxcuLDBei+88EKj7ZrStWvXOOyww7LlioqKnLkCAAAAALB9kg23X3311Zxy3TC5OUOGDMkpv/baawWNkd+uKfnzaWwMAAAAAABaLtlwOz8s3nfffQtuu88++zTZV2PH89s1JX8+wm0AAAAAgNaTbLhddy/siIh+/foV3Da/bmVlZbNjlJaWRt++fVt9DAAAAAAAWq60vSewrTZu3JhT3m233Qpum183v6+Gjnfr1i2KiopafYzmtGTMVNR9TTvj62PnZN2SIuuW5lgXDXNeKFRRUZFrbR7noGHOS33OCS3lektqrNkdY6cJtzt37lxw2y5dujTZV0PH89s0J38+2xpu9+7de5vapaJXr17tPQVoMeuWFFm3zXm/vSfQLpq+z9g1z0nEzn//1fqslY/lXmt3zfPiutIw56U+11q2h3tbUmPNtp1ktyXZvHlzTrkl4XZ+3aqqqmbH6NSpUwtmV/gYAAAAAAC0XLJPbuc/SV1dXV1w2/y6Xbt2bXSMTZs2RURETU1Ni+ZX6BjNWbdu3Ta168iKioqy71h98MEHkclk2nlG0DzrlhRZtzRnZ7zPaA3OC4Vat26da20ePz8Nc17qc05oKddbUtOWa9Zfv/xdsuF29+7dc8otCbfzn/rO76vu8Y/D7fw2zcmfT2NjNGdnv1hnMpmd/jWy87FuSZF1S0OsiYY5LxQqf6241vr5aYzzUp9zwvZwvSU11mzbSXZbkvyweMOGDQW3za/bVLj9sU2bNkVtbW2rjwEAAAAAQMslG26XlZXllCsrKwtu++677+aU+/Xr1+wYW7Zsiffee6/VxwAAAAAAoOWSDbcHDBiQU37nnXcKbpsfhPfv37/Vx8gPt/P7AgAAAABg2+004fbSpUsLbrtkyZKccmPhdv7xloyRX7exMQAAAAAAaLlkw+2BAwdGz549s+UXX3yx4LaLFi3Kfl1SUhJDhw5tsN4xxxzTaLumVFVVxSuvvJItDx48OHr06FHw/AAAAAAAaFqy4XZpaWl89rOfzZbffffdeOmll5ptt3Llypx6Rx99dPTp06fBuocffnjOvttz586NzZs3NzvG7Nmzo6amJlseOXJks20AAAAAAChcsuF2RMTJJ5+cU7733nubbXP//ffH1q1bs+VRo0Y1WreoqChOOumkbHn9+vXxyCOPFDRGXXX7AAAAAABg+yUdbo8cOTIGDRqULT/88MMxf/78RusvX7487rjjjmy5b9++MWbMmCbHOPfcc6Nz587Z8uTJk2Pt2rWN1n/ooYdy5jBy5Mg49NBDmxwDAAAAAICWSTrcLioqiokTJ2bLmUwmLr744nj22Wfr1V26dGmMGzcuZ1uRSy65JLp27drkGP369YszzzwzW37//ffjrLPOirfeeqte3ZkzZ8bVV1+dLXfq1Ckuu+yyFr0mAAAAAACaV9rWA7z99tvxuc99rsHv1d0e5O23344hQ4Y0WO/OO++MT33qUw1+78QTT4zzzjsvpk+fHhEfbR0ybty4GDp0aJSXl0dxcXFUVFTEvHnzIpPJZNuNHj06xo4dW9BrmDBhQixevDgWLFgQERHLli2LUaNGxfDhw6N///6xcePGmD9/flRUVOS0u/baa2Pw4MEFjQEAAAAAQOHaPNzOZDI5IXZTGqtXN5RuyMSJE6OqqipmzJiRPbZw4cJYuHBhg/VPOeWUmDRpUkFziojo3LlzTJkyJS677LJ4/vnnIyKipqYmZs+e3WD90tLSmDBhQrNbngAAAAAAsG2S3pbkY8XFxXH11VfHL37xizjqqKMarTdo0KD40Y9+FD/+8Y+jS5cuLRqjT58+cdddd8VVV10VBxxwQKPzOP744+O+++6L8ePHt6h/AAAAAAAK1+ZPbu+///71tutoK8OHD4/hw4fHG2+8EUuWLIlVq1bF1q1bo6ysLAYOHLjdW4QUFxfHuHHj4uyzz46XX345li9fHqtWrYquXbtGWVlZHHnkkVFWVtZKrwYAAAAAgMa0ebjdHg466KA46KCD2qz/oqKiKC8vj/Ly8jYbAwAAAACAxu0U25IAAAAAALBrEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJKW3vCQAAQCpOGFHb3lNoF0/P9UwMAAAdj7tUAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5pe09AQAAAICPnTCitr2n0G6enusZRICWcNUEAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSU9reEwAAAAAAWscJI2rbewrt4um5nuHdFfm/DgAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByStt7AgAAAAA07YQRte09hXbx9FzPZQKNc4UAAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5pe09AQAAAABoqRNG1Lb3FNrN03M9rwoRntwGAAAAACBBwm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSU9reE0jZunXrYuHChVFZWRkffvhh7L333rH//vvH0UcfHSUlJe09PQAAAACAnZZwexssX748Jk+eHHPnzo2ampp63+/bt2985StfiQsuuCA6d+7cDjMEAAAAANi52ZakhR5++OH44he/GI8//niDwXZExOrVq+O2226Lr3zlK/HWW2/t4BkCAAAAAOz8PLndAk8++WRceeWVUVtbmz128MEHx6c//eno3bt3rFixIp544omoqqqKiIilS5fGBRdcEP/5n/8Zu+++e3tNGwAAAABgpyPcLtCqVatiwoQJ2WC7qKgovvOd78TZZ58dxcV/fwB+zZo1cdlll8Xzzz8fERF//etf41//9V/jlltuaZd5w87ohBG1zVdqE++307gfeXquP7YBAAAA+JikpEDTpk2LDRs2ZMuXXnppnHPOOTnBdkREnz594vbbb48BAwZkj/33f/93LF26dIfNFQAAAABgZ+fJ7QK899578cADD2TLBx54YJx//vmN1u/SpUtcc801MW7cuIiIyGQyMW3atJgyZUpbTxWAOtrvKf/21dRT/rvqOYnw1w8AAAA7G7/lFWDOnDk5Hx755S9/OTp16tRkm2HDhkX//v2z5SeffDI2btzYZnMEAAAAANiVCLcL8Ic//CGnPGrUqILanXTSSdmvN2/eHM8880yrzgsAAAAAYFcl3C7ACy+8kP16r732igMOOKCgdkcffXROef78+a06LwAAAACAXZVwuxkrV66Mv/3tb9nyYYcdVnDbIUOG5JRfffXVVpsXAAAAAMCuTLjdjNdeey2nvO+++xbcdq+99srZm3v58uWtNi8AAAAAgF2ZcLsZK1euzCn369ev4LZFRUVRVlbWaF8AAAAAAGyb0vaeQEe3cePGnHL37t1b1H633XbLfr1ly5bYvHlzdOnSpeD2RUVFLRovBXVfU92vPzN8a3tMp90982RJe0+BRDR1PdhVf34i/Aw15OO10tj1dlflHNTnnDTMeanPOWlYUVGRa20e56Bhzkt9zknDnJf63Ns2zDmor6OdE2t2xxBuNyM/3G5JMN1Q/Q0bNrSoj969e7dovNT06tWrTun9dptHe9rZ/x+3DWulvl3znEQ4Lw1p6Jz8/Xq7a56TCGulIc5Jw5yX+pyThuWfF/e21kpjnJf6nJOGOS/1ubdtmLVSX0fOV3LvEWhNwu1mbN68Oadcdw/tQnTu3LnJ/vi7JS/t2d5TIBHWSn3OScOcl/qck4Y5L/U5Jw1zXupzThrmvNTnnDTMeanPOWmY81Kfc9Iw54VdiT23m5H/lHVNTU2L2ldXVzfZHwAAAAAALSfcbkb+HtstffI6v37dPbgBAAAAANg2wu1m5IfbGzZsaFH7uvVLS0s9uQ0AAAAA0AqE280oKyvLKa9cubLgtplMJqd+fl8AAAAAAGwb4XYzBgwYkFN+++23C2773nvv5ezR3b9//1abFwAAAADArky43Yy99947evTokS3/5S9/Kbjt0qVLc8rCbQAAAACA1iHcLsAxxxyT/fr999+PFStWFNRu4cKFOeVjjz22VecFAAAAALCrEm4XYOTIkTnlWbNmFdTu0UcfzX7dpUuX+MxnPtOq8wIAAAAA2FUJtwvwT//0T9GpU6ds+YEHHsjZS7shzz77bCxfvjxbHj58eHTv3r3N5ggAAAAAsCspbe8JpGCvvfaKL3/5y/GrX/0qIiJWrFgRv/jFL+Jf/uVfGqy/efPmmDRpUrZcVFQUF1100Q6Za1M2bNgQf/7zn+ONN96IDz74IDKZTPTo0SP222+/KC8vj969e2/3GO+9914sXrw43n333fjwww+jtLQ0evbsGQMGDIghQ4ZE165dt3uM6urqeOGFF+Ltt9+ONWvWRO/evaNfv37xD//wD+32BsLWrVtj0aJF8eabb8bq1atj9913j379+sXQoUNb5bzuylJft1VVVfH//t//i1dffTXWrl0bVVVV0bNnz9hrr73iyCOPjH79+m33/Ol4Ul+3HZnrbduxbknNjliza9asiQULFsTq1avjww8/jD59+mTvO7t167b9LyLc2+5qUl+37m13Tamv247M9bbtWLe7DuF2gS644IJ46KGHYsOGDRERMWXKlOjevXucffbZUVz89wfg16xZE5dddln89a9/zR475ZRTYsiQIY32vWHDhli6dGksXrw4Fi9eHC+//HK8/fbb2e/vt99+8Yc//GGb5/7yyy/H9OnTY86cObFly5YG6xQVFcWwYcPiG9/4RvzjP/5ji8f4/e9/H3fddVcsWrSo0TpdunSJk08+Oc4///wYMGBAi8f48MMP4yc/+UnMnDkzPvjgg3rf7969e5x00klxxRVXRN++fVvc/7aorq6On//85/HrX/86Vq9eXe/7nTp1ihNPPDGuuOKKOPjgg3fInHYU67Zxr776asyaNSueeeaZWLx4cZN/6fGJT3wizjzzzPjSl76U8xcirW3KlClx2223bVPbCy+8MCZMmNDKM2of1m3jrrzyyvjNb37T4vlEREyaNCnGjBmzTW0L5Xpr3ebbnutaXZ/61KdixowZ293Px1xvd441++yzz8aUKVNi4cKFkclk6n2/e/fu8bnPfS4mTpy4zWGee9uOxbptnHvbjsu6bZx7247Lum2Ye9ttJ9wuUFlZWdxyyy1x0UUXRW1tbWQymbjxxhvj/vvvj+OOOy569+4db7zxRjzxxBNRVVWVbfeJT3wirr/++gb7/OUvfxkPPvhg/PWvf43a2to2mfeUKVNi2rRpsXXr1ibrZTKZmDdvXsybNy+++MUvxg9+8IMoLW1+eWzcuDEmTpwYTzzxRLN1N2/eHA899FD893//d1x55ZVxxhlnFPw6lixZEpdeemnOBa+hufzmN7+JJ598MiZPnhzHH398wf1vizfffDMuvfTS+Mtf/tJonZqamnjsscfi6aefjuuvvz7+5//8n206px3Bum163V5zzTXx61//utl+P/bXv/41vv/978evf/3rmDx5cvTv37/gthTOui38etsRud5at23JtnGtZ2dYs1u2bInrr78+/vM//7PJehs3boyHH344nnjiibjhhhvic5/7XIteh3vbjsO6bZp7247Juk2b661125Z2xXtb4XYLjBgxIn74wx/G97///di0aVNERLz++uvx+uuvN1j/sMMOi9tuuy123333Br8/f/78WLZsWVtNN2699db42c9+lnOsZ8+ecfzxx8eBBx4YJSUlUVlZGc8991y8++672ToPPvhgVFdXx+TJk5vsf+vWrXHhhRfGn/70p5zj++23Xxx33HGx9957x5YtW2LFihXxzDPPxIcffhgRH71Def3110dpaWl85StfafZ1vPPOO3H++efHe++9lz3Wq1evOPHEE6Nfv36xevXqeOqpp7Lvdq5Zsyb+5V/+Je6777449NBDm+1/W/ztb3+L888/P1577bXssW7dusWJJ54YBxxwQKxbty6effbZWLFiRUR8dGH7zne+E717996mdwU7Euu26XX7/vvv1zu25557xjHHHBNlZWXRs2fPWLt2bSxcuDBeeeWVbJ2lS5fGWWedFffee28ceOCBTb6G1lBSUtImdTsq67aw621dLfn/XlRU1KK+W8L11rptTFFR0TZdn/J/2fnnf/7nFvfRErvS9Tb1NRsRMXHixJwPhY/46GGVT33qU9G7d+9Ys2ZNPPfcc9n7//Xr18eECRNi+vTpMWzYsIJeh3vbjsW6bXrdurftmKzbwq63dbm3bX/WbdPr1r3tthNut9Bpp50W5eXlMXny5HjyyScb/JOsvn37xpe//OW48MILo3Pnzi3qv3v37vHJT34ylixZEhs3btzmeVZUVMTPf/7znGNnnHFG/O///b/rvYuzdevWuP/+++OHP/xh9vU88sgjcfLJJ8f/+B//o9Ex7r///pxfWDt16hTXXntt/K//9b9ytmqJ+OjPLm+88cZ44IEHssduvPHGGDFiRJSVlTU6RiaTiW9+85s5N/+nnnpqXH/99bHbbrtlj318Ibrzzjsj4qN/AC6++OL4/e9/H126dGm0/231ve99L+cfo09/+tPxk5/8JPr06ZM9tnXr1rjzzjvj5ptvjkwmE1u3bo0JEybErFmzYq+99mr1ObUn67a+Hj16xOjRo2PMmDFx2GGHNVjnueeeiyuvvDL7D+vq1atj4sSJ8cADD7TpDVXER79w7Oqs28Zt758CtibX21zW7d9dcsklcckllxT2gv9/77//fnz2s5/N/olq9+7dY9SoUS3qo6V29ettSmv2rrvuyvmFtXv37nHDDTfEySefnFMvk8nE//2//zeuu+66qK6ujpqamvjmN78Zv//975u95ri3TYN1W597247Pum2ce9uOy7r9O/e22064vQ369+8fP/vZz7LvUFdWVsaGDRtir732igMOOCCGDh1a0LsTXbp0ifLy8jjiiCPi8MMPjyOOOCIGDBgQxcXF8U//9E/b9YN977335rx7c+qpp8a//uu/Nli3pKQk+6e/dbdQue+++5r8wb7nnntyytdcc02j+1LtvvvuMWnSpFi/fn32YrBx48Z46KGH4oILLmh0jFmzZsXLL7+cLR9//PHx7//+7/Vujjp37hxXXXVVrF+/Ph588MGIiHj77bfjvvvui3HjxjXa/7ZYvHhxzgXtE5/4RNx+++313sgoKSmJc889NzZt2hRTpkyJiI/epf0//+f/xPe+971WndOOZN02vW532223uOiii2L8+PGN/tXGx4477ri49957Y8yYMdlfcl9++eWYNWtWvX8g2T7WbfPX247I9da6be11+9vf/jZn78V//ud/zgkU2T4pr9kNGzbE1KlTs+WioqKYOnVqg09ZFRUVxZe+9KXYbbfd4vLLL4+Ij57Mmjp1aqNz+ph7247Hum163bq37Zis2+avtx2R661129rr1r3tR4qbr0Jj9thjjxg5cmScccYZcf7558cXv/jFOPbYYwt+7P7HP/5xPPDAA/Gv//qv8cUvfjEGDhxY70mmbfXcc8/llC+++OJm24wdOzbnw2r+9Kc/NboP0sqVK3Pebezbt29BH7hw6aWXNjnPfNOmTct+XVxcHN///vebfNf/yiuvzLnpmj59eqMfILCt6s4p4qNf1pt6Qv+CCy7I+VO8+++/P9asWdOqc9qRrNum1+0Pf/jDuPzyy5u9+f/Yvvvum/0H72P5f+bE9rNum7/edkSut9Zta6/b/A+WOv3001u1/11dymv2kUceiXXr1mXLp556arN/PnzyySfn/In4r3/961i5cmWTbdzbdjzWbdPr1r1tx2TdNn+97Yhcb63b1l637m0/ItzeSdX9genRo0cMGDCg2TYlJSVxxBFHZMs1NTU5P7yN9R8RUV5eXtBFaeDAgTk3RqtWrWq07uuvvx4VFRXZ8gknnBAHHXRQk/336tUrPv/5z2fL7733XsyfP7/ZeRVqw4YN8fTTT2fLAwYMiOOOO67JNp06dcr5hb66urrD/ElUR7MzrNtCPoQi36hRo3LmsXjx4hb3QfvZGdZtR+R627Z2xXX7yiuv5OwHu99++8WnP/3pVuufttXWa/aZZ57JKX/pS18qaF5f/vKXc/qfPXt2o3Xd2+56doZ1695217MzrNuOyPW2be2K69a97d8Jt3dSdd9t6tq1a8HtCv1U1Uwmk1Pu1q1bwWPUrdvUkypz5szJKZ900kkF9Z//J2/5/WyPP/7xj1FdXd3iOeXvedSac9qZ7Azrdlv06NEjZ4+1hj64h45rV123bc31tm3tiuv2460dPnbaaacl93OxK2vrNVt3/8ji4uI48sgjC2p39NFH55Qff/zxRuu6t9317Azrdlu4t03brrpu25rrbdvaFdete9u/E27vpPbff//s1+vWrYuqqqqC2r399tvZr3v16hV77LFHs/1HfPSp74XYtGlTrF27Nltu6pOzFyxYkFPOvyg0pry8PGdrmPx+tse2zunAAw+MPffcs03mtDPZGdbttqq7v9i2PCFD+9mV121bcr1tW7vaut2yZUs88sgjOcdOO+20VumbHaOt12zdddezZ8+C35Dp27dvzn3nCy+8kLPnZ13ubXc9O8O63VbubdO1K6/btuR627Z2tXXr3jaXcHsnVXdfn5qamoLeHXrzzTdzPuBm+PDhjb7rs+eee8aQIUOy5cWLFxf0i+ujjz6as0/giSee2Gjdunt1du3aNfr3799s/xEffehJ3V+Gly9fXu8Jsm1Vd04RkXMOmlP3U8XXr18fq1evbpU57Ux2hnW7LVasWJHzC0C/fv1atX/a1q66btua623b2tXW7VNPPZXz5OA//MM/JPeGz66urdfs5s2bs183tf9pQ+rWr66ujjfffLPBeu5tdz07w7rdFu5t07arrtu25nrbtna1deveNpdweyd11lln5fx5xU033dTkD9DGjRvjO9/5TvYXys6dO8eFF17Y5BgXXHBB9ustW7bElVde2eS7Y8uXL48f/ehH2fLBBx8co0ePbrDu/9fe3QdVVeZxAP+KXAiuvJmKcMU1bUG3MNdEHM3ZZDXLWghfNi0bS2hwd9R9yWG3mU1wRNdqFnNNXdzNhdpVyTIhw1xqF1ctlNLSMEUjDCFCElAQvDdg/2A8e8+5b+fivcB5zvcz4wzP8ZxzD8yXh999zj3PY7FYcOnSJak9fPhwtx6viIyMlL5ub2+X3Y27FdZ/kPz8/GR3UN25JuW5qJvWc9tThYWFsrarudc8ISsrC/PmzcPUqVNxzz33YPr06UhOTkZmZib+9a9/eXyxKpGJmNuWlhasXr0aiYmJiI+Px4QJE/CTn/wECxYswPr163H48GGPDaw4wv7Wu0TMrTN9udgO+1vP8HZmg4KCpK9bWlpUX5fZbEZbW5ts25dffmmzH2tbfdJ6bnuKta22iZhb1rbiEzG3zrC2lePgtqBMJhOysrKkhTwuX76MefPmIScnB19++SXMZjM6OjpQW1uLPXv2ICkpCZ988gmA7kn1161b53IC/gcffBCLFi2S2seOHUNycjLefvtt1NXVoaOjA2azGefPn8eWLVswb9486c5SWFgYNm/eDH9/f7vnbmhokP1CREREuPX9h4eHy9p1dXVuHe+I9cJW7r4p8dY1iUTrue2JpqYmvP7667Jtyrk1veH111/H559/ju+++w7t7e2or6/HmTNnsGvXLqxYsQIPPPAA3nnnHa9fhwhEzG1zczPy8/Nx7tw5NDU1oa2tDXV1dTh16hTy8vKQmpqKxMRE2aI4nsb+1rtEzK0jTU1N+M9//iO1AwICbOav9Cb2t57h7cwOGzZM+vr69euygWhnzp8/b7PNXp/D2laftJ7bnmBtq30i5pa1rfhEzK0jrG1tcfIrgT388MMIDQ1FRkYGqqur0dzcjOzsbGRnZzs8JiYmBs8//zzi4uJUvUZGRgZGjRqFzZs3o6WlBZWVlfj973/v9JgZM2Zg9erVNncfrVk/xgaon+T/JqPR6PR8PdHe3i6bG8ndaxo0aJDHr0lEWs5tT6xbt062IvOUKVMwadIkj75GT9TU1GDVqlUoKytDZmambMV7sqW33AJARUUFUlNTsXz5cixfvtyj52Z/2zv0ktt3330XFotFaj/wwAM2GelL7G/V82ZmJ06ciLNnz0rtkpISLF682OU1Wb+5vKm1tdVmG2tb/dJybnuCta0Y9JZbgLWtCPSSW9a2ttijC27atGkoKirC0qVLZZPY2/PQQw9h+/btqt+wAsCAAQPw1FNPoaioyOW8mAaDAStWrEB2drbLN6zKX3Z3P7ml3N8Tnb/yHO5ek3JeJv5BckyruXXX3r17ZY9t+vv7Y/Xq1R59DWsGgwEJCQlYs2YN3nzzTRw/fhzl5eUoKyvD22+/jfT0dJhMJtkx+fn52LBhg9euSSQi5DYwMBBz5szBhg0bUFBQgLKyMpSXl6O0tBT5+flYsWKF7BHKrq4ubN68GXl5eapfQw32t71HhNy6olxJvjce22R/6z3eyqwyn7m5uS4Xo2pqasKuXbtsttvrc1jb6ptWc+su1rZiESG3rG31R4TcusLa1hYHtwVXUlKCpKQk7Nixw+WKrAcOHMDMmTOxfv162WT5znR2dmLHjh1ITEy0e0fKmsViwebNm5GQkID8/Hyn+5rNZlnbYDCoup6blJ2/2pVynVH+TPrDNYlKq7l1x2effYbMzEzZtt/97ncuH/PvqZkzZ+LQoUPYtm0bFi5ciNjYWISEhMDX1xfBwcH40Y9+hJSUFBw8eBBPPvmk7Ni8vDwcPXrUK9clEq3nduHChTh8+DA2btyI5ORkjB07FsHBwfD19UVYWBgmTJiA5cuXo7i42OaxtxdeeMGjc3Wyv+09Ws+tKxcuXMDnn38utU0mk9fnfmV/613eyuz06dMRHR0ttaurq/Hcc885nDfyxo0bePbZZ9HQ0GD3/5RY2+qbVnPrDta24tF6blnb6pPWc+sKa1v7OC2JwLZu3YpNmzZJ7cGDB+Opp57C/fffjxEjRsDX1xf19fU4duwYcnNzcf78eVgsFuTl5eGzzz7Djh07bB6BtGY2m7FixQqUlJRI26Kjo7FkyRLEx8cjPDwcFosF1dXVKCkpQV5eHq5cuYLGxkasXr0aFRUVeP755+2eW9l5Wz9yoYbyDcRtt93m1vH2KO+u9odrEpGWc6vWV199hbS0NNkftblz5+KJJ564pfM6Y73CtjMGgwF/+MMfYDabZYNLGzduxLRp07x1eZonQm4nTJig6ns1Go3YuHEj2tracOjQIQBAR0cH/vznP8t+BreC/W3vECG3rigX20lKSnJrjsueYH/rPd7M7IABA7BmzRo8+eST0hvVoqIiVFVVIS0tDfHx8QgJCUFjYyM+/PBDbNu2TRr4MBqNsk9m23vcnLWtfmk5t2qxthWPCLllbas/IuTWFda29vGT24IqKiqS/VKPGzcOhYWFSEtLQ0xMDIxGI/z9/REVFYX58+dj7969ePTRR6X9P/30U5ePkK1bt072hvXRRx/F3r17MX/+fERFRcHPzw9GoxFjx47FsmXLUFhYKPul+Mc//oE33njD7rmVHYq7d7aU+99K5+HoHO5ek/IPkieuSTRaz60adXV1SElJQWNjo7RtxowZWLt2bY/P6Q3p6ekICwuT2qdPn3a62rSe6SG3Sj4+PsjMzJR96uTf//63zUrgPcX+1vv0kNuOjg7Z4/FA764krxb7W3V6I7MTJ07EmjVrZI8xnzlzBr/61a8wZcoUjBs3DlOnTsWqVaukN6zDhw/HypUrZecJCgqyOTdrW33Sem7VYG0rHj3kVom1rfbpIbesbR3j4LaALBYL1q9fL7X9/f2xdetWDB061OExfn5+yMrKQkxMjLRt//79OH36tN39z507J7sTM3bsWGRlZTl9vGbo0KHYsmWL7K5ldna23Y5d2Vm7O+G+cn9PdP633XabrBNz95paWlo8fk0iESG3rly5cgVLly5FTU2NtC0uLg6bNm2Cr2//epBm0KBBNivbf/TRR310Nf2XHnLrSGRkJKZOnSq1zWYzTpw44ZFzs7/1Lr3k9ujRo6ivr5fakyZNwsiRI3t0Lm9if+tab2T2pvnz52P79u2IiopyeV1xcXHYuXOnzSemQkJCbPZlbas/IuTWFda24tFDbh1hbatdeskta1vHOLgtoCNHjuDy5ctS+5FHHlG1MJPBYMDSpUtl2woKCuzuu2/fPnR1dUntp59+WtW8USaTCY888ojUbmxsxH//+1+b/YYMGSIriOrq6lye25py/+HDh7t1vCPDhg2Tvv72229lP4O+uiZRiJBbZ1paWpCamiqbu+2uu+7CX/7yF7cXFOktykf5rN+4UDfRc+uKMiO1tbUeOzf7W+/RS2737dsna/fHT7bcxP7Wud7IrLX77rsPBw4cwEsvvYSHH34YI0eOlD7xNXLkSDz44IPYunUrXnvtNZhMJly6dEl2vL05hlnb6o8IuXWGta2YRM+tK6xttUkvuWVt61j/up1KHvHpp5/K2pMnT1Z9rHJf64nqnb1GfHy8W6/x1ltvSe3Tp09j1qxZsn0MBgNGjBiBqqoqAN2deVdXl+q5hL755hvp64CAAJtVW3tqzJgx0rnNZjMaGhqc3g10dE03z0X/J0JuHWlvb8eyZctQXl4ubRs9ejT+9re/YdCgQaqvobdZrxwOQPa4KXUTObdqeDMj7G+9Rw+5vXbtGt5//32pHRAQYLNYVH/C/ta53sisksFgQGJiIhITE13ua/0pL4PBgLFjx9o9H2tbfREht46wthWXyLlVg7WtNukht6xtneMntwV05coVWVtthwl0f6rEmqMAKl9DeZwnXsO6w25vb0dlZaWq87e0tODixYtSe9SoUR6bYH/06NGy9pkzZ1Qf+8UXX0hfBwcHu/Uz0wNRcqtksViwcuVKlJWVSdtMJhNyc3MxePBg1a/fF5SrcPfXT+H0JVFzq5ZyHkLlgmm3gv2t9+ght0VFRbLpTGbNmtWvB1zY3zrXG5ntqba2Nln/NG7cOId9IWtbfRElt0qsbcUmam7deQ1rrG21QQ+5ZW3rHAe3BaQMjTJUzij3DQgIsLuf8pfRnfkw1b7GvffeK2urne/q1KlT6OzslNqTJk1SfW2uKK/p5MmTqo67ePEivvvuO69ckyhEya21zs5OpKenS6tuA91/aHNzcxEeHq76tfuKctEH5d1XEjO37lA+YufJjLC/9R495Fa5kvzcuXPdPkdvYn/rXG9ktqeKi4tl+baeVkeJta2+iJJba6xtxSdibt3B2lab9JBb1rbOcXBbQMo75tbzoLly4cIFWdtRAJXbvfEaP/3pT2XtgwcPqjr/e++95/Q8t2L69OmyN+z94ZpEIUpurWVkZKCoqEhqh4aG4u9//3u/XPTBHus3LkD3XWaSEzG3anV1deHw4cOybZ7MCPtb7xE9t1VVVbI3jJGRkZgyZYpb5+ht7G+d643M9tTOnTulr/38/JCUlORwX9a2+iJKbq2xthWfiLlVi7WtdomeW9a2rnFwW0Djx4+XtQ8cOKD62P3798vaykngHb3Gu+++q+r8XV1dNvs6eo1Ro0bJ5iI6evSo7JFMe5qbm2UF15AhQxAXF6fq2tQwGo2YPn261K6srERpaanTYywWC958802p7efnh4SEBI9dkyhEye1NL774It544w2pHRQUhFdffRU//OEPVb1mXztx4oRsRWM/Pz+35i7TC9Fy6479+/dLc8cCQEREBO68806PnZ/9rfeInlvlJ1uSkpI8NoWDN7C/da03MtsThYWFsjebCxYsQGhoqMP9Wdvqiyi5vYm1rT6Illt3sLbVLtFzy9rWNQ5uCyguLg7BwcFS+8yZM/jnP//p8riTJ0/KChYAmDFjht19lR3q7t27VU28n5ubi4qKCqkdGhqKH//4xw73/8UvfiF93dnZiczMTKerCm/YsAHXrl2T2s8884xsZXp7EhISEBMTI/1TPoqktGzZMll77dq1MJvNDvfPycnB119/LbUXLlzY7+ej6wsi5TYnJwevvvqq1A4ICEBOTg7uvvtul6+llju5raiocGs17traWvzmN7+RbXvsscc8/oiWCETJ7blz51yez9oXX3yBzMxM2bYlS5a4PI79bf8gSm7t6erqQmFhoWzbra4kz/627/VGZt114sQJZGRkSO1hw4bht7/9rcvjWNvqh0i5ZW2rH6LklrWtvoiSW3tY26rDwW0B+fv7IyUlRbYtKysLW7ZssTv3UFdXF9555x2kpqbCYrFI22fMmOGwYJkwYQKmTZsmtW/cuIGlS5fivffesxv869evY+PGjXjhhRdk29PS0pxOpj979mzExsZK7Q8//BCrVq1Ca2urbD+z2Yw//vGP2Lt3r7TNZDJh0aJFDs/dU+PHj8fs2bOl9oULF5CammqziEFnZyd27NiBV155RdoWFBSEtLQ0j1+TCETJbX5+PrKzs6W2n58ftm7dajPHWm96+eWXkZiYiN27d9vk1Nr333+Pffv2Ye7cuairq5O233777bI34/R/ouQ2PT0dCxcuREFBAVpaWhx+v+3t7cjLy8OiRYtk+91xxx144oknHB7XU+xvvUOU3NpTWlqK2tpaqX3vvffiBz/4gerjbxX7W+/ojcwC3X3MM888g5KSEtlx1trb27F9+3Y8/fTTuH79OgDAx8cHa9euVbWwE2tb/RAlt6xt9UWU3LK21RdRcmsPa1t1BnS5MwRPHlVTU4NZs2bZ/b+Ojg5Ze+DAgXb3y83NtfvxfrPZjJSUFBw/fly2PTQ0FFOnTsWIESMwcOBA1NfXo7S0FDU1NbL9IiIikJ+f73RhkJqaGjz22GO4fPmybPvIkSMxefJkDBs2DN9//z0uXryI0tJSNDc3y/a77777kJOT4/LTJ7W1tZg/f75sEYWQkBAkJCQgPDwcDQ0NOHTokOw6AgMDsWvXLtmjn44kJCTIvv8PPvgAI0aMcHrM1atX8fOf/xxfffWVtC0gIAAJCQmIiopCY2MjPvroI9ld1oEDByInJ0f2KJIWMbfOc6vME+D45+BMcXExTCaTw/93J7e//OUv8cEHH0jXMmbMGMTExGDIkCEwGo24fv06ampqUFZWZvMHKzAwEHl5eTaPemkNc+s8t0lJSTh79iwAwGAwIDo6GtHR0QgLC0NgYCBaW1tRVVWFjz/+WPYJQqD7Efndu3cjKirK4fXfxP7WPcytujrBWnp6OgoKCqR2VlYWFixYoPp4e9jfqqf1zFZUVOBnP/sZgO5BhHvuuQejR49GcHAwrl69ikuXLqG0tFR6swoAAwYMQEZGhluDzqxt+xfm1jnWtv0Tc+sca9v+ibl1H2tbddS/WyCP6+rqsvkFdsTRfo7uTdy8o/7cc8+huLhY2t7U1CSbt8+ecePG4eWXX3a54rXJZEJeXh5+/etfyx4h/vrrr2UdsT1z5sxBVlaWqjeskZGR2L59O1auXCn9AjY3N9vMO3RTWFgY/vSnP6kq/nsqODgYf/3rX7F8+XLpj2ZbW5vDOUUDAwOxZs0azf8xAphbtbm1pvbnZc1b9x07OjpQUVEh+94diY6ORnZ2tmbmUnSGuVWfW4vFgvLycpSXl7vcd/LkyXjxxRcRERGh6tw9wf6WuVWrtbVV9r0EBATgoYceUn28p+mxv9V6Zq1du3YNR44cwZEjRxzuExoainXr1mHmzJmqzwuwtu1vmFv3sbbte8yteqxt+w/m1j2sbdXj4LbAgoKC8Morr+D999/Ha6+9huPHjzstKu688048/vjjWLBggepHgMeMGYO33noL+fn52LlzJyorKx3u6+Pjg/j4eCxZssTteYzuvvtuFBQUYNOmTSgsLLT5dBfQ/Ys+e/ZsrFq1CkOHDnXr/D0RFRWFPXv2YNu2bdizZ4/NJ9OA7rvE999/P5599lnccccdXr8mEYiU2/4iOTkZAwcOxCeffCL7lJg9Pj4+iI2NxeOPP445c+a4NR2Anmk9t4sXL0ZxcTFOnjyJq1evOt3X19cXcXFxWLx4MRISEuDj4/0ZztjfeofWc6t08OBB2SdlZs2a1aPHP28F+1vv8nZmhwwZguTkZBw7dkz2CLDS4MGDMW/ePKSkpCAsLKxH3wtrW/0QKbf9Bfta79N6blnb6pPWc6vE2lY9TkuiI9euXcOpU6dw6dIlXL16FZ2dnRg0aBDCw8MRGxvr1l0qR+rq6nD69GnU19ejpaUFPj4+CA4ORlRUFMaPH++RX0Sz2YyPP/4YNTU1uHLlCkJCQhAREYFJkybBaDTe8vl7oqOjAydOnEB1dTUaGhpgNBoxfPhwTJw4UfPFY18TJbf9xbfffovKykp88803aGxsxI0bN+Dv74/g4GBERkZi/PjxCAoK6uvL1Dwt57a6uhpVVVWoq6tDc3Mzbty4gcDAQOncsbGxfboAE/tb79Fybvsj9rfe583MVldX4+zZs6itrUVrayt8fX1x++23Izo6GnfddZdHBz9Y2+qLKLntL9jX9g4t55a1rX5pObf9UX/ubzm4TURERERERERERESaI96tBCIiIiIiIiIiIiISHge3iYiIiIiIiIiIiEhzOLhNRERERERERERERJrDwW0iIiIiIiIiIiIi0hwObhMRERERERERERGR5nBwm4iIiIiIiIiIiIg0h4PbRERERERERERERKQ5HNwmIiIiIiIiIiIiIs3h4DYRERERERERERERaQ4Ht4mIiIiIiIiIiIhIczi4TURERERERERERESaw8FtIiIiIiIiIiIiItIcDm4TERERERERERERkeZwcJuIiIiIiIiIiIiINIeD20RERERERERERESkORzcJiIiIiIiIiIiIiLN4eA2EREREREREREREWkOB7eJiIiIiIiIiIiISHM4uE1EREREREREREREmsPBbSIiIiIiIiIiIiLSHA5uExEREREREREREZHmcHCbiIiIiIiIiIiIiDSHg9tEREREREREREREpDkc3CYiIiIiIiIiIiIizeHgNhERERERERERERFpDge3iYiIiIiIiIiIiEhz/ge2dkseRBTFWgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1358,24 +1358,20 @@ } ], "source": [ - "lp_switchpoint = after_marg.posterior.lp_switchpoint.mean(dim=[\"chain\", \"draw\"])\n", - "x_max = years[lp_switchpoint.argmax()]\n", - "\n", - "plt.scatter(years, lp_switchpoint)\n", - "plt.axvline(x=x_max, c=\"orange\")\n", - "plt.xlabel(r\"$\\mathrm{year}$\")\n", - "plt.ylabel(r\"$\\log p(\\mathrm{switchpoint}=\\mathrm{year})$\");" + "post = after_marg.posterior.switchpoint.values.reshape(-1)\n", + "bins = np.arange(post.min(), post.max())\n", + "plt.hist(post, bins, rwidth=0.9);" ] }, { "cell_type": "code", "execution_count": 21, - "id": "798d9cbf-5eda-4625-8c9b-84995318bb15", + "id": "3338722f-a0c6-4277-b458-8ff8dcb59434", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AABwhUlEQVR4nOz9e5jVdb03/r/mwHBQDiI4eE4IUNRRMNtiFri5u0TzIq0o2roVEy1NQ/C2tK/k1tgeMrTUpCt0p2JqcW9vIytUSKw8JAgKMTHcKYqiw0FAFBgYmPX7wx9rs4Y5rIEZZt7weFxX1zXvz7xPa/VyMes5n3mvgkwmkwkAAAAAAEhIYWtvAAAAAAAAmkq4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJKe4tTdAw9auXdvaW6ANKygoiG7dukVExLp16yKTybTuhtinqUfaCrVIW6IeaSvUIm2JeqStUIu0JftKPR5wwAHNOp87twEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhOcWtvAAAAYFecNrSmtbfQ5v11tvuZAIC9l590AAAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhOcWtvoKUsW7YsysvLo7KyMmpqaqK0tDT69u0b/fr1a7Y1FixYEG+++WasWLEiOnbsGKWlpVFWVhalpaXNtgYAAAAAADtrM+H2xIkTY+rUqTnXzj333Lj11lubNM9zzz0XkydPjvnz59f5/f79+8eYMWNixIgRu7TPmpqamDp1akydOjXefvvtnb5fWFgYgwcPjquuuirKysp2aQ0AAAAAABrWJo4lefXVV+NXv/rVbs2RyWTiP//zP+PSSy+tN9iOiKioqIhrrrkmxo8fH1u2bGnSGmvXro2LLroobr755jqD7YiPw+/nn38+/u3f/i3+67/+q0nzAwAAAACQn1a/c7u6ujomTJgQNTU1uzXPpEmT4qGHHsq5NmjQoDj++OOjqKgoKioq4oUXXohMJhMREb///e+jqKgobr/99rz3eeWVV8acOXOy14qLi2PIkCHRp0+f2LBhQ8ydOzcqKiqy/W+77bbo3LlzjBw5crceGwAAAAAAuVo93P7FL34RS5YsiYiInj17xqpVq5o8x7PPPhtTpkzJtrt06RJ33XVXDB48OKdfeXl5XHbZZVFZWRkREdOnT4+TTjopRo0a1egad9xxR06w3a9fv5g8eXIcdthhOf2mT58e3//+96O6ujoiIm688cYoKyuL/v37N/lxAQAAAABQt1Y9luSNN96In//85xER0bFjxxg/fnyT58hkMnHHHXdk2wUFBXHvvffuFGxHRAwYMCAeeOCBaN++ffbaPffcE1VVVQ2uUVlZGQ8//HC2feCBB8ZDDz20U7AdETFixIiYOHFitl1dXR0//elPm/SYAAAAAABoWKuF25lMJiZMmJA99/ryyy+PQw89tMnzzJw5M3vnd0TEF7/4xTj55JPr7X/UUUfFxRdfnG2vWrUqpk2b1uAa9913X8753FdffXUccMAB9fY/55xzcvYwa9asWLx4cYNrAAAAAACQv1YLtx977LGYO3duRHx8xMdFF120S/PMmDEjp33eeec1OmbUqFFRVFRU7xw7ymQy8fTTT2fbXbt2jbPPPrvRNb7+9a/ntJ966qlGxwAAAAAAkJ9WCbdXrFgRkyZNioiPjxG58cYbo127dk2eZ+vWrfHnP/852z744IOjrKys0XGlpaVx4oknZtvz58+PNWvW1Nn373//e6xYsSLbHjp0aM6xJvUZNmxYzmOaNWtWo2MAAAAAAMhPq4TbP/zhD+PDDz+MiIivfvWrMWjQoF2aZ8mSJbF+/fpse+DAgXmP3bHvtm3bYt68eXX2e+WVV+od15AOHTrEMccck21XVFTk7BUAAAAAgF23x8Ptp59+Op555pmI+PiDGa+++updnuv111/Pae8YJjdmwIABOe033ngjrzVqj2tI7f3UtwYAAAAAAE2zR8PtDz/8MH74wx9m29dee2107dp1l+erHRYfcsgheY89+OCDG5yrvuu1xzWk9n6E2wAAAAAAzWOPhts/+tGPYuXKlRERceqpp8aIESN2a74dz8KOiOjVq1feY2v3raysbHSN4uLi6NmzZ7OvAQAAAABA0+yxcHvOnDkxbdq0iIgoKSmJG264Ybfn3LhxY057v/32y3ts7b6156rreseOHaOgoKDZ1wAAAAAAoGmK98QiW7ZsiQkTJkQmk4mIiG9961vxiU98YrfnrR0Wl5SU5D22ffv2Dc5V1/XaYxpTez+7Em43JUxn37NjfagVWpt6pK1Qi7Ql6pHWtr3u1CJtiXqkrVCLtCXqcdfskXD7Zz/7WSxdujQiIo466qi45JJLmmXezZs357SbEm7X7ltVVdXoGu3atWvC7vJfoyHdunVr8hj2Tbtzfj00N/VIW6EWaUvUY0t4v7U30ObV9X5CLdKWqEfaCrVIW6Ie89fix5JUVFTE/fffn23feOONTQqhG1L7TuotW7bkPbZ23w4dOjS6RnV1dRN2l/8aAAAAAAA0TYveuV1TUxMTJkzIhsLnnntu/Mu//Euzzd+pU6ecdlPC7dp3fdeea8frmzZtqnNMY2rvp741GrJu3bomj2HfUVBQkP1t3gcffJA9+gdag3qkrVCLtCXqkda2/f2EWqQtUY+0FWqRtmRfqcfmPqWiRcPtqVOnxmuvvRYRH2/8u9/9brPOXzss3rBhQ95ja/dtKNx+//2P/9xx06ZNUVNTE4WF+d3wnu8aDdlbC5nml8lk1AtthnqkrVCLtCXqkdZQV82pRdoS9UhboRZpS9Rj/lrsWJKqqqr4yU9+km1/97vfje7duzfrGqWlpTntysrKvMe+9957Oe1evXo1usbWrVtj9erVzb4GAAAAAABN02J3bm/ZsiU2btyYbU+YMCEmTJjQ4Jjav5F44oknYvr06dn2OeecEzfffHO23adPn5z+7777bt77qx2E9+7du85+ffr0iblz5+ascdBBB+W1Ru1wu/Z+AQAAAADYNS3+gZLbbdu2rdH/1dTU5IzJZDINfr92WFxeXp73fhYtWpTTri/crn29KWvU7lvfGgAAAAAANM0eC7dbQt++faNLly7Z9quvvpr32Pnz52e/LioqikGDBtXZ76STTqp3XEOqqqpi8eLF2Xb//v2jc+fOee8PAAAAAID6tdixJF26dImKioomjfnb3/4WF1xwQbZ97rnnxq233lpv/+Li4vjc5z4XTz75ZER8fAzIa6+9FieccEKD66xYsSL7QZcREQMHDqz3PPDjjjsuSktLY8WKFRERMXv27Ni8eXO0b9++wTVmzpwZ1dXV2fawYcMa7A8AAAAAQP6SvnM7IuLMM8/MaT/yyCONjnnsscdi27Zt2fbw4cPr7VtQUBBnnHFGtr1+/fpsmN7YGjvacQ4AAAAAAHZP8uH2sGHDol+/ftn2b3/725gzZ069/ZcuXRr3339/tt2zZ88YOXJkg2tcfPHFUVJSkm1PmjQp1q5dW2//J554ImcPw4YNi6OPPrrBNQAAAAAAyF/y4XZBQUGMHz8+285kMnH55ZfHiy++uFPf8vLyGD16dGzevDl77YorrogOHTo0uEavXr3i/PPPz7bff//9uOCCC+Kdd97Zqe/06dPj+uuvz7bbtWsXY8eObdJjAgAAAACgYS125vaedPrpp8cll1wSU6ZMiYiPjw4ZPXp0DBo0KMrKyqKwsDAqKirihRdeiEwmkx03YsSIGDVqVF5rjBs3LhYsWBBz586NiIglS5bE8OHDY8iQIdG7d+/YuHFjzJkzZ6dzxm+44Ybo379/Mz1SAAAAAAAi9pJwOyJi/PjxUVVVFVOnTs1emzdvXsybN6/O/meddVZMnDgx7/lLSkri7rvvjrFjx8bLL78cERHV1dUxc+bMOvsXFxfHuHHjGj3yBAAAAACApkv+WJLtCgsL4/rrr49f/OIXceKJJ9bbr1+/fvGjH/0o7rzzzmjfvn2T1ujevXs8+OCDcd1118Xhhx9e7z5OPfXUePTRR2PMmDFNmh8AAAAAgPwUZHY8p2Mv8tZbb8WiRYti5cqVsW3btigtLY2+ffs22xEhmUwmFi5cGEuXLo2VK1dGhw4dorS0NE444YQoLS1tljUiosEProSCgoLo1q1bRESsW7cu9tL/nEmEeqStUIu0JeqxZZ02tKa1t9Dm/XX2x/czqUXaEvVIW6EWaUv2lXo84IADmnW+veZYktqOPPLIOPLII1ts/oKCgigrK4uysrIWWwMAAAAAgLrtNceSAAAAAACw7xBuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkpbu0NAACQjtOG1rT2FpLw19nuIQEAgJbmp24AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5xa29AQAA2NecNrSmtbfQ5v11tvtwAABomJ8YAQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhO8Z5crKamJpYtWxZvvfVWrFixItavXx9btmyJTp06Rbdu3eLoo4+Ovn37RlFR0W6vtWzZsigvL4/KysqoqamJ0tLS6Nu3b/Tr168ZHsnHFixYEG+++WasWLEiOnbsGKWlpVFWVhalpaXNtgYAAAAAADtr8XB7zZo1cf/998e8efPiH//4R2zatKnB/l27do0RI0bExRdfHAcffHCT13vuuedi8uTJMX/+/Dq/379//xgzZkyMGDGiyXNHfBzQT506NaZOnRpvv/32Tt8vLCyMwYMHx1VXXRVlZWW7tAYAAAAAAA1r8WNJli9fHvfdd1/Mmzev0WA7IuKDDz6IqVOnxllnnRWPP/543utkMpn4z//8z7j00kvrDbYjIioqKuKaa66J8ePHx5YtW/KePyJi7dq1cdFFF8XNN99cZ7Ad8XH4/fzzz8e//du/xX/91381aX4AAAAAAPKzR48liYjo0aNH9OvXL4488sjo2rVrFBUVxbp16+If//hHvPrqq1FTUxMRERs3bozrrrsutmzZEqNGjWp03kmTJsVDDz2Uc23QoEFx/PHHR1FRUVRUVMQLL7wQmUwmIiJ+//vfR1FRUdx+++157bu6ujquvPLKmDNnTvZacXFxDBkyJPr06RMbNmyIuXPnRkVFRbb/bbfdFp07d46RI0fmtQYAAAAAAPlp8XC7qKgoTj755DjjjDPiM5/5TPTu3bvevsuXL4+bbropZs+enb128803x6mnnhpHHHFEveOeffbZmDJlSrbdpUuXuOuuu2Lw4ME5/crLy+Oyyy6LysrKiIiYPn16nHTSSXmF53fccUdOsN2vX7+YPHlyHHbYYTn9pk+fHt///vejuro6IiJuvPHGKCsri/79+ze6BgAAAAAA+WnxY0kGDBgQDz/8cPz7v/97g8F2RMShhx4a9957b3zmM5/JXtu8eXP86le/qndMJpOJO+64I9suKCiIe++9d6dge/teHnjggWjfvn322j333BNVVVUN7quysjIefvjhbPvAAw+Mhx56aKdgOyJixIgRMXHixGy7uro6fvrTnzY4PwAAAAAATdPi4XZTFRUVxdVXX51z7S9/+Uu9/WfOnBlLlizJtr/4xS/GySefXG//o446Ki6++OJse9WqVTFt2rQG93TfffflnM999dVXxwEHHFBv/3POOSdnD7NmzYrFixc3uAYAAAAAAPlrc+F2RMSxxx4bnTp1yrbfe++9evvOmDEjp33eeec1Ov+oUaOiqKio3jl2lMlk4umnn862u3btGmeffXaja3z961/PaT/11FONjgEAAAAAID9tMtyOiNhvv/2yX2//EMjatm7dGn/+85+z7YMPPjjKysoanbu0tDROPPHEbHv+/PmxZs2aOvv+/e9/jxUrVmTbQ4cOzTnWpD7Dhg2Ldu3aZduzZs1qdAwAAAAAAPlpk+H2pk2bYt26ddn24YcfXme/JUuWxPr167PtgQMH5r3Gjn23bdsW8+bNq7PfK6+8Uu+4hnTo0CGOOeaYbLuioiJnrwAAAAAA7Lo2GW7PmDEjqqurs+2hQ4fW2e/111/Pae8YJjdmwIABOe033ngjrzVqj2tI7f3UtwYAAAAAAE3T5sLtxYsXx2233ZZtd+vWLS688MI6+9YOiw855JC81zn44IMbnKu+67XHNaT2foTbAAAAAADNo7i1N5DJZOKjjz6KJUuWxIwZM+Kxxx6LLVu2REREp06d4q677ooePXrUOXbHs7AjInr16pX3urX7VlZWNrpGcXFx9OzZs9nXAAAAAACgafZ4uP3GG2/E2WefnW3X1NTU+YGRQ4YMieuuuy6OOuqoeufauHFjTnvHD6FsTO2+teeq63rHjh2joKCg2dcAAAAAAKBp9ni4nclkYtu2bfV+v7CwMM4777wYM2ZMo3di1w6LS0pK8t5H+/btG5yrruu1xzSm9n52JdxuSpjOvmfH+lArtDb1SFuhFmkLtteeetx1nq/moRZpi9QjbYVapC1Rj7um1Y8lqa2mpiamTp0ajz32WJx//vkxfvz4ekPrzZs357SbEm7X7ltVVdXoGu3atct7/qas0ZBu3bo1eQz7pq5du7b2FiBLPdJWqMWW8H5rbyAJdf0Ml1uPnsfG5PdzsOexMY3XIrQu9UhboRZpS9Rj/vZ4uN2nT5+oqKjItrds2RLr1q2Lf/zjHzFjxoz43e9+F9XV1VFdXR2//OUvY8mSJfHzn/+8zuC69p3U28/qzkftvh06dKizX/v27WPTpk0REVFdXZ33/E1ZAwAAAACApmn1O7dLSkrioIMOioMOOiiGDBkSF154YXzrW9+K9957LyIinn/++bjnnnti/PjxO43t1KlTTrsp4Xbtu75rz7Xj9e3hdu0xjam9n/rWaMi6deuaPIZ9R0FBQfa3eR988EGd59fDnqIeaSvUIm3B9p/h1OOu83Nw81CLtEXqkbZCLdKW7Cv12NynVLR6uF3b0UcfHVOmTIlzzz03e6f0gw8+GBdddFEccMABOX1rh8UbNmzIe53afRsKt99//+M/d9y0aVPU1NREYWFhs67RkL21kGl+mUxGvdBmqEfaCrVIa6mr7tRj03iumodapK1Tj7QVapG2RD3mL7+Udg/r27dvnHXWWdl2VVVVPPfcczv1Ky0tzWlXVlbmvcb2O8O3q+/DK3dcY+vWrbF69epmXwMAAAAAgKZpk+F2RMSpp56a097xnO7t+vTpk9N+9913856/dhDeu3fvOvvtzhq1w+3acwEAAAAAsGvabLjdo0ePnPZHH320U5/aYXF5eXne8y9atCinXV+4Xft6U9ao3be+NQAAAAAAaJo2G27XDrO7dOmyU5++ffvmXH/11Vfznn/+/PnZr4uKimLQoEF19jvppJPqHdeQqqqqWLx4cbbdv3//6Ny5c977AwAAAACgfm023K591/PBBx+8U5/i4uL43Oc+l22/99578dprrzU694oVK3L6DRw4MLp3715n3+OOOy7n3O3Zs2fH5s2bG11j5syZ2Q/EjIgYNmxYo2MAAAAAAMhPmwy3q6qq4ne/+13OtdpncG935pln5rQfeeSRRud/7LHHYtu2bdn28OHD6+1bUFAQZ5xxRra9fv36ePLJJ/NaY0c7zgEAAAAAwO5p0XB7y5YtOUdz5KOmpiZuuOGGnA9uPOGEE+o9r3rYsGHRr1+/bPu3v/1tzJkzp975ly5dGvfff3+23bNnzxg5cmSDe7r44oujpKQk2540aVKsXbu23v5PPPFEzh6GDRsWRx99dINrAAAAAACQvxYNt6uqquKcc86J73znO/Hss8/Gli1bGuz/2muvxQUXXBBPPPHE/2ywsDD+v//v/6t3TEFBQYwfPz7bzmQycfnll8eLL764U9/y8vIYPXp0zrEiV1xxRXTo0KHBffXq1SvOP//8bPv999+PCy64IN55552d+k6fPj2uv/76bLtdu3YxduzYBucHAAAAAKBpilt6gUwmE0899VQ89dRT0bFjxzj66KPjk5/8ZHTt2jU6duwYGzZsiMrKyli4cGG8/fbbOWMLCgpi4sSJccIJJzS4xumnnx6XXHJJTJkyJSI+Pjpk9OjRMWjQoCgrK4vCwsKoqKiIF154ITKZTHbciBEjYtSoUXk9jnHjxsWCBQti7ty5ERGxZMmSGD58eAwZMiR69+4dGzdujDlz5kRFRUXOuBtuuCH69++f1xoAAAAAAOSnxcPtHW3atCnmz58f8+fPb7RvaWlp3HjjjXH66afnNff48eOjqqoqpk6dmr02b968mDdvXp39zzrrrJg4cWJ+G4+IkpKSuPvuu2Ps2LHx8ssvR0REdXV1zJw5s87+xcXFMW7cuEaPPAEAAAAAoOlaNNzeb7/94rbbbou//OUvMWfOnFixYkWjYwYMGBDnnntufOlLX4r9998/77UKCwvj+uuvj89+9rNx7733xquvvlpnv379+sWYMWPii1/8Yt5zb9e9e/d48MEH46GHHoqHH354pzvNt+/jlFNOiXHjxkVZWVmT1wAAAAAAoHEtGm4XFRXFOeecE+ecc05ERKxcuTJef/31eOedd+KDDz6IzZs3R6dOnWL//fePww47LI499tjo0qXLbq05ZMiQGDJkSLz11luxaNGiWLlyZWzbti1KS0ujb9++u31ESGFhYYwePTouvPDCWLhwYSxdujRWrlwZHTp0iNLS0jjhhBOitLR0t9YAAAAAAKBhe/RYkoMOOigOOuigPbLWkUceGUceeWSLzV9QUBBlZWXuzgYAAAAAaAWFrb0BAAAAAABoKuE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJKW7tDQAAjTttaE1rb6HN++tsv7MHAADYl3gXCAAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcor39ILr1q2LJUuWxFtvvRXr1q2LTCYTXbt2jUMOOSROPPHE6Ny5c7Oss2zZsigvL4/KysqoqamJ0tLS6Nu3b/Tr169Z5o+IWLBgQbz55puxYsWK6NixY5SWlkZZWVmUlpY22xoAAAAAAOysxcPtmpqamDt3bjzzzDPx0ksvxZIlS+rtW1BQEIMHD47Ro0fHkCFDdmm95557LiZPnhzz58+v8/v9+/ePMWPGxIgRI3Zp/pqampg6dWpMnTo13n777Z2+X1hYGIMHD46rrroqysrKdmkNAAAAAAAa1uLh9vDhw+Ott97Kq28mk4kXXnghXnjhhfjCF74QN910U+y///55j7355pvjoYcearBfRUVFXHPNNTF79uy49dZbo6SkJK/5IyLWrl0bV111Vbz00kv19qmpqYnnn38+Xn755Rg/fnx84xvfyHt+AAAAAADy0+Lh9po1a3a69olPfCLKysqiR48e0b59+6isrIwXX3wxKisrs31+//vfx8qVK+P++++P9u3bN7rOpEmTdgq2Bw0aFMcff3wUFRVFRUVFvPDCC5HJZLLzFxUVxe23357X46iuro4rr7wy5syZk71WXFwcQ4YMiT59+sSGDRti7ty5UVFRke1/2223RefOnWPkyJF5rQEAAAAAQH722Jnbhx56aIwcOTLOPffc6NWr107f37ZtW/zmN7+JW265JTZv3hwREXPmzImf/OQn8b3vfa/BuZ999tmYMmVKtt2lS5e46667YvDgwTn9ysvL47LLLsuG6NOnT4+TTjopRo0a1ej+77jjjpxgu1+/fjF58uQ47LDDcvpNnz49vv/970d1dXVERNx4441RVlYW/fv3b3QNAAAAAADyU9jSCxxyyCFx8803xzPPPBOXXXZZncF2RERRUVF8/etfj7vvvjsKC/9nW1OnTo0VK1bUO38mk4k77rgj2y4oKIh77713p2A7ImLAgAHxwAMP5NwJfs8990RVVVWDj6GysjIefvjhbPvAAw+Mhx56aKdgOyJixIgRMXHixGy7uro6fvrTnzY4PwAAAAAATdPi4fbjjz8eX/7yl6OoqCiv/kOGDIkvfOEL2XZ1dXXMmjWr3v4zZ87M+ZDKL37xi3HyySfX2/+oo46Kiy++ONtetWpVTJs2rcE93XfffbFly5Zs++qrr44DDjig3v7nnHNOzh5mzZoVixcvbnANAAAAAADy1+LhdnFx008+2THcjohYuHBhvX1nzJiR0z7vvPManX/UqFE5YXvtOXaUyWTi6aefzra7du0aZ599dqNrfP3rX89pP/XUU42OAQAAAAAgPy0ebu+KI444Iqe9evXqOvtt3bo1/vznP2fbBx98cJSVlTU6f2lpaZx44onZ9vz58+v84MuIiL///e85x6IMHTo0rw+4HDZsWLRr1y7bbujucwAAAAAAmqZNhtsbNmzIadd39/eSJUti/fr12fbAgQPzXmPHvtu2bYt58+bV2e+VV16pd1xDOnToEMccc0y2XVFRkbNXAAAAAAB2XZsMtysqKnLa9X0I5euvv57T3jFMbsyAAQNy2m+88UZea9Qe15Da+6lvDQAAAAAAmqZNhtvTp0/PaZ9yyil19qsdFh9yyCF5r3HwwQc3OFd912uPa0jt/Qi3AQAAAACaR5sLt19++eV4+eWXs+3OnTvHaaedVmffHc/Cjqj/Du+61O5bWVnZ6BrFxcXRs2fPZl8DAAAAAICmqfsw61ayadOmmDBhQs61iy66KPbbb786+2/cuDGnXV+/utTuW3uuuq537NgxCgoKmn2NhjRlPfY9O9aHWqG1qUda2/a6U4u0Bepx93m+modapC1Sj7QVapG2RD3umjYVbt94443x5ptvZtu9e/eOMWPG1Nu/dlhcUlKS91rt27dvcK66rtce05ja+9mVcLtbt25NHsO+qWvXrq29BchSjy3h/dbeQJtX17+ZarElqMV8NF6PnsfG5PdzsOexMV4baevUI22FWqQtUY/5azPHkjz44IPxf//v/822S0pK4vbbb28wUN68eXNOuynhdu2+VVVVja7Rrl27vOdvyhoAAAAAADRNm7hze8aMGXHrrbfmXLvpppviuOOOa3Bc7eB7y5Ytea9Zu2+HDh3qXWPTpk0REVFdXZ33/E1ZoyHr1q1r8hj2HQUFBdnf5n3wwQeRyWRaeUfsy9QjrW37v5lqkbZAPe4+Pwc3D7VIW6QeaSvUIm3JvlKPzX1KRauH2y+++GJcc801UVNTk7129dVXx7nnntvo2E6dOuW0mxJu177ru/ZcO17fHm7XHtOY2vupb42G7K2FTPPLZDLqhTZDPdIa6qo5tUhrUY+7z3PVPNQibZ16pK1Qi7Ql6jF/rXosyYIFC+Lyyy/PCYEvvvjiuPTSS/MaXzss3rBhQ95r1+7bULi93aZNm3JC+OZaAwAAAACApmm1cHvJkiVxySWX5HzI4siRI+O73/1u3nOUlpbmtCsrK/Me+9577+W0e/Xq1egaW7dujdWrVzf7GgAAAAAANE2rhNvLli2Lb3zjGznn6A0fPjxuuummJs3Tp0+fnPa7776b99jaQXjv3r2bfY3a4XbtuQAAAAAA2DV7PNxesWJFjB49OlatWpW9NmTIkPjxj38chYVN207tsLi8vDzvsYsWLcpp1xdu177elDVq961vDQAAAAAAmmaPhttr1qyJ0aNHx/Lly7PXPv3pT8ddd90V7dq1a/J8ffv2jS5dumTbr776at5j58+fn/26qKgoBg0aVGe/k046qd5xDamqqorFixdn2/3794/OnTvnvT8AAAAAAOq3x8Ltjz76KMaMGRNvvPFG9lpZWVlMnjw5OnTosEtzFhcXx+c+97ls+7333ovXXnut0XErVqzI6Tdw4MDo3r17nX2PO+64nHO3Z8+eHZs3b250jZkzZ0Z1dXW2PWzYsEbHAAAAAACQnz0SbldVVcW3vvWtnKNA+vXrF/fdd1/sv//+uzX3mWeemdN+5JFHGh3z2GOPxbZt27Lt4cOH19u3oKAgzjjjjGx7/fr18eSTT+a1xo52nAMAAAAAgN3T4uH21q1bY+zYsTFnzpzstU984hPxy1/+Mrp27brb8w8bNiz69euXbf/2t7/NWau2pUuXxv33359t9+zZM0aOHNngGhdffHGUlJRk25MmTYq1a9fW2/+JJ57I2cOwYcPi6KOPbnANAAAAAADy16LhdiaTiWuvvTZmz56dvXbooYfGAw88ED169GiWNQoKCmL8+PE5a15++eXx4osv7tS3vLw8Ro8enXOsyBVXXNHosSi9evWK888/P9t+//3344ILLoh33nlnp77Tp0+P66+/Pttu165djB07tkmPCQAAAACAhhW35OTvvvtu/O53v9vpWlPPnz700EPjmWeeqff7p59+elxyySUxZcqUiPj46JDRo0fHoEGDoqysLAoLC6OioiJeeOGFyGQy2XEjRoyIUaNG5bWHcePGxYIFC2Lu3LkREbFkyZIYPnx4DBkyJHr37h0bN26MOXPmREVFRc64G264Ifr379+kxwsAAAAAQMNaNNzeMUje8dqO513nI5/+48ePj6qqqpg6dWr22rx582LevHl19j/rrLNi4sSJee+hpKQk7r777hg7dmy8/PLLERFRXV0dM2fOrLN/cXFxjBs3rtEjTwAAAAAAaLo98oGSe0JhYWFcf/318Ytf/CJOPPHEevv169cvfvSjH8Wdd94Z7du3b9Ia3bt3jwcffDCuu+66OPzww+vdx6mnnhqPPvpojBkzpknzAwAAAACQnxa9c/uwww7b6ZiOljZkyJAYMmRIvPXWW7Fo0aJYuXJlbNu2LUpLS6Nv3767fURIYWFhjB49Oi688MJYuHBhLF26NFauXBkdOnSI0tLSOOGEE6K0tLSZHg0AAAAAAHVp0XC7NR155JFx5JFHttj8BQUFUVZWFmVlZS22BgAAAAAAddtrjiUBAAAAAGDfIdwGAAAAACA5wm0AAAAAAJKz1565DUDbcNrQmtbeQhL+OtvvmwEAAKApvJMGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5xa29AQAAAFrHaUNrWnsLSfjrbPeFAUBb5F9oAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnFrb2BlrBs2bIoLy+PysrKqKmpidLS0ujbt2/069ev2dZYsGBBvPnmm7FixYro2LFjlJaWRllZWZSWljbbGgAAAAAA1G2PhdsbNmyI8vLyWLBgQSxYsCAWLlwYy5cvz37/0EMPjT/96U+7tcZzzz0XkydPjvnz59f5/f79+8eYMWNixIgRuzR/TU1NTJ06NaZOnRpvv/32Tt8vLCyMwYMHx1VXXRVlZWW7tAYAAAAAAI1r8XD7l7/8ZTz++OPxz3/+M2pqalpkjUwmEzfffHM89NBDDfarqKiIa665JmbPnh233nprlJSU5L3G2rVr46qrroqXXnqp3j41NTXx/PPPx8svvxzjx4+Pb3zjG3nPDwAAAABA/lo83J4zZ04sWbKkRdeYNGnSTsH2oEGD4vjjj4+ioqKoqKiIF154ITKZTERE/P73v4+ioqK4/fbb85q/uro6rrzyypgzZ072WnFxcQwZMiT69OkTGzZsiLlz50ZFRUW2/2233RadO3eOkSNHNtOjBAAAAABgu1Y5c7tTp05x7LHHxqJFi2Ljxo27Ndezzz4bU6ZMyba7dOkSd911VwwePDinX3l5eVx22WVRWVkZERHTp0+Pk046KUaNGtXoGnfccUdOsN2vX7+YPHlyHHbYYTn9pk+fHt///vejuro6IiJuvPHGKCsri/79++/y4wMAAAAAYGeFLb1A+/bto6ysLM4777y45ZZb4sknn4xXXnklHn744TjggAN2a+5MJhN33HFHtl1QUBD33nvvTsF2RMSAAQPigQceiPbt22ev3XPPPVFVVdXgGpWVlfHwww9n2wceeGA89NBDOwXbEREjRoyIiRMnZtvV1dXx05/+tEmPCQAAAACAxrX4ndt33nlni809c+bMnCNPvvjFL8bJJ59cb/+jjjoqLr744rj33nsjImLVqlUxbdq0+Pd///d6x9x3332xZcuWbPvqq69uMJQ/55xz4v/8n/+TvdN71qxZsXjx4jj66KPzflwAAAAAADSsxe/cbkkzZszIaZ933nmNjhk1alQUFRXVO8eOMplMPP3009l2165d4+yzz250ja9//es57aeeeqrRMQAAAAAA5C/ZcHvr1q3x5z//Ods++OCDo6ysrNFxpaWlceKJJ2bb8+fPjzVr1tTZ9+9//3usWLEi2x46dGjOsSb1GTZsWLRr1y7bnjVrVqNjAAAAAADIX7Lh9pIlS2L9+vXZ9sCBA/Meu2Pfbdu2xbx58+rs98orr9Q7riEdOnSIY445JtuuqKjI2SsAAAAAALsn2XD79ddfz2nvGCY3ZsCAATntN954I681ao9rSO391LcGAAAAAABNl2y4XTssPuSQQ/Iee/DBBzc4V33Xa49rSO39CLcBAAAAAJpPsuH2jmdhR0T06tUr77G1+1ZWVja6RnFxcfTs2bPZ1wAAAAAAoOmKW3sDu2rjxo057f322y/vsbX71p6rrusdO3aMgoKCZl+jMU1Zk33PjvWhVmht6nH3eM523/bnUC3SFqjH3ef5ah5qsXl4zpqXeqStUIu0Jepx1+w14XZJSUneY9u3b9/gXHVdrz2mMbX3s6vhdrdu3XZpHPuerl27tvYWICu3Ht9vtX2kpPHXe89jY+p6Dr02tgS1mI/G69Hz2Jj8fg72PDZGLTYP78tajn+raSvUIm2JesxfsseSbN68OafdlHC7dt+qqqpG12jXrl0Tdpf/GgAAAAAANF2yd27XvpN6y5YteY+t3bdDhw71rrFp06aIiKiurm7S/vJdozHr1q3bpXHsGwoKCrK/zfvggw8ik8m08o7Yl6nH3eP1fvdtfw7VIm2Betx9Xhebh1psHuqxealH2gq1SFuyr9Rjc/81VLLhdqdOnXLaTQm3a9/1XXuuHa9vD7drj2lM7f3Ut0Zj9tZCpvllMhn1QpuhHpvO87X76noO1SKtRT3uPs9V81CLzcPz1XLUI22FWqQtUY/5S/ZYktph8YYNG/IeW7tvQ+H2dps2bYqamppmXwMAAAAAgKZLNtwuLS3NaVdWVuY99r333stp9+rVq9E1tm7dGqtXr272NQAAAAAAaLpkw+0+ffrktN999928x9YOwnv37t3sa9QOt2vPBQAAAADArttrwu3y8vK8xy5atCinXV+4Xft6U9ao3be+NQAAAAAAaLpkw+2+fftGly5dsu1XX30177Hz58/Pfl1UVBSDBg2qs99JJ51U77iGVFVVxeLFi7Pt/v37R+fOnfPeHwAAAAAADUs23C4uLo7Pfe5z2fZ7770Xr732WqPjVqxYkdNv4MCB0b179zr7HnfccTnnbs+ePTs2b97c6BozZ86M6urqbHvYsGGNjgEAAAAAIH/JhtsREWeeeWZO+5FHHml0zGOPPRbbtm3LtocPH15v34KCgjjjjDOy7fXr18eTTz6Z1xo72nEOAAAAAAB2X9Lh9rBhw6Jfv37Z9m9/+9uYM2dOvf2XLl0a999/f7bds2fPGDlyZINrXHzxxVFSUpJtT5o0KdauXVtv/yeeeCJnD8OGDYujjz66wTUAAAAAAGiapMPtgoKCGD9+fLadyWTi8ssvjxdffHGnvuXl5TF69OicY0WuuOKK6NChQ4Nr9OrVK84///xs+/33348LLrgg3nnnnZ36Tp8+Pa6//vpsu127djF27NgmPSYAAAAAABpX3NILLF++PD7/+c/X+b0djwdZvnx5DBgwoM5+DzzwQHz605+u83unn356XHLJJTFlypSI+PjokNGjR8egQYOirKwsCgsLo6KiIl544YXIZDLZcSNGjIhRo0bl9RjGjRsXCxYsiLlz50ZExJIlS2L48OExZMiQ6N27d2zcuDHmzJkTFRUVOeNuuOGG6N+/f15rAAAAAACQvxYPtzOZTE6I3ZD6+u0YStdl/PjxUVVVFVOnTs1emzdvXsybN6/O/meddVZMnDgxrz1FRJSUlMTdd98dY8eOjZdffjkiIqqrq2PmzJl19i8uLo5x48Y1euQJAAAAAAC7JuljSbYrLCyM66+/Pn7xi1/EiSeeWG+/fv36xY9+9KO48847o3379k1ao3v37vHggw/GddddF4cffni9+zj11FPj0UcfjTFjxjRpfgAAAAAA8tfid24fdthhOx3X0VKGDBkSQ4YMibfeeisWLVoUK1eujG3btkVpaWn07dt3t48IKSwsjNGjR8eFF14YCxcujKVLl8bKlSujQ4cOUVpaGieccEKUlpY206MBAAAAAKA+LR5ut4YjjzwyjjzyyBabv6CgIMrKyqKsrKzF1gAAmtdpQ2taewtJ+OvsveIP+wAAgH2Ady8AAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACSnuLU3AAAAACk7bWhNa28hCX+d7f46AJqXf1kAAAAAAEiOcBsAAAAAgOQItwEAAAAASI4ztwEAAADg/885+vlxjj5tgSoEAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAklPc2hsAAAAAOG1oTWtvoc3762z3KALsyKsiAAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkpbu0NALRVpw2tae0tJOGvs/2eFAAAgFzeUzfO++nd5xkEAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcWtvQEAAAAAdt9pQ2taewtJ+Ots93rC3sJ/zQAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJKe4tTeQsnXr1sW8efOisrIyPvroozjooIPisMMOi4EDB0ZRUVFrbw8AAAAAYK8l3N4FS5cujUmTJsXs2bOjurp6p+/37Nkzvva1r8U3v/nNKCkpaYUdAgAAAADs3RxL0kS//e1v40tf+lI888wzdQbbERGrVq2Ke+65J772ta/FO++8s4d3CAAAAACw93PndhM899xzce2110ZNTU322ic+8Yn4l3/5l+jWrVssW7Ysnn322aiqqoqIiPLy8vjmN78Zv/71r2P//fdvrW0DAAAAAOx1hNt5WrlyZYwbNy4bbBcUFMT3vve9uPDCC6Ow8H9ugF+zZk2MHTs2Xn755YiI+Oc//xk/+MEP4o477miVfQMAAAAA7I2E23maPHlybNiwIdu+8sor46KLLtqpX/fu3eO+++6Lc889N15//fWIiPjDH/4QY8aMiQEDBuyx/abstKE1jXfax/11thOFAAAAANi3ScjysHr16pg2bVq2fcQRR8Sll15ab//27dvHhAkTsu1MJhOTJ09u0T0CAAAAAOxLhNt5mDVrVs6HR371q1+Ndu3aNThm8ODB0bt372z7ueeei40bN7bYHgEAAAAA9iXC7Tz86U9/ymkPHz48r3FnnHFG9uvNmzfH888/36z7AgAAAADYVwm38/DKK69kv+7Ro0ccfvjheY0bOHBgTnvOnDnNui8AAAAAgH2VcLsRK1asiA8//DDbPuaYY/IeW/sDJLd/wCQAAAAAALunuLU30Na98cYbOe1DDjkk77E9evSIdu3aZc/rXrp0abPuDRpy2tCa1t5Cm/fX2X6/BwAAAJAqyU4jVqxYkdPu1atX3mMLCgqitLS03rkAAAAAANg17txuxMaNG3PanTp1atL4/fbbL/v11q1bY/PmzdG+ffu8xxcUFDRpPfYN2+tix/pQK03nOWse6rF5eM52n1psHp6z5qEed5/nq3moxebhOWse6nH3eb6ah1psHp6z3VdfDXpu8yfcbkTtcLspwXRd/Tds2NCkObp169ak9fYO77f2Btq8uuqia9euta54HhvT+H9fnsN8NF6Pnsd8qMfdpxabh1psHupx9+X3c7DnsTFqsXl4bWwe6nH3qcXmoRabh3rcffU9hztnPNRHuN2IzZs357TbtWvXpPElJSUNzsfOFr12YGtvYa/gedx9nsPm4XlsHp7H3ec5bB6ex+bheWwensfd5zlsHp7H5uF53H2ew+bheWwenkf2BGduN6L2XdbbPxwyX1u2bGlwPgAAAAAAmk643YjaZ2w39c7r2v13PIMbAAAAAIBdI9xuRO1we8OGDU0av2P/4uJid24DAAAAADQD4XYjSktLc9orVqzIe2wmk8npX3suAAAAAAB2jXC7EX369MlpL1++PO+xq1evzjmju3fv3s22LwAAAACAfZlwuxEHHXRQdO7cOdv+xz/+kffY8vLynLZwGwAAAACgeQi383DSSSdlv37//fdj2bJleY2bN29eTvvkk09u1n0BAAAAAOyrhNt5GDZsWE57xowZeY176qmnsl+3b98+PvOZzzTrvgAAAAAA9lXC7Tz867/+a7Rr1y7bnjZtWs5Z2nV58cUXY+nSpdn2kCFDolOnTi22RwAAAACAfUlxa28gBT169IivfvWr8atf/SoiIpYtWxa/+MUv4tvf/nad/Tdv3hwTJ07MtgsKCuKyyy7bI3slPRs2bIi///3v8dZbb8UHH3wQmUwmOnfuHIceemiUlZVFt27ddnuN1atXx4IFC+K9996Ljz76KIqLi6NLly7Rp0+fGDBgQHTo0GH3Hwh7hb2tHj/88MN49dVX46233ooPP/wwioqK4oADDojDDz88jjnmmOjatWuzrUXz2ltq8c0334zy8vJYvXp1bNiwITp27BjdunWLY445Jj75yU9GUVHRbq9By9sT9bhmzZqYO3durFq1Kj766KPo3r179OrVKz71qU9Fx44dd/9BRMSWLVvilVdeieXLl8eaNWuiW7du2TXchJGG1Guxqqoq/t//+3/x+uuvx9q1a6Oqqiq6dOkSPXr0iBNOOCF69eq12/tnz0i9Ftm77G316D1MuvaWWkztPYxwO0/f/OY344knnogNGzZERMTdd98dnTp1igsvvDAKC//nBvg1a9bE2LFj45///Gf22llnnRUDBgzY43tm92zYsCHKy8tjwYIFsWDBgli4cGEsX748+/1DDz00/vSnP+3y/AsXLowpU6bErFmzYuvWrXX2KSgoiMGDB8c3vvGN+OxnP9vkNf74xz/Ggw8+GPPnz6+3T/v27ePMM8+MSy+9NPr06dPkNerzzDPPxBVXXJFzbXefs32ZemyauXPnxpQpU+Ivf/lLbNu2rc4+BQUF0bdv3/jyl78co0eP3uW19jVqsXFbtmyJhx56KB599NF455136u134IEHxle+8pUYM2ZMdOnSpUlr8LG9oR5ffPHFuPvuu2PevHmRyWR2+n6nTp3i85//fIwfP36Xg7+PPvoofvKTn8T06dPjgw8+qHONM844I66++uro2bPnLq2xr1OL9Xv99ddjxowZ8fzzz8eCBQsa/AvYT37yk3H++efHV77ylZy/nCV/anH3eA/TvNRj03gP03LUYuNSfg9TkKnrGaFOs2fPjssuuyxqamqy1z7xiU/EKaecEt26dYu33nornn322aiqqsp+/5Of/GT8+te/jv333781tswu+OUvfxmPP/54/POf/8z5/7q23Xnxu/vuu2Py5Mn1/oNVly996Uvxwx/+MIqLG/+d1MaNG2P8+PHx7LPP5j1/SUlJXHvttXHeeeflPaY+H374YZx11lmxcuXKnOt+MGw69di0ety0aVPcdNNN8fjjj+c95oQTTojf/OY3TVpnX6QW86vFN954I6644op4/fXX817joIMOijvvvDM+9alP5T1mX7c31OPWrVvjpptuil//+td5zd2lS5e4+eab4/Of/3ze+4mIWLRoUVx55ZU5b+Dq071795g0aVKceuqpTVpjX6YWGzZhwoRd+jd2wIABMWnSpOjdu3eTx+6r1OLu8x6m+ajHpvEepuWoxfyk/h7GndtNMHTo0LjlllviP/7jP2LTpk0R8fGt+m+++Wad/Y855pi45557BNuJmTNnTixZsqTF5r/rrrviZz/7Wc61Ll26xKmnnhpHHHFEFBUVRWVlZbz00kvx3nvvZfs8/vjjsWXLlpg0aVKD82/bti2+9a1vxd/+9rec64ceemiccsopcdBBB8XWrVtj2bJl8fzzz8dHH30UER//lu6mm26K4uLi+NrXvrZbj/H222/f6YdCdo16zL8eP/rooxgzZsxOd+MeccQR8alPfSp7N+Lq1avjH//4RyxevLjBH3DIpRYbr8XKysq48MILd3r9O/bYY2PgwIHRrVu32LBhQyxevDhefvnl7A/AK1eujEsuuSQefvjhOPbYYxt+ooiI9OsxImL8+PE5Hz4e8fFNEZ/+9KejW7dusWbNmnjppZeyP2euX78+xo0bF1OmTInBgwfn9TjefffduPTSS2P16tXZa127do3TTz89evXqFatWrYo///nPsWrVqoj4+C8Qv/3tb8ejjz4aRx99dF5r7OvUYsO1+P777+907cADD4yTTjopSktLo0uXLrF27dqYN29eLF68ONunvLw8LrjggnjkkUfiiCOOaPQxoBbzfV1siPcwzUc95l+P3sO0LLXYeC3uDe9hhNtNdM4550RZWVlMmjQpnnvuuTr/rK5nz57x1a9+Nb71rW9FSUlJK+yS5tapU6c49thjY9GiRbFx48ZdnqeioiJ+/vOf51w777zz4n//7/+901mX27Zti8ceeyxuueWWbJ09+eSTceaZZ8b/+l//q941HnvssZzwpl27dnHDDTfEl7/85ZwjdCI+/of01ltvjWnTpmWv3XrrrTF06NAoLS3dpcc4Z86c7G+Qe/bsmX3DTPNRjzvLZDJx1VVX5fxQ2K9fv7jhhhvq/U3yypUr4w9/+EMsWLCgwbmpn1rMdcstt+T8UNirV6+YNGlSnTX49ttvxzXXXJOt2Y0bN8aECRPiv//7v6OgoKDeNahfSvX44IMP5rxJ6dSpU9x8881x5pln5vTLZDLx3//933HjjTfGli1borq6Or7zne/EH//4x+jRo0eDjyOTycR3vvOdnGD77LPPjptuuin222+/7LXtb6weeOCBiPi4Fi+//PL44x//GO3bt29wDeqmFnfWuXPnGDFiRIwcOTKOOeaYOvu89NJLce2112bf/K9atSrGjx8f06ZN87q4i9Ri/ryHaXnqcWfew7QOtZhrb3gPI9zeBb17946f/exn2bsMKisrY8OGDdGjR484/PDDY9CgQW3ucHXy1759+ygrK4vjjz8+jjvuuDj++OOjT58+UVhYGP/6r/+6Wy9+jzzySM6fqpx99tnxgx/8oM6+RUVF2T+Dv+mmm7LXH3300QZf/B5++OGc9oQJE2LkyJF19t1///1j4sSJsX79+uwL5saNG+OJJ56Ib37zm/k9qB1s2bIlJkyYkD3/6fvf/36MGzeuyfPwP9RjfvU4bdq0+Mtf/pJtn3LKKTFlypQGf8F40EEHOaeuCdRiw7W4atWqnB8827VrF/fdd1/07du3zv6HH3543HfffXHOOefE22+/HREfHx/x6quvxsCBA+t9HHws5XrcsGFD3Hvvvdl2QUFB3HvvvXXeWVNQUBBf+cpXYr/99ourrroqIj6+G+fee++td0/bzZgxIxYuXJhtn3rqqfHjH/94pzceJSUlcd1118X69euzfw69fPnyePTRR71G5kEtNlyL++23X1x22WUxZsyYRv+a9ZRTTolHHnkkRo4cmf2lzMKFC2PGjBk7vYlnZ2qx8dfF+ngP0/zUY3716D1My1OLDdfi3vIeprDxLtTngAMOiGHDhsV5550Xl156aXzpS1+Kk08+WbCduDvvvDOmTZsWP/jBD+JLX/pS9O3bd6e7+nbVSy+9lNO+/PLLGx0zatSonA93+tvf/lbvnyGtWLEi3njjjWy7Z8+e9YY3O7ryyisb3Ge+fvazn8XSpUsjIuKzn/1snHXWWbs0D/9DPTZej2vWrIkf//jH2XavXr3iZz/7mb+caWZqseFafOmll3I+2OXzn/98vT8Ubrf//vvHRRddlPca/I+U6/HJJ5+MdevWZdtnn312o38yeuaZZ+Z88NBvfvObWLFiRYNjJk+enP26sLAw/uM//qPBO2quvfbanPBxypQp9X4gEv9DLTZci7fccktcddVVeR/TeMghh2TflG9X+0+xqZtabPx1sT7ewzQ/9dh4PXoPs2eoxYZrcW95DyPchj1oxxeVzp07R58+fRodU1RUFMcff3y2XV1dnfMCV9/8ERFlZWV5vXD37ds3503Hrpw1V1FREffff39ERHTo0CFuuOGGJs/BnrW31ONjjz0WH3zwQbZ99dVX+6yDxOwNtVh7jRNOOKHR+SNipzscnPXZ+lq6Hp9//vmc9le+8pW89vXVr341Z/6ZM2fW2/fNN9+MioqKbPu0006LI488ssH5u3btGl/4whey7dWrV8ecOXPy2hstY2+oxXw+KKu24cOH57xG+9P71rc31GJ9vIdJz95Sj97DpG9vqMW95T2McBv2oB1/I9ehQ4e8x9U+r6k+O/7GLSKiY8eOea+xY9+mnpVUU1MTEyZMyJ4d9e1vfzsOP/zwJs3Bnrc31OP2s8W26969u7ttErQ31GLtOy7yXaN2P+fKtr6Wrsfy8vLs14WFhbv8JuKZZ56pt++sWbNy2meccUZea9Q++qH2POxZe0Mt7orOnTtH9+7ds+26PpSSPWtvrUXvYdK0N9Sj9zB7h72hFveW9zDCbdiDDjvssOzX69ati6qqqrzGLV++PPt1165d44ADDmh0/oiId999N6/5N23aFGvXrs22m/qp9FOnTo3XXnstIj6+07H2n6jQNu0N9fjqq6/GO++8k22fccYZu3SXGK1rb6jFXV1jx8fQ2BrsGS1djzvWVJcuXfJ+E9GzZ8+co+9eeeWVnHMedzR37tycdr5nIJaVleWsUXse9qy9oRZ31Y5noPp3vfXtrbXoPUya9oZ69B5m77A31OLe8h5GuA170I5nH1VXV+d1d8Hbb7+d84FQQ4YMqfe3YgceeGAMGDAg216wYEFeL05PPfVUzrmap59+eqNjtnv33XfjJz/5SUR8/Nu6//iP/4h27drlPZ7WszfU4/Y3JNvV96nitG17Qy2ecsopOa99Tz/9dL3n5+3oD3/4Q/brgoKCGDp0aKNjaFktXY+bN2/Oft3UczV37L9ly5bsB/nUtuMZ8x06dIjevXvnNf9+++2X8+Zk6dKlO/3lA3vO3lCLu2LZsmU54XavXr2abW52zd5Yi97DpGtvqEfvYfYOe0Mt7i3vYYTbsAddcMEFOX+CcttttzX4A9jGjRvje9/7XjZcKSkpif9fe/ceFFX5hwH8AVlXRS4SarZeyLxEXisRM0tDm0xNSG1KvF8YyibKdEorQRMlNTFHIS+p2MXU8pIoapZBmaPmNVNLxTBEUQxQru4i+/uD4fz27C67Z3FZOG/PZ6YZ3uN7zlmYJ9jvu+9531dffdXmPSIjI6Wvy8rKMGPGDJufIP79999YuHCh1A4ICMDQoUPtfi+VZs+eLRUgI0aM4B9mFREhj6ZvDABI65fl5+fjyy+/xJgxY9CvXz90794dTz/9NF5++WUsWbJEthYt1T4Rsujn5ydb3+7SpUuIj4+3+Zq+//57bNu2TWqHhoYiICDA5jlU82o6j15eXtLXhYWFil+XXq9HSUmJ7Fh6erpFP4PBIJsNdv/99zv0qOgDDzwgfV1aWmoxM4dcR+1ZrK4dO3bI2r169XLatal6RMwiaxj1EiGPrGHEIEIWRalhOLhN5EI6nQ6xsbHSJjk5OTkYPnw4Vq5cifT0dOj1ety9exdXr17FN998g9DQUBw7dgxAxcYD8+bNs7tJwcCBAzFy5EipffjwYbz44ovYtm0bsrOzcffuXej1ely4cAEJCQkYPny4tJZhkyZNsGzZMmi1WkXfT3JyMtLS0gBU/FKcPn26wz8Tqj0i5NH0j7Sbmxt0Oh327t2LgQMHYu7cuThy5AiuXbuGkpISXL9+HSdPnsSKFSsQGhqKadOmoaCgoNo/P3IeEbIIVGwEZLpBzOrVqzFp0iSkpaUhPz8fRqMRRUVFOHbsGN5//31ERUVJMyO6dOmCWbNmOf7DI6er6Tw2a9ZM+rq4uFg2EG3LhQsXLI5lZ2dbHLt586bsiYMWLVooun6l5s2b270HuYbas1gd+fn5+OKLL2THzNeCJ9cTLYusYdRNhDyyhhGDCFkExKhhuKgPkYsNHjwYvr6+iImJQWZmJm7duoX4+Hibn4517NgRs2bNQlBQkKJ7xMTEICAgAMuWLUNhYSEuXbqEGTNm2DznmWeeQXR0tGzGli35+fmYP3++1J4xYwZ8fX0VnUt1h9rzaLrDuJ+fH7Zt24YPPvjA7msyGo3YuXMnzp07h3Xr1lkM5pDrqT2LQMWSDuvXr8dHH32ELVu24O7duzhw4AAOHDhQ5Tn169dHeHg4pk6d6tBGNFSzajKPjz32GP7880+pnZqaitGjR9t9TT/99JPFsaKiIotjpss5AMo3Lark6elp83rkWmrOYnXMmzcP+fn5UrtXr16cUVtHiJJF1jBiUHseWcOIQ+1ZBMSoYThzm6gWPPnkk0hJScHEiRNlC/1b8/zzz2PVqlWKB2+Aik9/x48fj5SUFLvrZ2s0GrzxxhuIj49XPLANAHFxccjNzQVQUXiEhoYqPpfqFjXn8fbt29LXJSUlmD17ttQeMmQIvvzySxw9ehSnTp3Czp07MWXKFNlGHOnp6XjzzTdlsxyp9qg5i5U8PT0xd+5cbNiwAe3atbPZ19/fH3FxcZgxY0adeFNIcjWVR/PsJSUl2d2AKD8/H19//bXFcWsDz+bFi9Knsarqz8Ht2qfWLDpq69atsiVJtFotoqOj7/m65DwiZJE1jDjUnEfWMGJRcxYrqb2G4eA2US1ITU1FaGgo1q5da3dH7927d2PAgAGYP3++bEMBW8rLy7F27VoMHTrU6qd2pgwGA5YtW4aQkBBs2rRJ0fUPHjyI7du3A6j4xM70jzGpj5rzaPpHuri4GGVlZXBzc8OCBQuwePFiBAUFwcvLCw0aNED79u3x5ptvYuPGjbIdqU+cOGH1DQC5npqzWKmgoADR0dEYPXo0Ll68aLPvzZs3MW3aNAwZMgRHjx5VfA9yjZrK41NPPYUOHTpI7czMTMycObPKAvXOnTuYNm0abt68afXfzOn1elnb0Q3SzDcssldEUc1TaxYdcerUKYv3k++++67dJafItdSeRdYwYlFzHlnDiEXNWayk9hqGy5IQuVhiYiKWLl0qtf38/DB+/Hj069cPLVu2hIeHB27cuIHDhw8jKSkJFy5cgMFgwPr163Hq1CmsXbvW4pFhU3q9Hm+88QZSU1OlYx06dMC4ceMQHByM5s2bw2AwIDMzE6mpqVi/fj1yc3ORl5eH6OhonD9/3uaaSSUlJbJZNJGRkXjwwQfv7YdCtUbtedRqtRabZYwaNQphYWFVnvPwww8jNjYWr7/+unRs3bp1GDVqlLReGrme2rMIAFevXsXYsWNlG8n07dsXr7zyCrp27QofHx8UFxfj/Pnz2LVrF7799lsYDAZcvHgRY8eOxccff4xBgwZV/4dITlOTeXRzc8OcOXMwZswYqThJSUlBRkYGIiMjERwcDB8fH+Tl5eHgwYP49NNPpbU5PT09ZTOzrS05Yj44bTAYHPrezQfH68qMnP8qNWdRqb///huRkZGywnvYsGEYNWpUta9Jzqf2LLKGEYva88gaRhxqzyIgRg3jZjQajbX6CohUJCQkBFlZWQAqNg/Yv3+/Q+enpKRg6tSpUjswMBCrV69G06ZNrfbX6/WYNWuWNMMAqHhMafHixVXeIyYmBhs3bpTaYWFhiI2NrXLmVk5ODiIiInDu3Dnp2Ny5c2U75ppasGAB1q5dCwAICAhAcnKyRSFtqmPHjtLX1fmZUdWYR6B3797Spn8A4OHhgf379ytafy40NFS2htn27dsRGBho9zyyxCxWvKYRI0bIdrGfM2cOXnnllSpf06lTpzBp0iRpUyCNRoOtW7fKZmiQ49SQRwD49ttvER0dbXeGT6X7778fEyZMQFxcnHRs5syZGD9+vKxfenq6rMDo378/EhMTFd0DAGJjY2Ub+q1evRpPP/204vPp//7rWVQiOzsb4eHh0s8JqHgMe/ny5fDw4DwsZ2EWWcPUJcwja5i6glkUp4bhxztELmIwGGSbl2i1WiQmJlb5iw+omH0VGxsre3O1c+dOnD592mr/v/76S/b4fOWnu7YeSW7atCkSEhJka2zGx8dbfWzlzJkzWL9+vdSeM2eOzTeFVHeJkEfAcuOzRx55RPHGKuZrmFXuXE2uJUoWN2/eLHtTGB4ebvNNIQB069YNH374odQ2GAx239xSzXJFHiuNGDECq1atQqtWrey+rqCgIGzYsAFubm6y4z4+PhZ9zWfmOLrRn3n/e5mRS9UnQhbtyc3NxcSJE2UD20FBQVi6dCkHtusQEbLIGkYcIuQRYA0jAlGyKEoNw8FtIhc5cOAAcnJypPaQIUMUbVKm0WgwceJE2bHvvvvOat/t27fD9GGMCRMmKFprU6fTYciQIVI7Ly8PP//8s0W/RYsWSZ8WhoWFoVevXnavTXWTCHkEKj6VNtW+fXu7169k/sny9evXFZ9LziNKFrdu3SprR0RE2L0+ULGpTOvWraV2Wloa8vLyFJ1LzueKPJrq06cPdu/ejUWLFmHw4MFo3bo1PD09odVq0bp1awwcOBCJiYn4/PPPodPpcOXKFdn51tYj9vf3lw0MZmdn230dpsz7m/+eJdcQIYu2FBYWYvLkydLj0wDQqVMnrFixwuFNUKlmiZBF1jDiECGPAGsYEYiSRVFqGH4kTuQiJ0+elLV79uyp+Fzzvn/88YeiewQHBzt0jy1btkjt06dP49lnn5X1Mf1ltWPHDiQnJyu+PgBkZWXhkUcekdo6nQ779u1z6BrkHCLkEaj4I33kyBGp7cjMMfO+t27dUnwuOY8IWdTr9bLHQ1u1aqXozS1QsZZejx498M8//wAAjEYjzpw5gz59+ih+jeQ8rsijOY1Gg6FDh2Lo0KF2+5rO7NFoNHj44YetXq9ly5bIyMgAUDFYbTQaLWbwVOXatWvS1w0bNoROp1N0HjmXCFmsSmlpKV599VWcOXNGOta2bVt89tlnaNy4seLrkGuIkEXWMOIQIY8AaxgRiJBFkWoYztwmcpHc3FxZ29bjKub8/f1l7ao+ETO/h/l5zrhHpfLycty9e9fuf+bs/Tu5hih5NJ/lYL4Rmi3mffl4au0QIYt5eXmy32eOXB+w/J45c7v2uCKP1VVSUoKzZ89K7cDAwCp/b5nOziktLcWlS5cU3aOwsBCXL1+W2gEBAYoHxcm5RMmiOYPBgKioKPz222/SMZ1Oh6SkJPj5+Tn1dZJziJZF1jDqJkoeWcOonwhZFKmG4eA2kYuYP2JZWlqq+Fzzvg0bNrTaz/wXVlVrw97LPUgMouQxKChI1nbksTzzR+9ZVNcOEbJo/j04cn2g4g2ovXuQa7gij9W1b98+WbZMl8wx9/jjj8vax48fV3SP33//HeXl5VK7R48eDr5KchZRsmiqvLwc77zzDtLS0qRjTZs2RVJSkuK1Zsn1RMwiqZcoeWQNo34iZFGkGobLkhC5iPkfnfT0dPTv31/RuRcvXpS177vvPqv9zI+np6ejW7duTruHkrWgzHGn8bpJhDwCFWvOtWnTRpppePLkSZSXl8Pd3f5ntydOnJC1TR83JdcRIYs+Pj7QaDQwGAwAgIyMDJSVlSneEM10zdmq7kGu4Yo8VteGDRukr+vXr4/Q0NAq+/bv3x8LFy6U2nv37sVLL71k9x579uyxuA7VDlGyaComJgYpKSlS29fXF+vWrZOt2Ul1jwhZZA0jDhHyCLCGEYEIWRSphuHMbSIX6dq1q6y9e/duxefu3LlT1u7evbuie+zatUvR9Y1Go0Xfqu5BYhApj4MGDZK+zsnJkc0Iq0p+fr5srUSNRsMZirVEhCy6ubmhc+fOUru4uBipqamK7nH9+nXZ4/larRaBgYGKziXnc0Ueq2PHjh2yYvall16Cr69vlf0DAgJkayv++uuvsuVGrLl165Zs4NHf399iZhm5jihZrLRw4UJs3rxZant5eWHNmjUObaJGtUO0LJK6iZRH1jDqJkIWRaphOLhN5CJBQUHw9vaW2mfPnsVXX31l97wTJ07IigEAeOaZZ6z2DQkJkbU3btyoaHOCpKQknD9/Xmr7+vri0UcftXseqZdIeRw/fjy8vLykdlxcHAoLC23eIzY2FsXFxVJ72LBh3MSqloiSRfN7LFq0CLdv37Z5faPRiNmzZ8vWTuzduzcaNGhg97VRzXBFHh11/PhxxMTESO1mzZrh7bfftnvea6+9Jn1dXl6O2bNnw2g0Vtn/o48+QkFBgdSOiIhQPHOHnE+kLK5cuRJr1qyR2g0bNsTKlStlBTXVXSJlkdRPpDyyhlE3UbIoSg3DwW0iF9FqtZg0aZLsWGxsLBISEqyuz2Q0GpGcnIzJkydLj4kAFb/4qioGunfvjieffFJq37lzBxMnTsSePXusFrTFxcVYsmQJFixYIDseGRnJjSkEJ1IefX19ZYM4ly9fxrhx45CRkWHRt7CwEDNnzkRycrJ0zNvbW3Y+uZYoWQwPD5fNisjIyMCoUaNw7tw5q/2vX7+OKVOmWDzm/Prrr1vtT67hijwCFY+jRkREIDU1VXaeqdLSUqxatQoTJkyQCll3d3fMnTtXUSH73HPPoUuXLlL74MGDmD59OoqKimT99Ho94uLisHXrVumYTqfDyJEj7d6Dao4oWdy0aRPi4+Oldv369ZGYmGixLjzVXaJkkcQgUh5Zw6ibKFkUpYZxM9qawkH0H5SVlYVnn33W6r+Z74xdr149q/2SkpLQs2dPi+N6vR6TJk3CkSNHZMd9fX3Ru3dvtGzZEvXq1cONGzdw6NAhZGVlyfq1aNECmzZtsrnpTlZWFl5++WXk5OTIjrdu3Ro9e/ZEs2bNUFZWhsuXL+PQoUO4deuWrF+fPn2wcuVKp83W4np194Z5VJZHo9GIqVOnyh4H02g0CA4ORseOHaHRaJCZmYlffvlF9kl0vXr1kJiYiH79+tm8PjGLSrKYlpaGKVOmoKysTHa8a9eu6NatG3x8fFBcXIy//voLR44csXiDGhUVVetvDNVC7Xk8f/48XnjhBQAVyzN069YNbdu2hbe3N27fvo0rV67g0KFDstlZbm5uiImJcWjQ+erVqxgxYgT+/fdf6ZiPjw9CQkLQvHlz3Lx5E2lpabL/Lxo1aoSvv/5atqwJVY1ZtC0kJMTidVX1c7Bl37590Ol0Dp/3X8IsOhdrmHvDPCrDGqbmMYv2iVDDcHCbyMyVK1fueQOlzz//HMHBwVb/raCgADNnzpStlaVEYGAgPvnkEwQEBNjtm56ejrfeekv2OL0SgwYNQmxsLDw9PR06zxa+Mbw3zKPyPN65cwfvvfeexRpmVWncuDHi4+PRt29fh17XfxWzqCyLP/zwA95//33k5+crvr6HhweioqIQGRnp0Ov6L1N7Hk0LFSV8fX0xb948DBgwwKHXAwB//PEHoqKiLAoqa5o0aYLFixfLnnQg25hF26wNblfHjz/+iJYtW97zdUTGLDoXa5h7wzwqxxqmZjGLyqi9huGyJEQu5uXlheXLlyMhIQHBwcFwc3Oz2b9du3aIjo7G5s2bFQ3eAMBDDz2ELVu24IMPPkDbtm1t9nV3d8cTTzyBFStWYMmSJU4d2Ka6T6Q8arVaLF68GEuXLpU9im+uUaNGCA8PR0pKCt8U1iGiZHHAgAHSI4fmu6ib02q1CAsLw5YtW+rEm0L6v5rOo7+/P1588UU88MADNvv5+fkhIiICe/bsqfYATufOnfHdd99hzJgx8PHxsdqnYcOGCAsLQ3JyMge26xiRskjqxixSXSJSHlnDqJsoWVR7DcOZ20S1rKCgAL///juuXLmC27dvo7y8HI0bN0bz5s3RpUsXm4+oKJWdnY3Tp0/jxo0bKCwshLu7O7y9vdGqVSt07dqVa9SRRKQ8Xr58GWfPnsWNGzdw584dNGnSBG3atMGjjz4KjUbjlHtQzREhi0ajEenp6Th37hzy8vJQVFSEBg0awNvbG+3atUNgYCD3N1CJmsxjZmYm/vzzT1y9ehVFRUXw8PDAfffdhw4dOqBTp05wd3feXBS9Xo+jR48iKysLubm58PHxQYsWLdCjRw9+uK0SomSR1I9ZpLpEpDyyhlE3EbKoxhqGg9tEREREREREREREpDr8yJOIiIiIiIiIiIiIVIeD20RERERERERERESkOhzcJiIiIiIiIiIiIiLV4eA2EREREREREREREakOB7eJiIiIiIiIiIiISHU4uE1EREREREREREREqsPBbSIiIiIiIiIiIiJSHQ5uExEREREREREREZHqcHCbiIiIiIiIiIiIiFSHg9tEREREREREREREpDoc3CYiIiIiIiIiIiIi1eHgNhERERERERERERGpDge3iYiIiIiIiIiIiEh1OLhNRERERERERERERKrDwW0iIiIiIiIiIiIiUh0ObhMRERERERERERGR6nBwm4iIiIiIiIiIiIhUh4PbRERERERERERERKQ6HNwmIiIiIiIiIiIiItXh4DYRERERERERERERqQ4Ht4mIiIiIiIiIiIhIdTi4TURERERERERERESqw8FtIiIiIiIiIiIiIlIdDm4TERERERERERERkepwcJuIiIiIiIiIiIiIVIeD20RERERERERERESkOv8DkU/ZgDkukmAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeZyVdd3/8ff3OofZQBzggLgwlEuJlTkTJENMJWpmhQPlhjUhQW5pSnALQZmlYWMYmJgbdwmTiGjC3Nx1i3suDP60mSJzDwI1WUY5iszGOdf398fVGRiY5axzlnk9Hw8fcJ0513W+43DNnHlfn+vzMdZaKwAAAAAAAAAAsoiT7gUAAAAAAAAAABArwm0AAAAAAAAAQNYh3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWIdwGAAAAAAAAAGQdwm0AAAAAAAAAQNYh3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWIdwGAAAAAAAAAGQdwm0AAAAAAAAAQNYh3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWIdwGAAAAAAAAAGQdf7oXAERj165d6V4CcpQxRsXFxZKkYDAoa216FwRkIc6j3HFI3ZfkD77Q4bFQ8WjtLn84TSvqWziXgMRxHgGJ4zwCkoNzqXODBg1K6vGo3AYAAAAAAAAAZB3CbQAAAAAAAABA1iHcBgAAAAAAAABkHcJtAAAAAAAAAEDWYaAkEhYMBlVfX69t27bpww8/1LBhw3TUUUeptLRUPp8v3csDAAAAAAAAkIMItxG3zZs366abbtKTTz6pvXv3HvTxoUOH6rzzztPFF1+svLy8NKwQAAAAAAAAQK6iLQniUltbq69//et65JFHOg22JWnnzp1asmSJzjvvPL311lu9vEIAAAAAAAAAuYzKbcTsz3/+s+bOnSvXddsf+8hHPqKTTz5ZxcXF2rp1q5544gm1tLRIkl566SVdfPHFuu+++zRgwIB0LRsAAAAAAABADiHcRkx27NihmTNntgfbxhjNmTNHU6dOlePsuxHgvffe05VXXqn/9//+nyTpjTfe0DXXXKNf/epXaVk3AAAAAAAAgNxCWxLE5LbbbtOePXvat6+44gpNmzatQ7AtSYMHD9bSpUt1zDHHtD/2pz/9SS+99FKvrRUAAAAAAABA7iLcRtQaGxt1//33t2+XlJTooosu6vL5+fn5+vGPf9y+ba3VbbfdltI1AgAAAAAAAOgbCLcRtccee6zD8Mhzzz1X/fr163af8vJyHX300e3bf/7zn9XU1JSyNQIAAAAAAADoGwi3EbXHH3+8w/aXv/zlqPY744wz2v/e2tqqZ599NqnrAgAAAAAAAND3EG4jan/5y1/a/x4IBDRixIio9istLe2w/fzzzyd1XQAAAAAAAAD6HsJtRGX79u3avXt3+/aoUaOi3veEE07osP3Pf/4zaesCAAAAAAAA0DcRbiMqmzZt6rB9xBFHRL1vIBDo0Jt78+bNSVsXAAAAAAAAgL6JcBtR2b59e4ft4cOHR72vMUaHHXZYl8cCAAAAAAAAgFj5070AZIempqYO20VFRTHt379///a/h0Ihtba2Kj8/P+r9jTExvR4Qrf3/bfHvDIgP51Eu6ezrZ/i69hLOJSBxnEdA4jiPgOTgXOodhNuIyoHhdizBdGfP37NnT0zHKC4ujun1gHgceuih6V4CkPU4j7Kcz3fQQ36fj5/DacC5BCSO8whIHOcRkBycS6lDWxJEpbW1tcP2/j20o5GXl9ft8QAAAAAAAAAgFlRuIyoHVlnv3bs3pv3b2tq6PV5PgsFgTM8HomWMab+C+v7778tam+YVAdmH8yh3DAiHD3pzGAqH9SE/h3sF5xKQOM4jIHGcR0BycC51Ltl3hRJuIyoH9tiOtfL6wOfv34M7GnwDQG+w1vJvDUgQ51G26+xrx9c0HTiXgMRxHgGJ4zwCkoNzKXVoS4KoHBhu79mzJ6b993++3++PuXIbAAAAAAAAAPZHuI2oHHbYYR22t2/fHvW+1toOzz/wWAAAAAAAAAAQK8JtROWYY47psP32229HvW9jY2OHHt1HH3100tYFAAAAAAAAoG8i3EZUhg0bpkMOOaR9++WXX45635deeqnDNuE2AAAAAAAAgEQRbiNqn/nMZ9r//u6772rr1q1R7VdfX99he8yYMUldFwAAAAAAAIC+h3AbUTv11FM7bD/00ENR7bdu3br2v+fn5+tzn/tcUtcFAAAAAAAAoO8h3EbUJkyYoH79+rVv33///R16aXemrq5Omzdvbt/+whe+oKKiopStEQAAxM/agx/74AMpFOrkAwAAAACQZoTbiFogENC5557bvr1161bdeeedXT6/tbVV119/ffu2MUaXXnppStcIAABi19ho9d+/c/Xqawd/bOub0qSzvY83NhJyAwAAAMgchNuIycUXX6z+/fu3b99yyy363e9+J9d1Ozzvvffe04wZM/TGG2+0P/aVr3xFJ5xwQq+tFQAA9Ky+wWpKldWyGikU6vw5waC0rEaaUmVV30DADQAAACAz+NO9AGSXww47TL/61a906aWXynVdWWv1i1/8QitXrtTYsWNVXFysLVu26IknnlBLS0v7fscee6x+9rOfpXHlAAD0TaGQ1fo6actWqbnZqrDQaGSJNK5c2vh3aeZsK2ulA65TH8R1pdZW7/mLFkplpaZ3PgEAAAAA6ALhNmL2xS9+UTfccIOuvfZaNTc3S5L+9a9/6V//+lenzx81apSWLFmiAQMG9OIqAQDo2xobrWrXWq2u9SqvfT7JGMlaq3BYGjhQamryQuvOem13xnUlx5HmzrdasVwKBAi4AQAAAKQPbUkQl0mTJunBBx/Uaaed1mHI5P6GDh2q733ve1q1apWOOuqoXl4hAAB91/6tRoJB77Fw2Gs7Eg57296gyOiD7QjXlVpapNq1tCcBAAAAkF5UbiNuRx99tG699Vbt2rVL9fX12rZtm/bs2aNAIKARI0aorKxMPp8v3csEAKBPqW+wUbcaiZfrSmtqpalVVn4/1dsAAAAA0oNwGwkbNGiQTj311HQvAwCAPqWzXtqDiq1uXhJbq5F47QpKdRukivGpfR0AAAAA6ArhNgAAQBbpqZd2b/E5XrBe0XsvCQAAAAAdEG4DAABkifoGqznzrFpb97Uc6c1Ae3/GkZqarCTakgAAAABID8JtAACALNAbvbRj4YalV1+T7lzqqrDQaGSJNK5c9OAGAAAA0GsItwEAADJcY6NXsd0bvbSj5Vrp+Rekv9Tva4lSXCxNrrSqnGgUCBByAwAAAEgtwm0AAIAU62z4YyyVzrVrvVYkmRJsR7huxyryYFBaViOtXGVVvUAqKyXgBgAAAJA6hNsAAAAp0tPwx2gqnUMhb/9MaEUSDdeVWlulmbOtFi0k4AYAAACQOk66FwAAAJCL6husplRZLavxgm3JG/4YCu0bAhmpdJ5SZVXf0HlZ9vq6fftni0j7lLnzrRobM6zcHAAAAEDOoHIbAAAgDt21Gtn4d0U9/LGnSuctW72K70ggni1cV2pp8VqqTJ9G9TYAAACA5CPcBgAAiEFPrUYGDpSamhTT8EfXlRzHq3ResVwdWpQ0N1uZLM2GXVdaUytNrbJR9RYHAAAAgFjQlgQAACBK0bQa+eADbzvW4Y/7Vzrvr7DQpHyQpDGS3+8F9cm2KyjVbUj+cQEAAACAcBsAACAK9Q1WM2dbtbambrhjpNI5FNqXZo8sSW1LEsfx/lu00Oj4jx/88USrxn2O11oFAAAAAJKNcBsAAKAHjY1Wc+ZZuW7qgu2IAyudx5VLxcWpeS3HkQoKpMU3GZWeZFLS/sQ4UlMTQyUBAAAAJB89twEAAHpQu9ar2E51exBpX6VzxX+2/X6jyZVeK5REgnWf4wXN1pXCrjSoWJpUKVVONB16fCebG5a275Bq7rEHDd6kDzcAAACARBBuAwAAdCMU8oZHprpiO2JfpfO+4LdyotHKVbG3RHEcKT9fuuoKaVfQqKnJqqjIC5fLx0YXLica6LtWWvew5PPZDoM3i4ulyZU25eE6AAAAgNxFuA0AANCN9XX7hkf2BjcsvfqadOdSt0OVc/UCo5mzrRwnuoDbcbx+2Tfe4LUc8cQeIvuT9G7xwL7hwaC0rEZaucqqeoFUVkrADQAAACA2hNsAAADd2LJV8vlSO9Rxf66Vnn9B+kv9gVXO0rU/lm64UWpp6T7gjvTSrl6wf7Adn8GDFHWgHivXlVpbpZmzrRYtJOAGAAAAEBvCbQAAgG40N9uUDFrszoGDKyNVzvn50rw50qbN0upa7/FU99IeNMh73VhbokTLdb3wfO58qxXLRYsSAAAAAFEj3AYAAOhGYaGR7Y1Jkj2IVDlfe520aKHR1CqpboNXWR5PL+1o9esXe0uUWLmuV41eu9Zq+rTkrT0Uslpf5/0/YpglAAAAkHsItwEAALoxsqT3WpL0pGOVs1HFeKMKSfH00o5FWanRooXe6/bUEiVeriutqZWmVtmEg+fGRqvatXZfdbtPDLMEAAAAcpCT7gUAAABksnHlXhiaKfavcu5NZaVGK5Z7FeOR/x8+xxs46UvSO8pdQa8aPRH1DVZTqqyW1ewbBBoOS6HQvosUkTYvU6qs6hvSX5UPAAAAID6E2wAAAN3w+40mV3oV05kiUuUcCvVuMBsIGE2f5mjNA0Y3XG/03RlGF5wvfXeG0RmnexXSifA5XguReNU3WM2cbaPqD77/MEsCbgAAACA7ZdCvaQAAAJmpcqJRfn7sAbcxXmXzwIHedqTS2UlCJ4xkVDnHy+/3WqJ86wKji2Y4+tYFRocdpoQHbxrH6x8ej8ZGqznz7EHDOLvjupK1XruVxkYCbgAAACDb0HMbAACgB4GAUfUCxTRU0XG8sHfRQqNPfbLj8MdXX5OefyGx3tWRKueK+A+RVMkYvOmGpVdfk+5c6sY8/LF2rVexHesSUjXMEgAAAEDqEW4DAABEIZahio4jFRRI1QuMSk/yAtOK8Wof/njnUld/qU8s3N5X5ZwZgWwyBm+61gv9/1If2/DHUMgbHhnv/89kDrMEAAAA0HtoSwIAABClaIYqDiqWplZJK5bvC7YP5FU5J7YW60pFRZkTxCZr8Kbrxj78cX3dvuGR8UpnmxcAAAAA8aFyGwAAIAbeUEWjqVW2Q6uRoiKvjUb52J7baCSjyjnsesfJFN7gTatlNYlVpHdm/+GPixZ6Fxn2t2WrN8wykf+nmdbmBQAAAEDPCLcBAADi4A1V3NdqJBaRKudEqo0HFXtBeiapnGi0cpXX+zoVAbfjeG1hVixXhxYlzc02icMsM6caHgAAAED3aEsCAADQy7wqZy+sjYfjSJMqoxu02Ju8wZtGxsT/uXVn/+GP+8vFNi8AAAAAeka4DQAAkAaVE43y82MPgSPDKisnZmYQ6w3eNCooSF3AvabWGyIZkYttXgAAAAD0jHAbAAAgDeKpcnYcyRipeoHp0JYj03Q3eNNJwrIPHP6YjGGWmdjmBQAAAED3CLcBAADSJJYq50jF9uKbjEpPytxgO8IbvOlozQNGN1xv9N0ZRhecL40Zk3hFd2T4Y0SutnkBAAAA0D3CbQAAgDTqrsrZ9593aoOKpalV0orl2RFs788bvGn0rQuMLprh6OMfSzzc3jf8cZ9cbfMCAAAAoGv+dC8AAACgr/OqnI2mVlnVbfCqkpuarIqKjEaWeO0ycqWq2Bv+mNj0Rzcsbd8h1dxj1dxsVVjo/X9acJ00e44XWLtuz8fJljYvAAAAADpHuA0AAJAhvCpnqUKSlJthazKGP7pWWvew5PNZGSNZaxUOe5Xvp58m/fnPUmtb9wF3pGK7ekH2VcMDAAAA8BBuAwAA7CcUslpf51VP718VPK48d6qn0yky/DEYTPxYB4bkwaD08CNSXp70pdOlDc95j/kcr5WJdaWw67V5mVTptSKhYhsAAADIXoTbAAAAkhobrWrXWq2u/U8g6tNBVcGTKy2BaIK84Y9Wy2qiax0SK9eV2tqkRx6VFlZLLS0mp9u8AAAAAH0Z4TYAAOjz6hus5syzam3dF7h2VhW8rEZaucqqeoE3CBLxqZxotHJVx//fyeS6XtuR+ddIK5ZLFeONcrXNCwAAANCXJTirHgAAILvVN1jNnB1d0Oq6UmurNHO2VX1DYkMR+7JAwKh6gZExXgidCq4rtbRItWv5OgEAAAC5inAbAAD0WY2NXsW260ZfQey6krXS3PlWjY0Ep/EqKzVatNCooCC1AfeaWq+POgAAAIDcQ7gNAAD6rNq1XsW2jTH7pCo4OcpKjVYsN5pa5fU0l7zhj36/92cy7ApKdRt6fl4oZPXU01Y191jdudRVzT3eNsE4AAAAkLnouQ0AAPqkUMgbHhlvz+dIVfDUKstwwgQEAkbTpxlNrbKq26AOwx83b7Z69PGD+5/Hwud4x6zo4uMMEgUAAACyF+E2AADok9bXeWFmIiJVwRXjk7Givs3vN6oYHwmhvRD5zqVWJsE82TheWN7ZQEkGiQIAAADZjbYkAACgT9qy1avSTUSkKhipUVhoYm4ZcyDrSkVFnQfbDBIFAAAAshvhNgAA6JOam5NZFYxUGFmSWEsSSQq73nH2xyBRAAAAIDcQbgMAgD4plVXBSI5x5fsGTcZrULFUPrbjYwwSBQAAAHID4TYAAOiTUlUVjOTx+40mV0pOnO9YHUeaVKkOAz+TNUg0FCLgBgAAANKNcBsAAPRJqaoKRnJVTjTKz4894HYcqaDA239/yRwkCgAAACC9CLcBAECflIqqYCRfIGBUvcDImOi/Vo4jGSNVLzAKBDp+fRgkCgAAAOQOwm0AANBnJbsqGKlRVmq0aKFRQUHPX6vI12bxTUalJx389WGQKAAAAJA7/OleAAAAQKqFQlbr67xq2+Zmq8JCo5ElXmuS6gVGM2dbOU50fZi7qwpG6pSVGq1Y7g1zXF3rtRbxOV7QbF2v//mgYq+avnJi118bb5BoYsE0g0QBAACAzEC4DQAAclZjo+0Yhvq8YNpaq3DY67k9uVK69sfSDTdKLS3dB9yRquDqBZ1XBSO1AgGj6dOMplZZ1W3wLlY0NVkVFXkXK8rH9twmhkGiAAAAQO4g3AYAADmpvsFqzjyr1tZ9gfWBoWYwKC2rkfLzpXlzpE2blVBVMHqH329UMV6qkCTF9rWIDBJNZKgkg0QBAACAzEC4DQAAslZX7UYKC61mz5Gs7bnViOtKra3StddJixYaTa1S3FXByHzeIFGrZTXRtaE5EINEAQAAgMxBuA0AALJOT+1GYuW6Xmg5d77ViuVGFeNNXFXByA6VE41WrupY1R8NBokCAAAAmaWHefMAAACZpb7BakqVV3kbaS0RDkuhUGK9lF3X67lduzaxYYPIfIGAUfUCI2O8wDoaDBIFAAAAMg+V2wAAIKN01WpkXLm08e/SzNk2qnYj8XBdaU2tNLXK0nYix5WVGi1a6FXrM0gUAAAAyE6E2wAAICP01Gpk4ECpqckLIW0Ki6t3Bb2e2xXjU/cayAxlpUYrlqvjvzsGiQIAAABZg3AbAACkXX2D1Zx5HXsgH9hi5IMPemctPserGq/onZdDmgUCRtOnGU2tsgwSBQAAALIM4TYAAEir+gab0lYjsTKOF24yTLJv8fuNKsaLQaIAAABAFiHcBgAAadPY6FVsp7rVSCysKxUVEW4CAAAAQKaLcj48AABA8tWu9VqRZEqwLXl9lkeWpHsVAAAAAICeULkNAADSIhTyhvhlQiuS/Q0q9vosA50JhazW13m9uZubrQoLvd7c48rpzQ0AAAD0NsJtAACQFuvrpGAw3avoyHGkSZWElDhYY6NV7VrvgkwwKPl8kjGStVbhsFRcLE2utKqcaBQI8O8HAAAA6A20JQEAAGmxZasXEGYKx5EKCqTKiQST6Ki+wWpKldWymn0XZMJhKRTy/pS8x5fVSFOqrOobMqjPDgAAAJDDCLcBAEBaNDdbmQzJkR3Hq8KtXkDVLTqqb7CaOdvrDd9TCx3XlVpbpZmzCbgBAACA3kC4DQAA0qKw0GTEIMlIxfbim4xKTyLYxj6NjVZz5lm5bvS94V3XG5A6d75VY2MG/AMHAAAAchjhNgAASIuRJftaOvQWnyP5/d6fkjc8cmqVtGI5wTYOVrvWq9iO9SKM60otLd7+AAAAAFKHgZIAACAtxpV7Q/hSOVQy0m7kphul5majLVulpiaroiKjkSVS+ViGR6JzoZA3PDLaiu0Dua60plaaWmX5NwYAAACkCOE2AABIC7/faHKlN6Qv3gCxO5F2I9UL9lVlV0iSCBrRs/V1iV942RWU6jZIFeOTsSIAAAAAB6ItCQAASJvKiUb5+V4QHQtjvPYiAwd627QbQbJt2Sr5fIkdw+d4xwEAAACQGlRuAwCAtAkEjKoXSDNnWzlOdBXckVYjixYafeqTXmUs7UaQbM3NVibBf0LG8f5dcrcAAAAAkBqE2wAAIK3KSo0WLZTmzrdqaek+4O601ch42o0g+QoLjWyskyQP4Ial7TukmnusmputCgu9iy/jyrn4AgAAACQD4TbiFg6H1dDQoDfffFM7d+7UgAEDNHz4cJWVlam4uDjdywMAZJGyUqMVy6Xatd4Qv2DQa+lgHMm6Utj1Wo1MqvRamQQCBINIrZElUjic2DFcK617WPL5vCpwa63CYW+Q6uRKy79lAAAAIEGE2znmnXfe0caNG/X3v/9dGzdu1Isvvqg9e/a0f/zyyy/XFVdckdBrtLW16fbbb9eqVau0c+fOgz7er18/nXLKKZo1a5Y+8pGPJPRaAIC+IxAwmj7NaGqVpdUI0m5cuRdCJzpUUjo4JA8GpWU10spVVtULvIs7AAAAAGJHuJ0DWlpadNVVV+nFF1/sNGxOpjfffFNXXHGFXn755S6fs3fvXj388MN65pln9LOf/UwTJ05M6ZoAALnF7ze0GkHa+f1GkyutltVE1ws+Vq4rtbZ6/eYXLSTgBgAAAOLhpHsBSFxbW5ueeOKJlAfbu3fv1kUXXdQh2C4sLNRXvvIVXXzxxTrvvPNUUlLS/rGmpibNmTNHTz/9dErXBQAAkAqVE43y871e76ngupK1Xr/5xsbE+nsDAAAAfRGV2zns8MMP12GHHaa//vWvSTne/PnztWnTpvbtk08+WYsXL9bgwYPbHwuHw7r77rv1y1/+8j99JcOaOXOmHnroIQUCgaSsAwAAoDcEAkbVC7zqasdJXQV3S4vXb37Gd5J/fAAAACCXUbmdIwYPHqzPf/7z+t73vqfbb79dzz77rJ588kn94Ac/SMrxN27cqHXr1rVvH3vssVq6dGmHYFuSfD6fpk+frssvv7z9sd27d+uOO+5IyjoAAAB6U1mp0aKFRgUFqa3gXlMrhUJUbwMAAACxoHI7BwwcOFB1dXUpfY3bbrutw/aPf/xj5eXldfn8iy++WLW1tdq6daskaeXKlbr00ksPCsMBAAAyXVmp0YrlXnX16lpvIKTPkYwjWVcKJ6Gie1dQqtsgTfxa4scCAAAA+goqt9GjPXv26JlnnmnfPuaYYzR27Nhu9+nXr5/OOeec9u22tjY9/vjjKVsjAABAKgUCRtOnOVrzgNEN1xt9d4bRBedL351hdMbpks+X2PF9jrRlK5XbAAAAQCwIt9Gjp59+Wm1tbe3bZ5xxRlT7ffnLX+6w/dhjjyV1XQAAAL3N7zeqGG/0rQuMLprh6FsXGB12mGRMYsc1jtTUlJw1AgAAAH0F4TZ69MILL3TYLi0tjWq/kpISDRkypMvjAAAA5ILCQiObYNG1daWiouSsBwAAAOgrCLfRo02bNnXYPuGEE6Led9SoUe1//+CDD7Rz586krQsAACATjCyRwuHEjhF2pZElCZZ/AwAAAH0M4TZ6tH+4nZeX16EauydHHHFEl8cCAADIBePKpeLixI4xqFgq736kCQAAAIADEG6jRzt27Gj/+/Dhw2ViaCp52GGHddjetm1b0tYFAACQCfx+o8mVkhPnO2vHkSZVescBAAAAED1/uheAzNbS0qLwfvfZFsXYDHLAgAEdtpvinJQUS6AOxGL/f1v8OwPiw3mUSzr7+hm+rlGoPMvRylWuWlsl141+P8eRCgq8/TmXgMRxHgGJ4zwCkoNzqXcQbqNbB4bR+fn5Me2fl5fX7fGiVZzovb5AFA499NB0LwHIepxHWc7nO+ghv8/Hz+EoFBdLv7llr757yQeSogu4Hcf77ze3DNRxx/br8DHOJSBxnEdA4jiPgOTgXEod2pKgW62trR22+/Xr18UzO3dguN3S0pLwmgAAADLRZ8f00123D1RhQc8tShxHKiyQlt4xUGNGx/b+CgAAAICHyu0kmTBhgt5+++2UHX/WrFm66KKLUnb8rhxYqb13796Y9m9ra+uwXVBQENc6gsFgXPsBPTHGtF9Bff/992WtTfOKgOzDeZQ7BoTDB705DIXD+pCfw1H72HHSPTWO/met1YNrrIJByedIxpGsK4Vdb3jk5ElGZ000GhrYo8j/Xs4lIHGcR0DiOI+A5OBc6lyy7wol3Ea3DuyxfWAld08ODLdj7dkdwTcA9AZrLf/WgARxHmW7zr52fE1jFRgifedCo29/S6rbIG3ZKjU1WRUVGY0skcrH7hse2dX/W84lIHGcR0DiOI+A5OBcSh3CbXSroKBAPp+vfajknj17Ytr/ww8/7LAdb7gNAACQbfx+o4rxUoWkzod1AgAAAEgE4XaS3HzzzTFXNcfiqKOOStmxezJs2DC98847kqTt27fLWhv1lNdt27Z12B4+fHjS1wcAAAAAAACg7yHcTpJPfepT6V5CyhxzzDHt4XZbW5saGxs1dOjQqPaN7Lf/sQAAAAAAAAAgUYTb6NHRRx+tZ555pn37pZde0he+8IWo9n355Zfb/z5w4EAFAoGkrw8AACDbhUJWdRuk7Tua1dRs5RhXJSOkceX7+nMDAAAA6IhwGz36zGc+o+XLl7dvNzQ0RBVub9myRe+++2779ujRo1OyPgAAgGzV2GhVu9Zqda0UDFr5fE0yRrJWCoel4mJpcqVV5USjQICQGwAAANgf4TZ6VFFRoby8PLW1tUmS1q1bp6uuuqrH/R566KEO26eeemoqlgcAyBKhkNX6OmnLVqm52aqw0GhkCZWp6LvqG6zmzLNqbZVc13vsPzO82wWD0rIaaeUqq+oFUlkp5woAAAAQQbiNHvXv318VFRV67LHHJEmbNm3Shg0bNHbs2C732bt3rx544IH27by8PE2YMCHlawUAZJ6OlamSz6f/VKZaKlPRZ9U3WM2cbWXtvmC7K64rtbZKM2dbLVpIwA0AAABEOOleALLDJZdc0mH7uuuua6/k7swdd9yhrVu3tm+ff/75Gjx4cMrWBwBIj1DI6qmnre7672bdvKRJNfe4euppq1DISvICvClVVstqvGBb8ipTQ6F9FaqRytQpVVb1DTYtnwfQmxobvYpt1+052I5wXa9Vydz5Vo2NnCcAAACAROU2onTiiSfqjDPO0Lp16yRJb7zxhmbMmKHFixd3CK1d19Xdd9+tJUuWtD92yCGH6OKLL+71NQMAUieaPsFjT7Z65FFRmQocoHat14rExphRu67U0uLtP30a5wgAAABgrI31bTUy0ZIlS/Sb3/zmoMettXL3SxSMMXKcgwv2jzzySD3yyCPdvsYHH3ygc889V5s3b25/rLCwUBMmTNCIESO0a9cu1dXVdajY9vl8uuOOO1RRURHPp9Vu165dCe0PdMUYo+LiYklSMBgU3xKBnnXWJzhZHEcqKJBWLKdFSTocUvcl+YMvdHgsVDxau8sfTtOKck8oZDXpbNt+J0M8BhVLqx8w9KoHOsF7OyBxnEdAcnAudW7QoEFJPR6V2znC61sajvt50ew7cOBA3XXXXbr88sv1yiuvSJKam5v1xz/+sdPnFxUV6ac//WnCwTYAIHPE0ic4HlSmItetr1NCwbYk7QpKdRukivHJWBEAAACQvei5jZiMGDFC999/vy677DINHTq00+f069dPp59+uh588EGdddZZvbxCAECqxNMnOB6uK62pVXvfbiCXbNnqDVVNhM/xjgMAAAD0dVRu54grrrhCV1xxRa+8Vl5enq688kpdfvnlqq+v15tvvqnGxkb1799fw4cPV1lZWdJvMQAApF+8fYLjQWUqclVzs5VJ8KYE40hNTVYSdzcAAACgbyPcRtx8Pp/GjBmjMWPGpHspAIAUC4W84ZGprNjeX6QylcZWyDWFhSbhfotuWHr1NenOpa4KC41GlkjjykUPbgAAAPQ5hNsAAKBHyegTHAsqU5GrRpZIUYw66ZZrpedfkP5SH5mnIhUXS5MrrSonMowVAAAAfQc9twEAQI+S0Sc4FtaViooI6JB7xpV7QXSiXFcKhfYF5cGgtKxGmlJlVd9Av3oAAAD0DYTbAACgR8noExyLsOtVuAK5xu83mlwpOSl4F+66UmurNHM2ATcAAAD6BsJtAADQI69PcO+93qBiqXxs770e0JsqJxrl56cu4LZWmjvfqrGRgBsAAAC5jXAbAAD0KBl9gqPlONKkSobjIXcFAkbVC4yMSV3A3dIi1a4l3AYAAEBuI9wGAAA9Slaf4J44jlRQ4FW2ArmsrNRo0UKjgoLUBdxraqVQiIAbAAAAuYtwGwAA9CiVfYIjHEcyRqpeYBQIEG4j95WVGq1YbjS1at/FI59P8vslJwmnwK6gVLch8eMAAAAAmcqf7gUAAIDsUDnRaOUqq9ZWryo0mSIV29ULjEpPIthG3xEIGE2fZjS1ymrDc0bbdxRoT5PV3/7WrOdfSOxc8znSlq1SRfKWCwAAAGQUKrcBAEBU4ukT7Djef2eesV9lquNVpvr+c4xBxdLUKmnFcoJt9F1+v1HFeKMZ3ynUlZcX6fiPm4TvlDCO1NREWxIAAADkLiq3AQBA1Lw+wdLc+VYtLd1XlR5YjR0KWdVt8CpJm5qsioqMRpZI5WMZHgkcqLBQsgnm0m5Y2r5DqrnHqrnZqrDQO+fGlXPOAQAAIDcQbgMAgJh4fYKl2rVWq2ulYNDrE2yMZF0p7HrV2JMqvVYmkf7ZXmVqpEUCwRrQnZElRuFwYum2a6V1D0s+n/XOT2sVDnt3UUyutB3OTwAAACAbEW4DAICYddUn2Oe0qGQE1dhAosaVeyF0MJj4scLhjtvBoLSsRlq5yqp6gXfBCgAAAMhGhNsAACBukT7BxcWFkqRgsE020V4KAOT3G02u9ELoZA9wlbxjtrZKM2dbLVpIwA0AAIDsxEBJAAAAIANVTjTKz49+gGusXNfr6z13vlVjIxelAAAAkH0ItwEAAIAMFAgYVS8wMia1AXdLi9dDHwAAAMg2hNsAAABAhiorNVq00KigILUB95paKRQi4AYAAEB2IdwGAAAAMlhZqdGK5UZTq7whk5LkcyS/3/szGXYFpboNyTkWAAAA0FsYKAkAAABkuEDAaPo0o6lVVnUbpC1bpaYmq6Iio82brR59XAqH4z++z/GOWZG8JQMAAAApR7gNAAAAZAm/36hifCSENpKkO5daGZPYcY3jheWRYwIAAADZgLYkAAAAQBYrLDSyCbbLtq5UVESwDQAAgOxCuA0AAABksZElibUkkaSw6x0HAAAAyCa0JQEAAAcJhazW13k9eJubrQoLjUaWSOPKvbYIADLHuHJv0GQwGP8xBhVL5WOTtCAAAACglxBuAwCAdo2NVrVrrVbXekGZzycZI1lrFQ57AdrkSqvKiUaBACE3kAn8fqPJlVbLaiTXjX1/x5EmVXLhCgAAANmHtiQAAECSVN9gNaXKC8giFaDhsBQK7Wt5EAxKy2qkKVVW9Q0JNvkFkDSVE43y872gOhaOIxUUePsDAAAA2YZwGwAAqL7BauZsq9bWnis/XVdqbZVmzibgBjJFIGBUvcDImOgDbsfx7syoXsCdGAAAAMhOhNsAAPRxjY1Wc+ZZuW70LQ1cV7JWmjvfamcjATeQCcpKjRYtNCoo6DngjlRsL77JqPQkgm0AAABkJ8JtAAD6uNq1XsW2jTGjdl2ppUX6n7WE20CmKCs1WrHcaGqV1yNfknyO5Pd7f0re8MipVdKK5QTbAAAAyG4MlAQAoA8LhbzhkfEMoZO8/Vavsfr+5Vb9+hGSAZkgEDCaPs1oapVV3QZpy1apqcmqqMhoZIlUPpbhkQAAAMgNhNsAAPRh6+v2DY+M166g9PQzezXhlLxkLAlAkvj9RhXjpQpJEmE2AAAAcg9tSQAA6MO2bJV8vsSO4XOkTZvDyVkQAAAAAABRItwGAKAPa262MgkWdBpH2tNE320AAAAAQO8i3AYAoA8rLDQxD5I8kHWl/kW0PAAAAAAA9C56bgMA0IeNLJHCCXYUCbvS0R9NsLcJgLQJhazW13ltipqbrQoLvcGT48oZPAkAAIDMRrgNAEAfNq5cKi5ObKjkoGKpYny/JK0IQG9pbLSqXWu1utb7HuDzScZI1lqFw973hsmVVpUTjQIBQm4AAABkHtqSAADQh/n9RpMrJSfOdwSOI02eZNSvH8EXkE3qG6ymVFktq9l3cSsclkKhfXdzBIPSshppSpVVfQN99QEAAJB5CLcBAOjjKica5efHHnA7jlRQIJ01kWAbyCb1DVYzZ1u1tkqu2/1zXVdqbZVmzibgBgAAQOahLQkAAH1Ed311qxcYzZxt5Tg9h12SF2wb4+03lHYFQNZobLSaM8/KdRX1MFnX9c75ufOtViwXLUoAAACQMQi3AQDIcdH11ZWu/bF0w41SS0v3AXekYrt6gVHpSYRcQDapXetVbEcbbEe4rve9oXat1fRpnPcAAADIDITbAADksPoGr0pz//YDkX66EZG+uvn50rw50qbN2heEO5JxJOtKYdcbHjmpUgyYA7JQKORd5Irm7ozOuK60plaaWmXl93P+AwAAIP0ItwEAyFGRvrrWRt9X99rrpEULjaZWSXUbvBYmTU1WRUVeC5PysSLUArLU+rp9wyPjtSvofW+oGN/987prg8T3EAAAACQL4TYAADko8b66RhXjjSokSQRRQC7YstVrS3Tg3Rux8DnecSq6+Hh0bZAsd38AAAAgKZx0LwAAACRfMvrqAsgtzc1WJsE82Tje3RydqW+wmlJltaxmX4V4OCyFQvsC9UgbpClVVvUNfJ8BAABAYgi3AQDIMcnqqxsKETwBuaSw0MR8wetA1pWKig5OyCNtkPbv79+VSBukmbMJuAEAAJAYwm0AAHJMMvvqAsgdI0sSa0kieYNlR5Z0fGz/NkjRXlSLtEyaO9+qsZGAGwAAAPEh3AYAIMdE+uomItJXF0DuGFfu9bxOxKBib7Ds/miDBAAAgHQh3AYAIMekuq8ugOzk9xtNrvQGx8bDcaRJld5xImiDBAAAgHQi3AYAIMeksq8ugOxWOdEoPz/2gNtxpIICb//90QYJAAAA6US4DQBAjklVX10A2S8QMKpeYGRM9AG340jGSNULjAKBjuE2bZAAAACQToTbAADkmFT11QWQG8pKjRYtNCoo6DngjlRsL77JqPSkg+/moA0SAAAA0smf7gUAAIDk8vrqWi2ria8Pbmd9dQHklrJSoxXLvWGOq2u91iI+xwuarevdvTGo2PteUDnx4IrtCK8NUmLBtBuWtu+Qau6xam62Kiw0GlniXajj+xAAAAC6Q7gNAEAOqpxotHKVVWtrbAF3V311AeSeQMBo+jSjqVVWdRu81iBNTVZFRV64XD6253A5GW2QXCute1jy+bwqcGutwmHvDpTJlbbbcB0AAAB9G+E2AAA5yOurK82cbeU40QXc3fXVBZC7/H6jivFShSQptnM/0gYp0aGS0sEheTAoLauRVq6yql7gVZunUyhktb7OuwhAhTkAAEBmINwGACBHeX11pbnzrVpaug+4IxXb1Qs676sLAJ1JtA1ST1xXam31LtQtWpiegLux0XZs3+ITFeYAAAAZgoGSAADkMK+vrtHUqn1DJn2O5Pd7f0peX92pVdKK5QTbAGJXOdEoP7/n4ZTxcl3JWu9CXWNjcgdPhkJWTz1tVXOP1Z1LXdXc422HQt7r1DdYTanywvtIdXo4LIVC+yrNIxXmU6qs6hsYjAkAANCbqNwGACDHJaOvLgBIXbfmWHCdNHuOom6DFCvXlVpavAGY06cl/v0qmmrssSdbPfKoF6z39DllQoU5AABAX0S4DQBAH5FIX10AfVs0YfDpp0l//rPU2pa6gHtNrTS1yiZ0Qa6+wWrOvI4Ddzvr9/3QutjX5zhehfmK5aJFCQAAQC8g3AYAAADQpWjD4IcfkfLypC+dLm147j8huCMZR7KuFE5C4L0rKNVtkCrGd/+8rirMCwutZs+Jrho7HsmuMAcAAED3CLcBAAAAdKq+wWrmbBt1a462NumRR6WF1VJLi+nQBmnzZqtHHz84GI+Fz/EC64ouPt5ThXlvSFaFOQAAAHpGuA0AAADgII2NXsV2ZKBjNCKtOeZfI61YLlWMN4q0QbpzqZVJMOs1jheWd9ZaKZoK894SbYU5AAAAEpOimeYAAAAAslntWi8ojjbYjti/Ncf+CgtNzMc6kHWloqLOg+2ZszsG2+kUqTAHAABAamV8uB0KhbRr1y5t375du3fvVigUSveSAAAAgJwWCnmtPeINiiOtOUKhfWn2yJLEK6nDrnec/e1fYZ4Jwba0f4U5AAAAUikj2pKEQiG9+OKLeuWVV/Taa6/p1Vdf1ZYtW/Thhx+qtbX1oOcXFhbqyCOP1FFHHaVjjz1WpaWlOumkkzR48OA0rB4AAADILevrvJ7ViTiwNce4cqm4OLHjDiqWysd2fCzeCvNU6qrCHAAAAMmVtnC7paVFjz76qP70pz9pw4YNam5ubv+Y7eGdaVNTk15//XW98cYbevLJJ9sfHzVqlM4880x9+ctf1ogRI1K1dAAAACCnbdnqDWNM5vBHv99ocqXVspr4KqwdR5pUqQ5DGhOtME+VzirMAQAAkHy9Hm6/8847uvvuu/WHP/xBe/bs6RBk+/1+DRs2TMOHD9dhhx2mgQMHqqCgQAUFBXIcRy0tLWpra1NTU5N27Nihbdu2adu2bdqzZ48k6aWXXtLLL7+sX/3qVxo3bpxmzJih8vLy3v4UAQAAgKzW3Jya4Y+VE41Wroq9N7bjSAUF3v77S0aFeSp0VmEOAACA5Ou1cPv999/XkiVLdN9992nv3r2y1mrw4MEaP368xowZo1GjRuljH/uY8vLyYj72m2++qZdeekkbN27UU089pddff13PPvus1q9fr0984hO65pprdOKJJ6bgswIAAAByjzf8MbE+H5215ggEjKoXSDNnWzlOdAG340jGSNULjAKBjsdLRoV5snVWYQ4AAIDU6JVw+//+7/90/fXX691331VRUZEmTZqkb3zjGzrxxBNlEi0JkTRixAiNGDFCZ5xxhv7rv/5L27Zt0x//+Efdd999evHFF3X++efr7LPP1tVXX60BAwYk4TMCAAAAcleqhj9KUlmp0aKF0tz5Vi0t3QfckYrt6gVGpScd/HtDMirMk6mrCnMAAACkRkrD7b179+r666/Xfffdp0MPPVRXX321zjvvPPXv3z+VL6vhw4dr+vTpmj59up566iktXrxYq1at0gsvvKDbbrtNI0eOTOnrAwAAANksVcMfI8pKjVYs94ZBrq71XsfneK1MrOsF44OKvQroyokHV2xHJKPCPFm6qzAHAABAaqQs3G5ubtYll1yi559/XhdeeKEuv/zytFRNf/7zn9fnP/95/elPf9LPf/5znXPOObrlllt08skn9/paAAAAgGyQiuGPBwoEjKZPM5paZVW3wWsx0tRkVVRkNLLEC8Z7au2RjArzZOipwhwAAACpkZJwu7W1Vd/5zne0fft2LVu2TGPGjEnFy8TkK1/5isrLyzV//nxdeumluvvuu+nDDQAAAHQh2cMfu+L3G1WMlyok7T98MhrJqDDvjuN4f55xulT3XPwV5gAAAEiNlITbs2bN0t69e/XAAw9o8ODBqXiJuAwaNEi/+c1vdPPNN+uiiy7SqlWrVFLSSSNAAAAAoI9L9vDHVEi0wrw7B1Zjh0LxV5gDAAAgNVISbo8YMUK//OUvVVhYmIrDJ+zKK6/UUUcdpZ07dxJuAwAAAF1I5vDHVIm3wnx/0VRjJ1JhDgAAgNRISbg9Z86cVBw2qb7xjW+kewkAAABAxkvW8MdEhUJW6+u8yunmZqvCQq9yely5F6jHU2F+041Sc7OhGhsAACBLpWygJNLDWqutW7fq9ddf17Zt2/Thhx8qPz9fxcXF+tjHPqbjjz9ePp8vKa8VDofV0NCgN998Uzt37tSAAQM0fPhwlZWVqbi4OCmvAQAAgPRLxvDHeDU22o7Bus8Lpq21Coe9ntuTK6VrfyzdcKPiqjCnGhsAACA7ZVy4vWvXLm3fvl3HH398upeSNXbv3q1HH31UTz75pJ577jnt2rWry+cOGDBAkydP1oUXXqijjjoqrtdra2vT7bffrlWrVmnnzp0Hfbxfv3465ZRTNGvWLH3kIx+J6zUAAACQeXq7NUd9g9WceR1bjoTDHZ8TDErLaqT8fGneHGnTZmVshTnV4AAAAMllrLU23YuIWL58uaqrq+W6rsaPH6+77ror3UvKeBs2bNCMGTO0d+/emPYrKirSj370o5jbs7z55pu64oor9PLLL0f1Gj/72c80ceLEmF6jM90F9kAijDHtdxoEg0Fl0LdEIGtwHuWOQ+q+JH/whQ6PhYpHa3f5w2laUd/CudRRfYPVzNlW1sbWamTRQqMTP6UMqjBXhwrzVAbr4DwCkoHzCEgOzqXODRo0KKnHy5jK7U2bNrUH29ZaPfPMM9qyZYtGjhyZ7qVltA8//PCgYDsvL0+f/vSndfTRR2vw4MFqa2vT66+/rueee06tra2SpKamJs2bN08tLS365je/GdVr7d69WxdddJE2bdrU/lhhYaFOOeUUjRgxQsFgUHV1ddq6dWv7a8yZM0fFxcWqqKhI0mcMAACAXNfY6FVsu64XDkfDdb2Ae+58qxXLjSrGm4ysMF+5yqp6gdfLHAAAAInJmHC7rq5OeXl5am5uliQNGzZMhx9+eJpXlT2MMSovL9d5552nU045Rfn5+Qc9Z+fOnbruuuu0bt269seuv/56feYzn4mqDcz8+fM7BNsnn3yyFi9erMGDB7c/Fg6Hdffdd+uXv/zlf/oghjVz5kw99NBDCgQCCX6WAIADcfs7gFxUu9YLimMtcHJdr+d27Vqr6dN653tgLBXmriu1tkozZ1stWkjADQAAkKiMCbfb2tp04oknatq0afrXv/6lM888U3l5eTEd4/3339cTTzyhSZMmpWaRGerzn/+8Zs2a1WNAPXToUP3617/WrFmz9L//+7+SJNd19atf/Up33nlnt/tu3LixQyh+7LHHaunSpQd9jXw+n6ZPn67m5mbdcsstkryK7zvuuEPz58+P59MDAHQiugFrltvfAWSdUMj73hZNK5LOuK60plaaWmVTfpEv8Qpz8T0aAAAgAU66FxBx0kknaePGjRo9erQuvPBCHXbYYTEfY+vWrfrhD3+YgtVlri9+8Yu66667YhrA+eMf/1j9+/dv316/fr12797d7T633XbbQcfo7uLDxRdfrJKSkvbtlStX6r333ot6jQCArtU3WE2pslpW4wXbknf7eyi07zb4yO3vU6qs6hvo7QYge6yv2/e9LV67gl7P7VRLRoU5AAAA4pcx4XZpaalGjx6tefPmKRQKxXWMvjh00O+Pvfi+uLhY48ePb9/eu3dvtwMi9+zZo2eeeaZ9+5hjjtHYsWO7fY1+/frpnHPOad9ua2vT448/HvNaAQAdRW5/37+va1f2v/2dgBtAttiy1bsbJRE+xztOKiWrwjwU4vszAABAvDIm3Jakm2++WeFwWJMnT9Zzzz0X8/6vvPJKClaVm/avqpakxsbGLp/79NNPq62trX37jDPOiOo1vvzlL3fYfuyxx2JYIQDgQPvf/h5tmBK5VX7ufKvGRgIUAJmvudnKJNipwzhSU1Nqv+dlU4U5AABArsqYntvhcFjGGP3yl7/U2rVr9aMf/UjhcFif+9zndPzxx2v48OEaMGCAHKfzPL65uVkrVqzo5VVnrz179nTY7tevX5fPfeGFFzpsl5aWRvUaJSUlGjJkiN59991OjwMAiE02DVgDgHgVFhrZWL/RHcC6UlFRar/fRSrMI+2g4hGpMK9I3rIAAAD6lIwJt5cvX64bb7yxw2PWWj3wwANRH8NaK5NomUcf8eqrr3bY7q7H+aZNmzpsn3DCCVG/zqhRo9pbmnzwwQfauXOnhg4dGsNKAQBSdg1YA4BEjCxJLDCWpLDrHSeVklthzvdlAACAeGRMuD1o0KBOKzQSrdrAwd566y3V19e3bw8cOLDbwHr/cDsvL09DhgyJ+rWOOOKIg45FuA0AsUvm7e8V43t8KgCkzbhyqbg4se95g4ql8u5HxCQsGRXmbljavkOqucequdmqsNBoZIn3/4ALkQAAAD3LmHA7EpgaY3T44Yfr05/+tAoKCqLef8+ePXrqqafU2tqaqiXmjFtvvbXDG/HTTz+928GUO3bsaP/78OHDY6qOP7AifNu2bTGsFAAQwe3vAPoKv99ocqXVspr47lZxHGlSZerD4WRUmLtWWvew5PN5VeDWWoXDXrg/udKqcqJRIEDIDQAA0JWMCbcHDx4sSTr22GP1hz/8QXl5eTEf49Zbb9WSJUuSvbScsn79eq1evbp9u1+/frr44ou7fH5LS4vC+71rLyoqiun1BgwY0GG7qakppv0jaDeDVNn/3xb/zpDJWlqSc/t7c3Py/61zHuWSzr5+hq9rL+Fc2qfyLEcrV7lqbY0t4HYcqaDA2z/V/w8/N04qLrYJ31UjHRySB4PSshpp5SqrG28wKivt2/8eYsF5BCSO8whIDs6l3pEx4Xakcnv06NFxBdtS9IMO+6odO3bo6quv7lC1ffHFF2vkyJFd7nNgGJ2fnx/Tax74tYw33C4uLo5rPyAWhx56aLqXAHRp0KBmWRvf99AIa6XBgwtVXFyYpFUdjPMoy/l8Bz3k9/n4OZwGff1cKi6WfnPLXn33kg8kRRdwO473329uGajjju16WHoyTTmvSXfc1Rz3PITuuK7U2irNnO3qrtsH6rNjeudzyiV9/TwCkoHzCEgOzqXUcdK9gIjBgwfriCOO0OGHHx73MYYMGZLQ/rmstbVV3//+97Vz5872x0pLS3XJJZf0uN/++vWL7U31geF2S0tLTPsDADxHf9SX+IC1sHccAMgGnx3TT3fdPlCFBV5o3R3HkQoLpKV3DNSY0b0XAp97doEKolhfvFzX++/y73+gHTtSkKADAABkuYyp3M7Ly9Pjjz+e0DE+/vGPJ3yMeE2YMEFvv/12yo4/a9YsXXTRRXHtGw6HNWvWLDU0NLQ/dvjhh+vmm2/uMaw+sFJ77969Mb12W1tbh+1Y+qjvL5iM+z2BThhj2q+gvv/++wyxRcb69Ik2KQPWTvzUHgWDiVWAH4jzKHcMCIcPenMYCof1IT+HewXn0sE+dpx0T42j/1lr9eAarwWIz/HaLFlXCrve97bJk4zOmmg0NLAnKW1CopWXJ1UvcHTVLFeOE1+P8J64rtTcItXcE9T0aRlTm5SxOI+AxHEeAcnBudS5ZN8VmjHhdqyeffbZ9rC2sLBQn/70pzV69Og0ryoz/eQnP9EjjzzSvl1cXKylS5ceNOyxMwf22I51YOeB4XasPbsj+AaA3mCt5d8aMpbPJ02uVMID1ny+1H5P5TzKdp197fiapgPn0j6BIdJ3LjT69rekug3eYNymJquiIqORJVL52H3DI9Px/6z0JGnRQqO5861aWlIXcK9eY/Xtb7kpH5SZSziPgMRxHgHJwbmUOlkbbm/dulXPPfecJK8y+Xe/+50+8YlP6JZbbom7Z3cuuvHGG3X//fe3bxcVFenOO+/UscceG9X+BQUF8vl87UMl9+zZE9Prf/jhhx224w23AQBS5USjlats/APWJhKIAMhefr9RxXipQlLnw0/Tp6zUaMVyqXat1epadVphnqhdQS/crxif+LEAAAByRdaG21OmTNGUKVPat621WrJkiW666Sb98Ic/7PX13HzzzTFXNcfiqKOOinmf2267Tf/93//dvp2Xl6dbb71Vn/70p2M6zrBhw/TOO+9IkrZv3y5rbdRTXrdt29Zhe/jw4TG9NgBgn0DAqHqBNHO2jfr2d8eRjJGqFxgFApkVBgFALgkEjKZPM5paZQ+qMN+82erRx5XQ7ASf4x2zInlLBgAAyHpZG24fyBij4447Tj/72c/SEm5/6lOf6vXX7M4999yjxYsXt2/7fD4tWrRI48aNi/lYxxxzTHu43dbWpsbGRg0dOjSqfSP77X8sAED8ykqNFi1UVLe/Ryq2qxcYlZ5EsA0AvaGzCvM7l1pFWRvSJeN4YXmmVa0DAACkU8aG22+99ZaeffZZvfvuu3KjKE176623tG7dOvXv378XVpfZamtrdd1117VvG2O0YMECnXbaaXEd7+ijj9YzzzzTvv3SSy/pC1/4QlT7vvzyy+1/HzhwoAKBQFxrAADsE83t74OKvR7blROp2AaAdCssNAn32XTD0quvSXcudVVY6PUbH1cuenADAIA+LSPD7erqai1fvjyqUHt/1lp985vfTNGqssOjjz6qefPmdXjzfM0112jSpElxH/Mzn/mMli9f3r7d0NAQVbi9ZcsWvfvuu+3bDPwEgOTp7vb3AwesAQDSa2RJYi1JJMm10vMvSH+p937vCYel4mJpcqXlQiYAAOizMi7c/ulPf6qVK1fGXNlQWFio888/XzNnzkzRyjJfXV2dZs6cqVAo1P7YrFmzdMEFFyR03IqKCuXl5amtrU2StG7dOl111VU97vfQQw912D711FMTWgcA4GCZPGANAOAZV+4F0cFgYsdx3Y7tqIJBaVmNtHKVVfUC784eAACAviSjwu2nnnpK9957r4wx+tznPqdPfOITysvL029+8xudffbZGjZsWPtzrbXauXOn1q9fr7ffflv/9V//lXCIm802btyoyy67rD2AlqRLL71UF110UcLH7t+/vyoqKvTYY49JkjZt2qQNGzZo7NixXe6zd+9ePfDAA+3beXl5mjBhQsJrAQAAALKN3280udJqWU10w4Bj4bpSa6s3bHjRQgJuAADQt2RUuL148WIdeuihWrJkicaMGdP+eE1Njc4880yVl5d3ut+DDz6on//852pubtb06dN7a7kZ4/XXX9d3v/tdNTU1tT/27W9/O6rq6mhdcskl7eG2JF133XVavXq18vLyOn3+HXfcoa1bt7Zvn3/++Ro8eHDS1gMAAABkk8qJRitXWbW2pibgdhxv2PCK5aJFCQAA6DOcdC8g4s0339RLL72kn/zkJx2CbckbRLht27Yu9/3617+uJUuW6JZbbtE///nPVC81o7z11lv6zne+o+B+9zieffbZmjdvXlJf58QTT9QZZ5zRvv3GG29oxowZeu+99zo8z3Vd/fa3v9WSJUvaHzvkkEN08cUXJ3U9AAAAQDYJBIyqFxgZ4wXRyea6UkuLN2wYAACgr8iYyu36+noNHz5cX/nKVw762BFHHKH6+npNnjy5y/3Ly8t15plnqqamRtdee20KV5pZ1qxZox07dnR4bPXq1Vq9enVMx7nssst0+eWXd/uc66+/Xq+99po2b94sSXruuec0YcIETZgwQSNGjNCuXbtUV1fXoWLb5/Np0aJFCgQCMa0HAAAAyDVlpUaLFnoV1i0tqangXlMrTa2yDBUGAAB9QsZUbu/YsUPHHntspx8bNWqUnn322R6HTJ5++umqq6tLxfIyVmf/T8LhcMz/RTPAc+DAgbrrrrt0/PHHtz/W3NysP/7xj7r99tt13333dQi2i4qK9Itf/EIVFRXJ+WQBAACALFdWarRiudHUKm/IpCT5HMnvl5wk5NG7glLdhsSPAwAAkA0yJtwuKipSv379Ov3YCSecoHfeeUePPPJIt8cIBALdti9B4kaMGKH7779fl112mYYOHdrpc/r166fTTz9dDz74oM4666xeXiEAAACQ2QIBo+nTHK15wOiG642+O8PogvOlMWMSb1nic6QtW3t+HgAAQC7ImLYkw4YNU1tbW6cf+8IXviC/369f//rXGj9+vIqKijp93uuvv66CgoJULjPjXHHFFbriiit69TXz8vJ05ZVX6vLLL1d9fb3efPNNNTY2qn///ho+fLjKyso0aNCgXl0TAAAAkG38fqOK8ZJ3n6PRnUtd/aU+sXYlxpGamqwk2pIAAIDclzHh9ic+8Ql98MEH+tvf/qbq6mr5fD7NmzdPo0aN0qGHHqqKigo98cQTuvrqq3XzzTfL5/N12L+pqUl33XWXjjzyyDR9Bn2Pz+fTmDFjDhoACgAAACB2hYUmqnaB3XHD0vYdUs09Vs3NVoWFRiNLpHHlog83AADIORkTbh9xxBEaMmSIfvCDH+jtt9+WJM2aNUt/+tOfJElTp07V448/rscee0znn3++LrvsMo0ePVoFBQX629/+phtuuEFbtmzRN7/5zXR+GgAAAAAQl5ElUjic2DFcK617WPL5rIzxZvSEw15/78mVVpUTjQIBQm4AAJAbMqbntiR95Stf0dtvvy1jvDdb7777bvvHTj75ZH3jG9+QtVYvvviiLrvsMn32s5/ViSeeqKqqKv3jH/+QJH3jG99Iy9oBAAAAIBHjyvcNmUxUOCyFQvvC8mBQWlYjTamyqm9IrDocAAAgU2RUuH3WWWfpsssuU79+/WSM0WWXXdbh43PnztXRRx/dfquetbb9P2OMKisrNWrUqHQsHQCAHoVCVk89bVVzj9WdS13V3ONth0KEDAAAr23I5MrEh0p2xXWl1lZp5mwCbgAAkBuMTbSpWwq0tbWptbVVhxxyyEEfe++993TttdfqkUce6dCPbsKECVq8eLHy8vJ6c6noJbt27Ur3EpCjjDEq/k+JVDAYTLjPJdCZxkar2rVWq2u9yjmfT/+5VVz73SqurL1VnPModxxS9yX5gy90eCxUPFq7yx9O04r6Fs4lSN7PjClVVq2tiQ2W7I7jSAUF0orl2flzpzucR0DiOI+A5OBc6tygQYOSeryM6bm9v7y8vC5D6sGDB+vXv/61duzYoRdffFHNzc067rjj9LGPfayXVwkAQM/qG6zmzOsYUhzYTzVyq/jKVVbVC6Sy0twKGgAA0QsEjKoXeNXVjpOagNt1pZYWqXat1fRp/MwBAADZK6PaksRi2LBhmjBhgr761a8SbAMAMlJ9g9XM2dFV33GrOAAgoqzUaNFCo4KC1LYoWVMrWmMBAICslvHhdktLi/75z39q48aNB5Xvv/3222ptbU3TygAA6Fpjo1ex7brRV925rteqZO58q8ZGwgYA6MvKSo1WLDeaWrVvyKTPkfx+789k2BWU6jYk51gAAADpkJFtSUKhkB588EH94Q9/0D/+8Q+F/3P/dm1tbYcq7erqaj377LOaNm2aLrnkEvn9GfnpAAD6oNq1XsV2rG3VuFUcABARCBhNn2Y0tcqqboO0ZavU1GRVVGS0ebPVo48f3OoqFj7HO2ZF8pYMAADQqzIuDf7Xv/6l73//+3r99dclqb1a2xgj94DSt8WLF+vxxx/XjTfeqOeee05Lly5Vfn5+r68ZAID9hULe8Mh4+6RGbhWfWmXl9xNwA0Bf5/cbVYyPhNDez4U7l1qZBH9EGMcLyyPHBAAAyDYZ1ZZk+/btuvDCC/X666/LWitrrYYPH65PfepTnT7fcRyddtppevDBBxUKhfSjH/2ol1cMAMDB1td5QyITwa3iAIDuFBaamO8OOpB1paIigm0AAJC9Mqpye+HChdq2bZuGDh2qadOm6Wtf+5qGDRsmSTr++OO73G/AgAG65ZZb9NWvflUvvPCCRo8e3VtLBgDgIFu2Sj4ft4oDAFJnZEliP2ckKex6xwEAAMhWGRNuv//++/rTn/6kT37yk7rjjjs0ZMiQmPYPBAI677zzdO+99xJuAwDSqrmZW8UBAKk1rtwbNJnInUKDiqXysUlaEAAAQBpkTFuS5557To7jaOHChTEH2xEnn3yy/vKXvyR5ZQAAxCYZt4q7YWn7DqnmHqs7l7qqucfqqaetQqEEDwwAyAl+v9HkSsmJ8zc6x5EmVYrZDgAAIKtlTOX2tm3bdMwxx+gjH/lI3Mc45JBD1NjYmLxFAQAQh2TcKu5aad3Dks/nVYFbaxUOe1V6kyutKicaBQIEEgDQl1VONFq5yqq1NbYhxo4jFRR4+wMAAGSzjKncbm5uViAQSOgYO3bsUEFBQZJWBABAfCK3iidDOCyFQvvC8mBQWlYjTamyqm+gihsA+rJAwKh6gZEx0VdwO45kjFS9gIukAAAg+2VMuD1kyBBt3rw5oWM89dRTKilhIgoAIL0SvVW8J64rtbZKM2cTcANAX1dWarRooVFBQc8/dyIV24tvMio9iWAbAABkv4wJt0866SS9/fbbevTRR+Pa/7XXXlNtba3GjRuX5JUBABC7yolG+fmpDbitlebOt2psJOAGgL6srNRoxXKjqVX77hzyOZLf7/0pecMjp1ZJK5YTbAMAgNyRMT23jz32WI0aNUrz589X//79VV5eHvW+zz//vH7wgx8oFArp7LPPTuEqAQCIjneruFdd7Tix9UKNlutKLS1S7Vqr6dMIKgCgLwsEjKZPM5paZVW3QdqyVWpqsioqMhpZIpWPZXgkAADIPRkTbkvS7NmzNWPGDE2fPl1nnnmmpkyZorKyMjn/KXszZt+bsQ8++EDPPPOMVq9erWeeeUaSVFVVldBASgAAksm7Vdyrrm5pSV3AvaZWmlplCS0AAPL7jSrGSxWSJH4uAACA3JZR4fbnPvc5ff/739fNN9+sP/3pT/rTn/6kgoICHX744TLGaO7cuTLG6N1339WOHTva97PWqqysTHPmzEnj6gEAOJh3q7hXXb261hsI6XMk40jWlcJJCLx3BaW6DVLF+MSPBQAAAABAtsiocFuSLr30Uu3evVu/+93vZK1Vc3Nz+6DJV155RZIXZu9vzJgxuvnmm+Xz+Xp9vQAA9KS7W8U3b7Z69HEpHI7/+D7HO2ZF8pYMAAAAAEDGy7hwW5KuvvpqVVRU6JprrtGbb77ZHmYbYzoE2wUFBZoxY4Yuu+yy9tYlAABkqs5uFb9zqZVJ8K5x43hhObefAwCiFQpZra/zLo42N1sVFnq9uceV05sbAABkj4wMtyWpvLxc69at05NPPqknn3xSr7zyit5//33l5eWppKREY8eO1Ve/+lUNHjw43UsFACBuhYXmoDuSYmVdqaiIIAIA0LPGRtuxVZZPMsa7OzYcloqLpcmVVpUTjQIBfrYAAIDMlrHhtiQ5jqMJEyZowoQJ6V4KAAApMbIksZYkkte3e2RJctYDAMhd9Q1Wc+ZZtbbuG3J84M+gYFBaViOtXGVVvcCbHQEAAJCpMqqXx7///W+FQqF0LwMAgF4zrtyrkkvEoGKpfGwyVgMAyFX1DVYzZ3cMtrviulJrqzRztlV9Q2J3FwEAAKRSRoXbp556qp5//vl0LwMAgF7j9xtNrpTiHR3hONKkSvqjAgC61tjoVWy7bs/BdoTrStZKc+dbNTYScAMAgMyUUeG2tZZwGwDQ51RONMrPjz3gdhypoMDbHwCArtSu9Sq2Yx3x4LpSS4u3PwAAQCbKqHBbkn7/+9/rX//6V7qXAQBArwkEjKoXGBkTfcDtON4AsOoFDPwCAHQtFPKGR0ZbsX0g15XW1HrHAQAAyDQZF27v3r1b559/vlatWqW2trZ0LwcAgF5RVmq0aKFRQUHPAXekYnvxTUalJxFsAwC6tr7OGxKZiF1BqW5DMlYDAACQXBkXbkvSwIEDtXjxYlVUVKi6ulpbt25N95IAAEi5slKjFcuNplbtGzLpcyS/3/tT8oZHTq2SViwn2AYA9GzLVsnnS+wYPsc7DgAAQKbxp3sBB5o0aZJuuOEGua6rxx9/XPfee6/OPPNMjR07VlOmTNGECRPkxDt1CwCAFAiFrNbXeb/4NzdbFRYajSyRxpXHPugxEDCaPs1oapVV3QbvmE1NVkVF3jHLxzI8EgAQveZmK5Pgjw3jeD+LJH7+AACAzJJR4faYMWNUVVUlSXIcR6eddppOO+00bdmyRffee6/mz5+vwsJCnXvuuTrnnHM0dOjQNK8YANCXNTZa1a71epkGg15lnDHegORw2Ku+nlxpVTkx9r7Yfr9RxXipQhJhAgAgXoWFRjbWSZIHcMPS9h1SzT024Yu4AAAAyWRsou90elFra6v+93//V/fee69eeeUVnXrqqbrgggt08sknp3tpSLFdu3alewnIUcYYFf+n/0MwGEz4lz/0HfUNVnPmWbW2dj+ky3Gk/Hxv8GNZaW4GAJxHueOQui/JH3yhw2Oh4tHaXf5wmlbUt3AuIRWeetpq3o+T829p30Vc7XcRV3FdxE0VziMgcZxHQHJwLnVu0KBBST1eVvX3yM/P1ze+8Q098MADWrFihYqKinTxxRfrK1/5in7/+9/rww8/TPcSAQB9QH2D1czZPQfbkvfx1lZp5myr+gbezAAAete48n1zHBIVDkuhkPen5N21tKxGmlLFzzgAAJAeWRVu7+/oo4/WCSecoKFDh2rTpk36+c9/roqKCl1zzTV6+eWX0708AECOamz0KrZdt+dgO8J1vSq3ufOtGhv55R8A0Hv8fqPJld6dRKnARVwAAJBOWRduv/rqq/rJT36iz3/+81qwYIHeeustGeP1kWtra9OLL76or3/96zrvvPO0Zs0ahUKhdC8ZAJBDatd6Fdux3lHmulJLi7c/AAC9qXKiUX5+agNuLuICAIB0yKhwe8mSJdq5c+dBj4dCIf3xj3/UN7/5TU2aNEmrVq1SU1OTrLWy1mrIkCG65JJL9Nhjj+nBBx/UQw89pLKyMv3iF7/Ql7/8Zf3xj39Mw2cDAMg1oZA3PDLaiu0Dua60ptY7DgAAvSUQMKpeYGRMagNuLuICAIDellHh9q233qo33nijfXvbtm1avHixvvjFL2r27Nmqr69vD7QlafTo0frVr36lJ598UldddZWGDx8uSRo5cqTmzJmjp556St/61rf085//XN/61rf03nvvpeXzAgDkhvV1Xn/RROwKSnUbkrEaAACiV1ZqtGihUUFBagNuLuICAIDe5E/3AvZnrdWqVavU1tam+++/X08++aTC/5lWEgm0+/fvr7POOksXXHCBjjvuuG6Pl5eXpwsvvFCTJk3SlVdeqRkzZujee+9Vfn5+yj8XAEDu2bJV8vn2DdKKh8/xjlORvGUBABCVslKjFcu96urVtd4FW58jGUeyrhSO886k/UUu4laMT/xYAAAAPcmocFuSHnroIT300EOS9gXaknTcccdpypQpqqysVP/+/WM6ZnFxse666y5NnjxZS5cu1fe+972krhkA0Dc0N1sZk9gxjCM1NVlJCR4IAIA4BAJG06cZTa2yqtvgXXBtarIqKjLavNnq0ce5iAsAALJHxoXb0r5Q2+/36/TTT9cFF1ygMWPGJHTMvLw8zZgxQ7fffjvhNgAgLoWFpsOF13hYVyoqItgGAKSX329UMT4SQns/l+5cykVcAACQXTIy3B4+fLjOPfdcnXvuuQoEAgkda9u2bfrrX/+q8vJyjRw5Uu+8806SVgkA6GtGliRWzSZ5t3yPLEnOegAASCYu4gIAgGyTceH26NGjtXTp0qT0xd6+fbvOOuss7d69W0cccYTOPfdcHXXUUUlYJQCgLxpXLhUXJzZUclCxVD42SQsCACCJuIgLAACyTYrmZMfvggsuSNrAx40bN+qDDz6QJL399tu65ZZbdOGFFybl2ACAvsfvN5pcKTlx/vR0HGlSpXccAAAyTeQibiK4iAsAAHpTxoXbRx55ZNKONXr0aA0fPlzWWvl8Pn3nO9/Rueeem7TjAwD6nsqJRvn5sQfcjiMVFHj7AwCQibiICwAAsk1GtSVZvny5jjvuuKQdb9CgQfq///s/vf766zrqqKM0ePDgpB0bANA3BQJG1QukmbOtHEdy3Z73cRzJGKl6gVEgwC/8AIDMVTnRaOUqq9bW6H7GRXARFwAApENGVW5/9rOfVWFhYVKPWVhYqBNPPJFgGwCQNGWlRosWGhUU9FzdFvllf/FNRqUn8Qs/ACCzeRdxjYyJvoKbi7gAACBdMqpyGwCAVAuFrNbXSVu2Ss3NVoWFRiNLvD6jsdxGXVZqtGK5VLvWanWtN2TS50jGkazrDdQaVOzdnl05kV/2AQDZw7uIK82db9XS0n0Fd+QibvUCLuICAIDeR7gNAOgTGhttxyDa51WZWWsVDnsDtCZX2piC6EDAaPo0o6lVVnUbvMC8qcmqqMgLzMvH0ncUAJCduIgLAACyAeE2ACDn1TdYzZnXsX9oONzxOcGgtKxGWrnKqnqB90t9tPx+o4rxUoUkiV/uAQC5gYu4AAAg0xFuAwByWn2D1czZVtb2PBjLdaXWVm9Y5KKFsQXcAADkKi7iAgCATJVRAyUBAEimxkavYtt1ew62I1xXstbrM9rYaFO7QAAAAAAAEDfCbQBAzqpd67UisTFm1K4rtbR4+wMAAAAAgMxEuA0AyEmhkDcAK9qK7QO5rrSm1jsOAAAAAADIPPTcBgDkpPV13pDIROwKSnUbpIrxyVgRAAC5LRSyWl/nDZ5sbrYqLPQGT44rZ/AkAABIjYwMt/fu3at+/fol/BwAQN+1Zavk80nhcPzH8DnecSqStywAAHJOY6NV7Vrvjqlg0Pv5a4xkrVU4LBUXS5MrrSonGgUChNwAACB5MrItySmnnKJ33nmn2+d88Ytf1LZt23ppRQCAbNPcbGUS/P3ZOFJTE21JAADoSn2D1ZQqq2U1++6YCoelUGjfBeZgUFpWI02psqpv4OcqAABInowMtxsbG/X+++93+5x3331XwUTvNwcA5KzCQhPzIMkDuWHp1dekO5e6qrnH6qmnLT24AQD4j/oGq5mzveHNPc24cF2ptVWaOZuAGwAAJE9GtiUBACBRI0sSa0kiSa6Vnn9B+ks9t1YDALC/xkarOfOsXFdRX0x2XclxpLnzrVYsFz9HAQBAwjKychsAgESNK/eC6ES5LrdWAwBwoNq1XsV2rHdJua7U0uLtDwAAkCjCbQBATvL7jSZXehViycat1QCAviwU8oZH9tSKpCuuK62pFa2+AABAwgi3AQA5q3KiUX5+6gJua71bqxsb+eUcANB3rK/bNzwyXruCUt2GZKwGAAD0ZYTbAICsFwp5wx5r7rEdhj8WF0vVC4yMSV3Aza3VAIC+ZstWyedL7Bg+xzsOAABAIhgoCQDIWo2NVrVrvVujg0HvF21jDhz+KF37Y+mGG70gOt5bqLsSubV6apWV389gLABA7mtutjKJ/sgz0iuvWtXc4x2vsNBoZIk3M4OfpwAAIFqE2wCArFTfYDVnnjfMKhJYR4Y+RkSGP+bnS/PmSJs2a18Q7kjGkdyw5CZYeB25tbpifGLHAQAgGxQWGtlYJ0keIByWnvyz9PQztpML01aVE40CAUJuAADQPdqSAACyTn2D1czZHYPtrkSGP157nVR6ktGaB4xuuN7ouzOMLjhfGjMm8ZYl3FoNAOhLRpYcfEE5XuGwFArtO17kwvSUKoY2AwCAnhFuAwCySmOjV7HtutG3GNl/+GMwKFWMN/rWBUYXzXD08Y8lHm4bR2pq4hdwAEDfMK7cq7BOlciF6ZmzCbgBAED3CLcBAFmldq1XsR3r3dBdDX/0bq1ObE3WlYqKuHUaANA3+P1GkytTM6w5Yv8L042NBNwAAKBzhNsAgKwRCnnDI+MdChkZ/hgK7fslORm3Vodd7zgAAPQVlRON8vNTH3B3dmEaAAAggnAbAJA11td5vTgTERn+GJGMW6sHFUvlYxM7BgAA2SQQMKpeYGRM6gPuAy9MAwAARBBuAwCyxpatks+X2DEOHP6Y6K3VjiNNqvSOAwBAX1JWarRooVFBQWoD7gMvTAMAAEQQbgMAskZzs5VJMEPubPhjvLdWO45UUODtDwBAX1RWarRiudHUqn13Qvkcye/3/kyGAy9MAwAARPjTvQAAAKLlDX9M7LbkzoY/erdWSzNnWzlOdD29HUcyRqpeYBQIEG4DAPquQMBo+jSjqVVWdRu8ILqpyaqoyOjVV62eflYKheI//r4L0/y8BQAAHRFu55impia98cYb+ve//62dO3eqqalJkjRgwAANHz5cn/zkJ3XYYYcl5bXC4bAaGhr05ptvaufOne2vUVZWpuJEG9gCQCdSOfzRu7VamjvfqqWl+4A7UrFdvcCo9CR+0QYAQPJadFWMlyokRYLomnukp55J/oVpAAAAiXA7J2zYsEG1tbWqr6/Xli1beqxqPP7443X++efrnHPOkd8f+z+BtrY23X777Vq1apV27tx50Mf79eunU045RbNmzdJHPvKRmI8PAF2JDH9MZKhkd8MfvVurpdq1VqtrvdfxOV7FmHW9YHxQsddju3IiFdsAAPQklRemAQAACLdzwMMPP6wHH3ww6ue/8soruvbaa3Xffffp5ptv1siRI6Pe980339QVV1yhl19+ucvn7N27Vw8//LCeeeYZ/exnP9PEiROjPj4AdMcb/mi1rCa61iEHimb4Y3e3Vo8s8YJxhkcCABCdVF+YBgAAfRvhdo5xHEdHH320jjnmGB1++OEaMGCA2tratG3bNtXX1+utt95qf+7LL7+sb33rW7r33nt11FFH9Xjs3bt366KLLtKmTZvaHyssLNQpp5yiESNGKBgMqq6uTlu3etNempqaNGfOHBUXF6uioiL5nyyAPqlyotHKVVatrbEF3LEOf+zs1moAABCb3rgwDQAA+i7C7RwwcOBAVVZW6ktf+pLGjBmjQw89tNPnWWv1xBNP6JprrmlvJ7Jjxw5dc801+u1vf9vj68yfP79DsH3yySdr8eLFGjx4cPtj4XBYd999t375y1/KWqtwOKyZM2fqoYceUiAQSPAzBQCGPwIAkG1668I0AADoe5x0LwCJu+qqq3TjjTfqtNNO6zLYliRjjCZMmKDly5eroKCg/fFnn31Wr7zySrevsXHjRq1bt659+9hjj9XSpUs7BNuS5PP5NH36dF1++eXtj+3evVt33HFHrJ8WAHTJG/5oVFDg/eLbncgvxotvYvgjAADp4F2YNjKm55/bEVyYBgAA0SDc7oOOPvponXPOOR0ee/rpp7vd57bbbuuw/eMf/1h5eXldPv/iiy9WScm+qS8rV67Ue++9F8dqAaBz3vBHo6lVXi9PyRv+6Pd7f0pej86pVdKK5QTbAACkExemAQBAKtCWpI8aPXq0ampq2re3bdvW5XP37NmjZ555pn37mGOO0dix3U906devn8455xzddNNNkqS2tjY9/vjjOvvssxNcOQDsw/BHAACyh3dhWqpda7W61hsy6XMk40jWlcKud2F6UqXXioSKbQAA0BPC7T5qwIABHbbdbprfPf3002pra2vfPuOMM6J6jS9/+cvt4bYkPfbYY4TbAFKC4Y8AAGQHLkwDAIBkyshw2xgjp4d71aJ5Drr273//u8P2iBEjunzuCy+80GG7tLQ0qtcoKSnRkCFD9O6773Z6HAAAAAB9ExemAQBAMmRkOjxnzhx99KMf7fY5V199tY4++uheWlHu+d///d8O21/4whe6fO6mTZs6bJ9wwglRv86oUaPa//7BBx9o586dUe8LAAAAAAAAAF3JyHD7wgsvVL9+/bp9zrRp0+T3Z2Theca744479Nxzz7VvT5w4Ucccc0yXz98/3M7Ly9OQIUOifq0jjjiiy2MBAAAAAAAAQLxIh/uAUCikxsZGNTQ06N577+0QbJ900km69tpru91/x44d7X8fPny4jIn+tsHDDjusw3Z3gysBAAAAAAAAIFqE2zlo0aJFuuuuu9q3w+HwQc/p37+/pk6dqksvvVR5eXldHqulpaXD/kVFRTGt5cDBlU1NTTHtHxFLoA7EYv9/W/w7A+LDeZRLOvv6Gb6uvYRzCThYKGS1vk7astWquVkqLJRGlhiNK+988CTnEZA4ziMgOTiXegfhdg4Kh8OdBtoRQ4cO1axZs/S1r32tx/YvB4bR+fn5Ma3lwOA83nC7uLg4rv2AWBx66KHpXgKQ9TiPspzPd9BDfp+Pn8NpwLmEvm7HDlerHmjRylUt2rXLyueTjJGslcJhq0GDjM4/N1/nnl2gYcM677bJeQQkjvMISA7OpdTJyJ7bSK2dO3dq7ty5Ov300/Xkk092+9zW1tYO2z2F4Qc6MNxuaWmJaX8AAAAAfcv/e36vvlq5S3fc1axdu6wkKRyWQiHvT0natcvqjrua9dXKXfp/z+9N42oBAEA6UbmdJBMmTNDbb7+dsuPPmjVLF110UVTPnT17tmbPnt2+/eGHH2r79u2qr6/XqlWrtHHjRknSO++8o0suuUTXXXedzjnnnE6PdWCl9t69sb1xbGtr67BdUFAQ0/4RwWAwrv2Anhhj2q+gvv/++7LWpnlFQPbhPModA8Lhg94chsJhfcjP4V7BuQRI9Q1WV81yZa3kut0/13WllhZpxsUfaPFNjspKDecRkAScR0BycC51Ltl3hRJu9wEDBgzQgAEDdMwxx+jss8/WsmXL9Itf/ELWWllr9dOf/lSf/vSn9bGPfeygfQ/ssX1gJXdPDgy3Y+3ZHcE3APSGyDkBIH6cR9mus68dX9N04FxCX9TYaHX1D61c12s/Eg3XlRxHmjPP1YrlRkOH7rs5mfMISBznEZAcnEupQ1uSPsYYowsvvLBDFfjevXt16623dvr8goIC+fbrv7lnz56YXu/DDz/ssB1vuA0AAAAgt9WutWptjT7YjohUcNeuJTQAAKCvoXI7SW6++eaYq5pjcdRRRyX1eJdccomWLVvW3gP7iSeeUFtb20E9siVp2LBheueddyRJ27dvl7U26imv27Zt67A9fPjwBFcOAAAAINeEQlara3tuRdIV15XW1EoXfpuAGwCAvoRwO0k+9alPpXsJMSkqKtJJJ52kDRs2SPLajWzZskXHHXfcQc895phj2sPttrY2NTY2aujQoVG9TmS//Y8FAAAAAPtbXycl2t5/V1Cq2yBN/FoyVgQAALIBbUn6sEAg0GF79+7dnT7v6KOP7rD90ksvRf0aL7/8cvvfBw4ceNBrAgAAAMCWrdJ+3RDj4nOkLVup3AYAoC8h3O7DDuyHHZngeqDPfOYzHbYbGhqiOv6WLVv07rvvtm+PHj06xhUCAAAA6Auam62i7HzYJeNITU3JWQ8AAMgOGdWW5N///reGDRsmv7/7ZZ111lnas2ePfD6fBg0apBNPPFGTJ0/WCSec0EsrzQ37V1U7jqPDDjus0+dVVFQoLy9PbW1tkqR169bpqquu6vH4Dz30UIftU089Nf7FAgAAAMhZhYVGNtZJkgewrsT8egAA+paMqtw+9dRT9cYbb/T4vIsuukiXX365LrroIp1yyil6++23df755+u6665L+A1RX/Hkk09q+/bt7dsnnniiBgwY0Olz+/fvr4qKivbtTZs2tffq7srevXv1wAMPtG/n5eVpwoQJCa4aAAAAQC4aWSKFw4kdI+xKI0sSLP8GAABZJaMqt6MNpr/2tYMnhOzYsUOXXnqpli5dqu9+97vJXlrG2rRpk4YNG9ZlMN2Zt956S9dee22HxyZNmtTtPpdccokee+yx9u3rrrtOq1evVl5eXqfPv+OOO7R169b27fPPP1+DBw+Oeo0AAAAA+o5x5VJxcWJDJQcVS+Vjk7QgAACQFTKqcjsRw4YN0/e//32tWrUq3UvpVU899ZROPfVULVq0SK+//nq3z21padH999+vs88+W++880774x//+Md17rnndrvviSeeqDPOOKN9+4033tCMGTP03nvvdXie67r67W9/qyVLlrQ/dsghh+jiiy+O5dMCAAAA0If4/UaTKyUnzt9QHUeaVOkdBwAA9B0ZVbmdqP79+3dotdFXBINB3X777br99ts1bNgwfeITn9CRRx6pQw45RJI3OHLTpk3661//qj179nTY98gjj9Rtt90mXxSjya+//nq99tpr2rx5syTpueee04QJEzRhwgSNGDFCu3btUl1dXYeKbZ/Pp0WLFikQCCTxMwYAAACQayonGq1cZdXaKrlu9Ps5jlRQ4O0PAAD6lpwJt621+v3vf68hQ4akeylptWPHDu3YsSOq537hC1/Qz372Mw0fPjyq5w8cOFB33XWXLr/8cr3yyiuSpObmZv3xj3/s9PlFRUX66U9/2qFfNwAAAAB0JhAwql4gzZxt5TjRBdyOIxkjVS8wCgQItwEA6Gt6Ldz+97//rbfffrvH5/3jH//Q7t27ozqm67ratWuXXnvtNT300EPavHlzj72jc80ZZ5yhtrY2Pf3003rxxRfV1NTU7fPz8/P1xS9+Ueeee67Gjx8f8+uNGDFC999/v2677Tbdf//92rlz50HP6devn774xS9q1qxZ+uhHPxrzawAAAADom8pKjRYtlObOt2pp6T7gjlRsVy8wKj2JYBsAgL7I2GinOCZoyZIlWrJkiYzp+k2Htbbbj3fHWquCggL94Q9/0DHHHBPvMrNaOBzW5s2b9a9//Uvbt2/Xhx9+KGutBgwYoIEDB+q4447TcccdJ78/Odc0wuGw6uvr9eabb6qxsVH9+/fX8OHDVVZWpkGDBiXlNSJ27dqV1OMBEcYYFRcXS/Ja/PTSt0REKRSyWl8nbdkqNTdbFRYajSzxhk7RUzNzcB7ljkPqviR/8IUOj4WKR2t3+cNpWlHfwrkE7NPYaFW71mp1rTdk0udIxpGsK4Vdb3jkpEqvFcn+FducR0DiOI+A5OBc6lyyM8NeC7clr/fzjh079Prrr+vZZ5/Vo48+etBAwngVFRVp4cKFmjBhQlKOh8xCuI1U4YdNZjroF1qfd8uxtVI4LBUXS5M7+YUW6cF5lDsIt9OLcwk4WChkVbfBu9Dd1GRVVORd6C4f2/mFbs4jIHGcR0BycC51LqvD7QPt3btXDz74oBYtWqT3339fknTCCSeoqKgoqv0dx9Ghhx6qE088UV//+tc1ePDgVC4XaUS4jVThh03mqW+wmjOv52FSjiPl53u3IpeVEnCnE+dR7iDcTi/OJSBxnEdA4jiPgOTgXOpcssPttA6U7Nevn8477zyVl5frggsu0Lvvvquf//znOv7449O5LABAmtQ3WM2cbWVtz0OkXFdqbfWGTi1aKAJuAAAAAAD6GCfdC5CkkpISXXnlleleBgAgjRobvYpt1+052I5wXa9Vydz5Vo2NXAUHAAAAAKAvSWvl9v5OOeUUyvMBoA+rXeu1Ion1R4HrSi0t3v7Tp1G9DQBAXxXpz719R7Oamq0c46pkBIOoAQDIZRkTbgcCAS1fvlwjR45M91IAAL0sFPKGR0ZbsX0g15XW1EpTqyy/vAIA0Md0HERt5fM1dTKI2jKIGgCAHJQRbUkiPvvZz6qwsDDu/d9//32tWbMmeQsCAPSK9XVSMJjYMXYFpboNyVgNAADIFvUNVlOqrJbV7HsvEQ5LoZD3p+Q9vqxGmlJlVd/A3cIAAOSSjAq3E7Vp0yb98Ic/TPcyAAAx2rJV8vkSO4bP8Y4DAAD6hsgg6tbW2AZRE3ADAJA7circfuedd9K9BABAHJqbrUyCdwkbR2pq4pdVAAD6AgZRAwAAKYN6bnfm/fffV1NTU1SDJpubm3Xvvff2wqoAAMlWWGgSHipsXamoiD6aAAD0BQyiBgAAUgaG2//617+0ZMkSPf300/rggw9i2tdaK5No6R8AoNeNLNnXFzNeYdc7DgAAyG0MogYAABEZFW5v3LhR06ZNU1NTkyQlXMUHAMgO48ql4uLEhkoOKpbKxyZpQQAAIGMlcxB1xfhkrAgAAKRLRoXbc+fO1Z49e9q3i4qKVFxcHNW+zc3N2rVrV4pWBgBIJb/faHKl1bKa+KqwHEeaVCmqrwAA6AMig6gTuesrMoi6InnLAgAAaZAx4fbGjRu1adMmnXDCCbr44ov1uc99TgMGDIjpGPPnz9eDDz6YohUCAFKpcqLRylVe/8xYAm7HkQoKvP0BAEDuS+4gat4/AACQzZx0LyDiH//4hw455BAtX75cZ5xxRszBtiSddtppKVgZAKA3BAJG1QuMjPEC62g4jmSMVL3AKBDgl1MAAPoCbxB1YsdgEDUAALkhY8LtDz74QCeeeGJcoXbEkCFD6NMNAFmsrNRo0UKjgoKeA+5Ixfbim4xKT+KXUwAA+goGUQMAgIiMCbcHDBigvXv3JnSMUaNG6bHHHkvSigAA6VBWarRiudHUKm/IpOT1xfT7vT8lb3jk1CppxXKCbQAA+prIIOpEMIgaAIDckDE9tz/96U/r17/+tUKhkPz++JbVr18/HXnkkUleGQCgtwUCRtOnGU2tsqrb4A18amqyKioyGlni/TLK8EgAAPomBlEDAICIjKnc/uQnP6mPfvSjeuCBB+I+xubNm/Xtb387iasCAKST329UMd7oWxcYXTTD0bcu8Lb5ZRQAgL6tcqJRfn70czoiGEQNAEBuyZhwW5Kuv/563X777Xr++efj2n/Hjh1x7wsAAAAAyA4MogYAAFKGhdvHHnusFi9erJkzZ2rJkiX68MMPY9r/5ZdfTtHKAAAAAACZhEHUAAAgY3pub9++XW+//bYk6dprr9WvfvUr/e53v9NnP/tZffSjH1VRUVG3+zc1NenBBx/sjaUCAAAAADKAN4haql1rtbpWCgYln8+r0LauFHa94ZGTKr1WJFRsAwCQWzIm3F63bp1uuOGGDo9Za/Xkk0/qySefjOoY1loZw5sVAAAAAOgr9h9EveE5o+07CrSnycrntKhkBIOoAQDIZRkTbg8ePFjW2oMe7+wxAAAAAAD2FxlEXVxcKEkKBtv4fRIAgByXUeG2JBlj9OlPf1qjR49WQUFB1Pvv2bNHq1ev1vvvv5+qJQIAAAAA+pBQyGp9nbRlq9TcbFVYaDSyRBpXTjU4AACZIOPC7RNPPFErV66M6xiHHXaYqqurk7ksAAAAAEAf09hoO+/jba3CYam4WJpcaenjDQBAmmVcuP2pT30q7mOMGjUqWcsBAKQIFVAAACDduns/svHv0px5Vq2tkut6zw+HO+4fDErLaqSVq6yqF3iDLQEAQO/LmHB70KBBGjNmjI477ri4jzFs2DCNHj06iasCACQLFVAAACDdeno/0r+/1NTkPbendt2uK7W2SjNnWy1aSMANAEA6GMuEDWSBXbt2pXsJyFHGGBUXF0uSgsEgQ4dSpL7BHlQB1RnHkfLzpeoFhl8QswjnUe44pO5L8gdf6PBYqHi0dpc/nKYV9S2cS0DiujuPon0/EivHkQoKpBXLuUCP3MDPIyA5OJc6N2jQoKQez0nq0dLs/fff15o1a9K9DADAfuobrGbOju4Xyf0roOob+MEPAACSI5b3I7FyXamlRapdy3sXAAB6W06F25s2bdIPf/jDdC8DAPAfjY1ehZTrRv+LpOt6twHPnW/V2MgviQAAIDHxvB+JletKa2q9Xt4AAKD35FS4vWXLlnQvAQCwn9q1XoVUrHdfUQEFAACSJd73I7HaFZTqNqT2NQAAQEcpHyhprdUf/vAHvfzyyyotLdXXvva1Tp+3bt06NTc3x/06TU1N+t3vfhf3/gCA5AqFvGFN8VZIRSqgplZZ+f30rwQAALFL9P1ILHyOtGWrVJH6lwIAAP+R8nD72muv1apVqyRJK1as0D/+8Q/NmTPnoOf9+te/1qZNmxJ6LWutjCEAAYBMsL5OCgYTO0akAqpifDJWBAAA+ppkvB+JlnGkpiYrid9JAQDoLSlvS/I///M/krzgOVLF3ZnBgwe3Pyfe/wAAmWPLVsnnS+wYkQooAACAeCTj/Ui03LC0fYdUc4/VnUtd1dxj9dTTlj7cAACkUMort0eNGqX6+noZY2St1bHHHtvp8wYNGiRJOuSQQ3TmmWcqEAjIcaLP3vfs2aMHH3xQH3zwQVLWDQBITHOzVaI301ABBQAAEpGM9yPRcq207mHJ5/Ne01qrcFgqLpYmV1pVTjQKBHhPAwBAMqU83F64cKHmzZunv/3tbzrppJN0/fXXd/q84uJiGWP005/+VF/5ylfieq3DDjtM1dXViSwXAJAkhYUm4btqrCsVFfFLIAAAiE8y3o/EKhzuuB0MSstqpJWrrKoXSGWlvLcBACBZUh5uH3HEEbr77rt7fF6kcvuTn/xk3K81atSouPcFACTXyJKDf7mLVdj1jgMAABCPZLwfSQbXlVpbpZmzrRYtJOAGACBZUh5uR6u8vFzNzc0aMmRI3McYNmyYRo8encRVAQDiNa7cuw03kSFOg4ql8rFJWhAAAOhzkvF+JFlcV3Icae58qxXLRYsSAACSIOUDJaM1duxYzZs3T/3794/7GB/96EdVU1OTxFUBAOLl9xtNrvR+iYuH40iTKr3jAAAAxCPR9yPJ5rpSS4tUu5YhkwAAJEOG/IgHAOSiyolG+fmx/0LpOFJBgbc/AABAIuJ9P5IqriutqZVCIQJuAAASlTFtSboSCoW0YcMGbdy4UTt27JDjOBo+fLhGjx6tsrKydC8PANCNQMCoeoHXX9JxvF/meuI4kjFS9QLD7boAACBh8bwfMf95C9K/v/Thh5LPkYzjDbsOR7F/T3YFpboNUsX4xI8FAEBflrHhdjgc1tKlS3X33Xcr2EWDtI985COaNWuWTjvttN5dHAAgamWlRosWev0lW1q6/4UyUrFdvcCo9CSCbQAAkBzxvh/51Ce9EHrLVqmpyaqoyGjzZqtHH09sUKXP8Y5ZEf8hAACAMjTcfuutt/SDH/xAf//73yVJ1loZ0zHksNZq8+bNuuKKK/Ttb39bV199tXw+XzqWCwDoQVmp0YrlXn/J1bXeUKcDK6AGFXs9tisnUrENAACSL973IxXjIyG0t33nUiuT4FsV43hheeSYAAAgPhkXbr/zzjs677zz9N5778nafT3I9v/7/qy1Wr58uXbt2qUbb7yxt5YJAIhRIGA0fZrR1Cp7UAXUyBKpfCzDIwEAQGol4/1IYaHp8vfTaFlXKirifQ8AAInKqHC7tbVV3/ve9/Tuu+9q5MiROvvsszV69GgdccQRGjBggPLy8tTa2qrdu3frzTff1MaNG/XnP/9ZL7zwgtauXasxY8bonHPOSfenAQDoht9vDqqAAgAA6E2JvB8ZWZJYSxLJqxIfWZLYMQAAQIaF2//93/+tl156SdOnT9cPfvCDTtuM9OvXTwMGDNDhhx+uz372s5oxY4ZeeeUVXX311frFL36hL33pSzr00EPTsHoAAAAAQK4bVy4VF3ttTeI1qNirEgcAAIlx0r2AiHA4rJqaGn3xi1/Uf/3Xf8XUP/v444/Xb3/7W+Xn52v16tUpXCUAAAAAoC/z+40mV3qDJ+PhOF5fb9qxAQCQuIwJtxsaGhQMBjVz5sy49g8EAjr77LP1xBNPJHllAAAAAADsUznRKD8/9oDbcaSCAm9/AACQuIwJt1977TUdd9xx+vjHPx73MT7zmc/otddeS+KqAAAAAADoKBAwql5gZEz0AbfjSMZI1QuMAgHCbQAAkiFjwu3du3fr8MMPT+gYgwcP1u7du5O0IgAAAAAAOldWarRooVFBQc8Bd6Rie/FNRqUnEWwDAJAsGRNuH3roodq1a1dCx2hublZhYWGSVgQAAAAAQNfKSo1WLDeaWuUNmZQknyP5/d6fkjc8cmqVtGI5wTYAAMnmT/cCIo488ki9/PLLCgaDKo68K4jR3//+d40cOTK5CwMAAAAAoAuBgNH0aUZTq6zqNkhbtkpNTVZFRUYjS6TysQyPBAAgVTIm3D755JPVr18//e53v4trqGRra6vuu+8+nXHGGSlYHQAAAAAAXfP7jSrGSxWSJMJsAAB6Q8a0JcnLy9PXvvY1/fd//7ceeeSRmPYNBoO67LLL9Pbbb+vrX/96ilYIAAAAAAAAAMgUGRNuS9KVV16pvLw8XXXVVfrhD3+ojRs3ylrb6XNd19U///lP3XrrrTrrrLO0fv16nXfeefroRz/ay6sGAAAAAAAAAPS2jGlLIklDhgzRTTfdpMsvv1xr1qzRmjVrlJ+fr8MOO0yHHHKI+vXrp9bWVu3Zs0fvvPOO9u7dK0my1uqEE07Q3Llz0/wZAAAAAADQtVDIan2d15u7udmqsNDrzT2unN7cAADEKqPCbUk65ZRTdOONN+pHP/qRmpub1dLSoq1bt3Z4zoHV3CeccIJ+85vfKC8vrzeXCgAAAABAVBobrWrXWq2ulYJByeeTjPF+vw2HpeJiaXKlVeVEo0CAkBsAgGhkVFuSiK9+9au67777VF5eLsn7YR/5b3+O4+i8887TypUrNXz48HQsFQAAAACAbtU3WE2pslpW4wXbkhQOS6GQ96fkPb6sRppSZVXf0Hl7TgAA0FHGVW5HfOxjH9Pvfvc7vfjii3r00Uf1t7/9TY2NjQqFQjr88MNVVlamiRMnauTIkeleKgAAAAAAnapvsJo528payXW7f67rSq2t0szZVosWSmWlVHADANCdjA23Iz75yU/qk5/8ZLqXAQAAAABATBobrebMs3JdyUZZjO26kuNIc+dbrVguWpQAANCNjGxLAgAAAABAtqtda9XaGn2wHeG6UkuLtz8AAOhaxlduv/LKK3riiSf06quvKhgMKi8vTyUlJTr55JP1hS98gSGSAAAAAICMEwp5wyN7akXSFdeV1tRKU6us/H6qtwEA6EzGhttvvPGGfvKTn6i+vr7Tj99zzz0aMmSIrrrqKp199tm9vDoAAAAAALq2vm7f8Mh47QpKdRukivHJWBEAALknI9uS/P73v9c3vvEN1dfXy3Zx/5a1Vo2Njfrxj3+s2bNnq7m5uZdXCQAAAABA57ZslXy+xI7hc7zjAACAzmVcuP3AAw/o+uuvV1tbW3uwba2Vz+dTIBDQwIEDOwTe1lr98Y9/1KxZs9K1ZAAAAAAAOmhutjIJdhMxjtTURN9tAAC6klFtSTZu3Khrr71Wkhdan3TSSZo8ebJOPvlkfeQjH2l/3u7du/XXv/5V69at09q1a9Xa2qonnnhCd955py666KL0LB4A+rhQyGp9nVdd1NxsVVhoNLJEGlcu+kQCAIA+p7DQdHkncrSsKxUV8T4KAICuZFS4feONNyoUCumoo45SdXW1PvOZz3T6vEMOOUQVFRWqqKjQlVdeqZ/97Gd65JFHdOutt2rSpEkaNmxYL68cAPquxkar2rXewKRg0Lv91hjvImU4LBUXS5MrrSonGgUC/HIGAAD6hpElUjic2DHCrnccAADQuYxpS7J161a98MILOumkk7RmzZoug+0DDR06VLfccoumTp2q1tZW/eEPf0jxSgEAEfUNVlOqrJbV7BuYFA5LodC+X+aCQWlZjTSlyqq+gdtqAQBA3zCu3LvIn4hBxVL52GSsBgCA3JQx4XZ9fb38fr8WLlyoAQMGxLz/D3/4Q33iE5/Q008/nYLVAQAOVN9gNXO2VWur5LrdP9d1pdZWaeZsAm4AANA3+P1GkyslJ87fuh1HmlRJezcAALqTMeH2jh079IlPfEJHHXVU3MeYMmWK/vnPfyZxVQCAzjQ2Ws2ZZ+W6PQfbEa4rWSvNnW/V2EjADQAAcl/lRKP8/NgDbseRCgq8/QEAQNcyJtwuKCjQIYccktAxjj76aDX9f/buPD6q+uz///vMTEISFgMMiAsBwQ3qlghKKKmCFWtriFi1Upsb+WFdKq2lchcUbbW2aCx+wd5aN6ySVEpRgUht1brUjWClyX3bKq5QoChLMMOWjZnz+f1xzMCEkMw+k+T1fDx4wJmc85nPJHwy51xzneuqr4/TjAAAh1O5ysnYjrRHkm1LjY3O8QAAAF2d12upbJ4lywo/wO1yOf1LyubRrwQAgI6kTXD76KOP1pYtW2Iaw+fzqX///nGaEQCgLX6/0zwy3Izt1mxbWlnpjAMAANDVFeRbWjDfUlZWxwHulozthfdayj+DwDYAAB3xpHoCLcaMGaMtW7bo3//+t4YOHRrVGFVVVe02otyyZYvuv/9+3XXXXVHOEgcLBAKqqanR5s2btWPHDvXq1UuDBg1SQUGBcmPtnAIgba2uOtA8Mlp1PqlqjVQ0Lh4zAgAASG8F+ZaWlDt3r62odM6l3C7JcknGlgK20zzy4hKnFAkZ2wAAhCdtgtu9evXSRRddpAceeEC//vWvIz5+06ZNeuqpp/T4448fdp8tW7Zo5cqV3TK4vXfvXn3rW9/S1q1bQx4vLy/X2WefHdFYzc3Neuihh7Rs2TLt2LHjkK9nZGRo/Pjxuummm6L+oAJA+tq4SXK7pUAg+jHcLmecovhNCwAAIK15vZamT7M0tdSoao1zLlRfb5STY2lInlQ4huaRAABEKm2C25L04x//WCUlJfr973+v733ve2Eft3XrVn3/+9/XFVdcofz8/MPu9+GHH8Zjmp3S/PnzDwlsR2Pz5s364Q9/qHXr1h12n/379+vFF1/Um2++qV/84hcqLi6O+XkBpI+GBiMrxusuy+VczElcwAEAgO7F47FUNK7lQ37OhQAAiEXaBLc///xz/ec//9G0adP0q1/9SuvWrdPo0aM7PG7nzp16+OGHlZubq5NOOkkrV65sc789e/bokUceifOsO4fq6motXbo05nH27Nmja665RuvXrw8+lp2drfHjx2vw4MHy+XyqqqrSpk2bJEn19fWaPXu2cnNzVVREfibQVWRnWzKRdpJsxdhSTg4XcwAAAAAAIHppE9x+4YUXVFZWJkkyxmj58uVavnx5WMcaY7Rnzx7dcsstHe5nxZpu2Mk0NzfrtttuCwaiBgwY0GYpkXDMnTs3JLB99tlna+HCherXr1/wsUAgoCeeeEK//vWvZYxRIBDQzJkz9fzzz8vr9cb2YgCkhSF5sZUkkZy6kkPy4jMfAAAAAADQPXXQqzl5cnNzQzIBjTFh/wl3/+7o4Ycf1ieffCJJ+trXvqZx46Lr3vbuu+/qhRdeCG4ff/zxWrRoUUhgW5LcbremT5+uGTNmBB/bs2ePHn744aieF0D6GVsoxdoztm+uU1cSAAAAAAAgWmmTuX3EEUcE/52fnx/3RoT79u3Ta6+9pubm5riOm84++eSTYFA5KytLP/vZz/TAAw9ENdaDDz4Ysn3bbbcpMzPzsPtfe+21qqysDJYoWbp0qa6//vpDguEAOh+Px9LkEqPFFZJtR368yyVdXELDJAAAgI74/Uarq5zmkw0NRtnZTvPJsYWcSwEAIKVhcLuoqChhtbF/85vfHBKk7aqMMbr11lu1f/9+SdINN9ygwYMHRzXWvn379Oabbwa3hw8frjFj2k+5zMjI0GWXXaZ7771XklMe5ZVXXtGll14a1RwApJeSYktLlxk1NUUW4Ha5pKws53gAAAC0rbbWqHKV0YpKyeeT3G7JsvRl6UfnLrrJJUYlxZa8Xs6rAADdV1qVJZGcOs6JcuaZZyZs7HSzZMkS1dTUSJJOPPFETZs2Leqx3njjjZCM9wsuuCCs477xjW+EbL/88stRzwFAavj9Rq+/YVTxpNEji2xVPOls5+ZKZfMsWZYTsA6Hy+VclJXN4yIMAADgcKprjKaUOnfJ+XzOY4GA5Pcf6Hvi80mLK6QppUbVNd2zBCcAAFIaZW737dtXRx99tI466qiEPYfX603o+Oli69atwYxpy7J0++23KyMjI+rx1q5dG7Kdn58f1nF5eXnq37+/du7c2eY4ANJXeNlC0u23SXfdIzU2tp/B3ZKxXTbPUv4ZBLYBAADaUl1jNHOWkTEd3x1n21JTkzRzltGC+VJBPudYAIDuJ62C26+88kpCn+Okk05K+HOkg9tvv1379u2TJF122WUxZ6yvX78+ZHvkyJFhHztixIhgSZPdu3drx44dGjBgQEzzAZBY1TVGs28JLTnSkiXUoiVbqEcP6ZbZ0voNOhAId0mWSzK2FLCd5pEXl4jbZgEAANpRW+ucg9m2ZMJMxrZtJ4lgzlyjJeXiXAsA0O2kTXA7Hnbt2qVXX31VF198caqnkjJ//vOf9eqrr0qS+vXrp1mzZsU85sHB7czMTPXv3z/sY48++uhDxiK4DaSvaLKFbr9TWjDf0tRSqWqN0/Covt4oJ8dpeFQ4hoZHAAAAHalc5SQXhBvYbmHbzl10lauMpk/jnAsA0L10qeD2+vXrdfPNN3fb4PauXbv0q1/9Krg9Z86cYKPOWGzfvj3470GDBsmywj9hOvLII0O2t27dGvN8ACRG7NlClorGWSqSJHFhBQAAEC6/3ykHF0mj7oPZtrSyUppaakgqAAB0K10quP3555+negopVVZWptraWklSYWGhSkpKYh6zsbFRgYPqEeTk5ER0fK9evUK26+vro5pHJAF1IBIH/9/q7v/PYs0WevZPIluom2IddSVt/fwsfq5JwloCYtdZ11HVGsnni60xZJ1PWvO2k2wAxKKzriMg3bCWkiOtg9u7du1SfX29TBiRloaGBv3hD39IwqzS05o1a/TMM89IckqH3H777XEZt3UwukePHhEdn5mZ2e544crNzY3qOCAS8bjTobPav99o5bN1sWULPSv9aMYRysjgTbs7687rqEtwuw95yON28z6cAqwlIHadaR1t294gt7v+kD4nkXC7pW3bs5Sbmx2/iaHb60zrCEhnrKXESbvg9r///W/df//9euONN7R79+6IjjXGdMtPQpqamvSzn/0suH3ttddq6NChcRv7YBkZGREd3zq43djYGPOcAMTf62/sV11dbNlCX3xh9Mab+zVhfGbHOwMAACCovsEo1ktZy5L21cd2PgcAQGeTVsHtd999V9OmTQtm94aTsZ0uJkyYoC1btiRs/JtuuknXXHNNm1/7n//5H23cuFGSdNxxxx12v2i0ztTev39/RMc3NzeHbGdlZUU1D5/PF9VxQEcsywp+grpr165O9Xsnnt5fZ8vtVmzZQi7p/XV7VZDvit/E0CmwjrqOXoHAISeH/kBAe3kfTgrWEhC7zrqOXJYdcWm41owtuV2N8vmaO94ZaEdnXUdAumEttS3ed4WmVXD75ptv1r59+4LbOTk5Yb/ghoYG1dXVJWhm6euDDz7Q448/Hty+/fbbD8mWjkXrGtutM7k70jq4HWnN7hb8AkAyGGO67f+1+vo4ZAu5pH37uu/3EI7uvI66hrZ+dvxMU4G1BMSuM62jvMGxJRlIUsB2xuksrxmdQ2daR0A6Yy0lTtoEt9999119+umnGjlypK699lp99atfPaQZYUfmzp2r5cuXJ2iG6ScQCGju3Lny+/2SpMmTJ2vMmDFxfY6srCy53e5gU8mDP3wIx969e0O2ow1uA0is7Gwr5jdaY0s5Od2vNBQAAECsxhZKublSLDfK9M2VCuN7OQgAQNpLm+D2e++9p969e6u8vDzioHaLr3/96ykLbt93330RZzVH4thjjz3ksT/96U/617/+JclJ6f/pT3+akOceOHCgPv/8c0nStm3bIqptvnXr1pDtQYMGxX1+AGI3JC8+2UJD8uIzHwAAgO7E47E0ucRocYWiavDtckkXlzjjAADQnaRNcHv37t067bTTog5sS1L//v1TluJ/6qmnJv05Dy7DsmvXLo0bN67DY+xWZ0pXXXVVSKD6iSee0FlnnRWyz/Dhw4PB7ebmZtXW1mrAgAFhzbHluIPHApB+yBYCAABIrZJiS0uXGTU1RRbgdrmkrCzneAAAupu06frVs2fPiJsVtjZixAi9/PLLcZpR52KMUSAQ6PBP6+C/bdvtfl2Shg0bFrL9/vvvhz2vdevWBf/dp08feb3eCF8ZgGRwsoWci6NokC0EAAAQG6/XUtk8S5YV/jmZyyVZllQ2z5LXy3kYAKD7SZvg9mmnnaYPP/wwWD86GhkZGTrmmGPiOCtI0plnnhmyXVNTE9ZxGzdu1M6dO4Pbo0aNiuu8AMRXSbGlHj0iD3CTLQQAABAfBfmWFsy3lJXV8TlZyznYwnst5Z/BeRgAoHtKm7Ikp512moYMGaKnn35aV1xxRVRjbNiwQT//+c9VXl4e59mlp6uuukpXXXVVRMfMmTNHK1asCG6Xl5fr7LPPbveYoqIiZWZmqrm5WZL0wgsv6Mc//nGHz/X888+HbJ933nkRzRVA4vj9RqurpI2bpIYGo+xsS0PypHl3SrNmOxdL4dwOS7YQAABAfBXkW1pSLlWuMlpR6ZSNc7sky+U08A7YTjm4i0uc5ALOwQAA3VnaBLcl6Ve/+pWuvvpqDR8+XKNHj474+O3bt+udd95JwMy6t549e6qoqChY8mX9+vVas2aNxow5fHHd/fv36+mnnw5uZ2ZmasKECQmfK4D21daa0AsltxOcdkobOXW3z/+69NprUlNz+wHulmyhsnlkCwEAAMST12tp+jRLU0uNqtY4CQn19UY5OU5CQuEYysEBACClWXD7hBNO0L333qubbrpJl112ma666qqIGkweXN8Z8XXdddeF1DO/8847tWLFCmVmZra5/8MPP6xNmzYFt6+44gr169cv4fMEcHjVNUazbwltUhQIhO7j80kv/lXKzJQmni+teZtsIQAAgFTxeCwVjZOKJEmccwEA0FpCg9uffvqp/vnPf0Z83FVXXaWHH35Yjz/+uM466ywdd9xxysnJafeY+vp6LV++PNqpogOnnXaaLrjgAr3wwguSpE8++URXX321Fi5cGBK0tm1bTzzxhO6///7gY71799a1116b9DkDOKC6xmjmLCNjOi43YttSc7P015ek+WVSY6NFthAAAAAAAEg7CQ1u/+///q9uvfXWqI83xuhvf/ub/va3v4W9v2URbEmUX/7yl/roo4+0YcMGSdLbb7+tCRMmaMKECRo8eLDq6upUVVUVkrHtdru1YMECeb3eVE0b6PZqa52MbduWjAnvGNt2yo7M/Zm0pFwqGmeJbCEAAAAAAJBOEhrcPuKII4IBZxNuRKWVaI9D/PXp00ePPvqoZsyYoQ8++ECS1NDQoOeee67N/XNycnTHHXeoqKgomdME0ErlKqcUSaS/Tm1bamx0jp8+jcA2AABAujpcs/CxhdxtBwDo2hIa3M7NzQ3+e/To0Tr99NOVlZWVkOfat2+fli9frt27dydkfDgGDx6sp556Sg8++KCeeuop7dix45B9MjIydO655+qmm27Scccdl4JZAmjh9zvNIzsqRXI4ti2trJSmlhoujAAAANJMOM3CJ5cY+qQAALqshAa3+/btK0k666yztHjx4kQ+lSTpyCOPVFlZWcKfpzO7++67dffdd8c0RmZmpm688UbNmDFD1dXV2rx5s2pra9WzZ08NGjRIBQUFwZ89gNRaXeVc6MSizidVrZGKxsVjRgAAAIiHcJuFL66Qli4zKpsnFeQT4AYAdC1Jydw+5ZRTEvk0QSNGjEjK88Dhdrs1evRojR49OtVTAXAYGzc5GTytL3Qi4XY541BgCAAAID1E2iy8qUmaOctowXwC3ACArsWVyMGPOOIIjR49Wscff3winyZo4MCBGjVqVFKeCwA6g4YGo1j77Fouqb6e/gcAAADp4OBm4eGWnmtpLD5nrlFtLed1AICuI6GZ2x6PRxUVFYl8ihDHHXdcUp8PANJddnb0DX1bGFvKySHDBwAAIB3QLBwAgAMSmrkNAEitIXmxlSSRpIDtjAMAAIDUilezcL+f7G0AQNfQqYPbH330kbZt25bqaQBA2hpbKH3Z/iBqfXOlwjHxmA0AAABiEc9m4QAAdAVpF9yurq7Wtddeq+LiYj300EPt7rtixQqNHz9eP/3pT1VXV5ekGQJA5+HxWJpcIrmi/G3vckkXlzjjAAAAILVamoXHoqVZOAAAXUFaBbfff/99XXXVVXr99df18ccf67777tPatWsPu//s2bO1dOlS7dixQ9/+9rfJ4gaANpQUW+rRI/IAt8slZWU5xwMAACD1aBZ+KL/f6PU3jCqeNHpkka2KJ51tSq8AQPeQ0IaSkXrggQfUr18/bd26VdaX79i7du1q95jTTjtNjz32mG699VbdcMMNeuqpp4LHAgAkr9dS2Txp5iwjlyu8Go0ul2RZUtk8S14vv1MBAADSQTyahdsBadt2qeJJo4YGo+xsS0PynHJ2neluvdpao8pVTg1yn8/JaLcsyRijQMApzTe5xKikmPNZAOjK0iZze9++fXrrrbf08MMPa+TIkTLGaMyYMTrnnHM6PNblcunOO+9UU1OT/vznPydhtgDQuRTkW1ow31JWVscZ3C0Z2wvvtZR/BhcCAAAA6SIezcJtI73worTod0ZLljp/33Kb0cWXGj32uK3a2vTPeK6uMZpSarS44kAN8kBA8vsPfH98PmlxhTSl1Ki6Jv1fEwAgOmkT3K6urtaAAQN00kknafny5aqqqtLjjz8ujye85HK3260rrrhCzz77bIJnCgCdU0G+pSXllqaWHmgy6XZJHo/zt+Q0j5xaKi0pJ7ANAACQbuLRLLxFZw0GV9cYzZxl1NTU8R2Jti01NTl3MKbzawIARC9typJs3bpVxx57bHC7b9++EY8xYsQI/fa3v43ntACgS/F6LU2fZmlqqVHVGqeZUH29UU6Ocztq4ZjOdTsqAABAd+I0C3cylsMpNRepg4PBC+Y7yRHppLbWaPYtRrYthVudxbadOxPnzDVaUi5KlABAF5M2we0vvvhCPXr0iGkMt9vdYY1uAIBzYVQ0TiqSJHGCDwAA0FmUFFtauiy8zOVopHMwuHKV87ojLTtu21Jjo3P89Gnp83oAALFLm7IkWVlZ2rlzZ0xjrF+/XtnZ2XGaEQAAAAAA6cVpFm7JsjrupRKtg4PB6cLvd5pHRhvQt21pZaUzDgCg60ib4PawYcO0bt06bdu2Leoxli9fruOOOy6OswIAAAAAIL1E0iw8WukWDF5ddaB5ZLTqfFLVmnjMBgCQLtImuD169GhlZmbqtttuk9/vj/j4Rx55RGvXrlVRUVECZgcAAAAAQPoIp1l4rNIpGLxxk+R2xzaG2+WMAwDoOtKm5nZWVpa+/e1vq6KiQldccYXuueceDRs2rMPjdu/erXvvvVd//OMflZmZqcsuuywJswUAAAAAILXaaxa+YYPRS69IgUD047cEg9MhhayhwciKsVy25XK+P/ScAYCuI22C25I0Y8YMvfLKK3rvvfd00UUX6ayzztL555+vkSNH6thjj1WfPn20f/9+ffHFF3r//fe1Zs0arVq1SvX19bIsSzfccIMGDRqU6pcBAAAAAEDStNUs/JFFXSsYnJ1tyUTaSbIVOyBt2y5VPGnU0GCUnW1pSJ40ttD5HgIAOp+0Cm4fccQRevDBB3XFFVeovr5eb7/9tt5+++12j2l5c5s4caKuvfbaZEwTAAAAAIC0Fq9g8IcfSY8sslMeCB6SF1sWuiTZRnrhRcntdgL/xhgFAk5Zl8klRiXFlrxegtwA0JmkTc3tFieeeKIqKio0dOjQ4BuxMeaQPy2PS9J3vvMdzZ8/P2VzBgAAAAAgncQrGPzOWmnJUmnR74xuuc3o4kuNHnvcVm1tchtNji08UFs8VoGA5Pcf+P74fNLiCmlKqVF1TXo00AQAhCftgtuS9JWvfEUrV67U9OnTlZOT0+Y+xhgdd9xxuv/++3XHHXcoMzMzybMEAAAAACA9xSsYbNvpEQj2eCxNLpFcCYpi2LbU1CTNnEWAGwA6E8vEep9SgjU2Nuqtt97Sv/71L+3cuVNut1vHHnusRo0apdNPPz3V00OS1NXVpXoK6KIsy1Lul2f9Pp8v5ls3ge6IddR19K6aKI9vbchj/txR2lP4Yopm1L2wloDYsY5CPfa4rcUVTuA23lwuybKkBfMtFeQnp5RHba3RlFKjpqbEvCbJeV1ZWdKS8u5booR1BMQHa6ltffv2jet4aVVzuy1ZWVk677zzdN5556V6KgAAAAAAdBolxZaWLktMMNi2nUDwnLlGS8oV90Cw32+0ukrauEkhzR/n3SnNmu08dyIC3LYtNTZKlauMpk/rnsFtAOhM0j64DQAAAAAAIuf1Wiqb55TaSEQwOBGB4Npao8pVRisqnRIobrcOaf54/tel116TmpoTF+BeWSlNLTUpaZ4JAAhfWtbcBgAAAAAAsSvIt7RgvqWsrMTUq24JBPv9sd9uX13jlB1ZXOEEtqW2mz+++FfJSJp4/oG64m6X5PE4f8dDnU+qWhOfsQAAiZNWmdufffaZBg4cKI+n/WlNmjRJ+/btk9vtVt++fXXaaadp8uTJGjlyZJJmCgAAAABA51CQb2lJuUIzol2S5ZLsgGTHGJduCQQXjYt+jOoao5mzjIzpOBvbtqXmZumvL0nzy6TGRksbN0n19UY5OZY2bDB66ZUDAfFouF1OSZSiDvY7XPmUsYUi6xsAkiCtgtvnnXeeVqxYoZNPPrnd/a655hrt379fgUBAtbW1evfdd3XFFVfosssu06233irL4g0EQHrjJBgAAADJ5PVamj7N0tRSo6o1CgaDP/xIemdtbOU9wg0EH05trdHsW4xsWwq331pLze+5P5OWlEtF4yxJznn0I4uMYg0LWC7n+9MyZltz7qh8yuQSo5Li7tuYEgCSIa2C2+F2Db3ooosOeWz79u26/vrrtWjRIn3/+9+P99QAIC44CQYAAEAqeTyWisa1BKItPbLI1j+qYwtudxQI7kjlKqfpZbiB7RaHq/mdnW2FHV84HGNLOTltv57qGicYf3CjztZZ4j6ftLhCWrrMqGyekz0PAIi/LlNze+DAgfrRj36kZcuWpXoqANCmcGsILq6QppQaVdfEXrcQAAAAaI8TCI5tjPYCwR3x+53Ej2iD623V/B6SF1tJEkkK2NKGDUaPLLJV8aTR628Y+f0mWD7l4MB2e3NranIaenJuDwCJkVaZ27Hq2bOntm3bluppAMAhIq0h2HISvGA+WR4AAABInHgFgofkRXfs6qoDiR/Ral3ze2yhc0dkrOO+9EroXZZ9+kj19YqqfMqcuUZLysXdmQAQZ10mc9sYo9///vfq379/qqcCACEOriEYbkZKywnznLlGtbVkeQAAACAxWgLBseibKxWOie7YjZucUn2xaKn53cLjsTS5xAkqx6L1XZa7dzvbsZRPAQDEV9Iytz/77DNt2bKlw/3ee+897dmzJ6wxbdtWXV2dPvroIz3//PPasGGDLr744hhnCgDxFe8aggAAAEC8OIFgp3ReNKVBXC7p4pLom6I3NCSm+WNJsaWly8IrH5IMLeVTppYaGsgDQBwlLbi9fPly3X///bI6eNe69dZboxrfGKOsrCxdffXVUR0PAIkQrxqCnAQDAAAgUaINBLtcUlaWc3y0EtX80eu1VDbPKfXncqVHgLt1+ZTuxO83Wl3lZNg3NBhlZ1sakufcOcB1DoBYJC24PWPGDF111VXavn27Pv74Y7311lt66aWX9MUXX4TsF+2bWk5OjubPn6/hw4fHY7oAEBeJqCEIAAAAxFM0gWCXy6lHXTbPiqmOdCJrfhfkW1ow3yn119iY+gB3S/mUotROI6lqa40qVzkJPz6fU4Lm4DrmubnS5BKjkuLY/h8B6L6S2lCyV69e6tWrl4YNG6YLLrhAt912m5YvX64FCxZo165dkqSRI0cqJycnrPFcLpeOOOIInXbaabrkkkvUr1+/RE4fACLWUkMwlhP27ngSDAAAgOSKJBDckrFdNs9S/hmxBSTj0fyxvZrfBfmWlpQrNMDqckqZ2AHJTmIZ7LbKp3Rl1TVO76GD7whofV3k80mLK6Sly4zK5jk/LwCIRFKD261lZGToO9/5jgoLC/Xd735XO3fu1K9+9SudfPLJqZwWAMRNomoIAgAAAPHWXiDY2E6GdN9cp8Z2vDJtk1Hz2+u1NH2apamlRlVrnMSR+nqjbdulF16MYfIRsgPShx9Jjyyyu0RZjvZKjbz7T+dOAGM6/rnattTU5Oy/YD4BbgCRSWlwu0VeXp5uvPFG/exnP0v1VAAgrhJVQxAAAABIhMMFgnNynMBl4Zj4B2OTVfPb47FUNK7ljkhLFU8aud0m5rIo4bKN9M5a6R/VnbssR0elRvr0kerrnZ9luJdCtu38POfMNVpSrk7zvQCQemkR3Jak8ePHxxwAAoB0k8gaggAAAECitA4Ex0N7mb5l86yk1/yOx12WkbLt0NfX2cpyhFNqZPfu6Ma2bamx0blzYPq09P4+AEgfaRPc9nq9Ki8v15AhQ1I9FQCIm0TXEAQAAADSXXhNBaXbb5PuukdJq/kdj7ss46GzlOWorjFhlxqJlm1LKyulqaWm05ZrAZBcrlRP4GBnnXWWsrOzUz0NAIgbp4agcwIejXBqCAIAAADpqrrGaEqpU1O7JeEjEJD8/gMZvy3Zy/PKpJt/Kk0tdQLeklPz2+Nx/pacxI+ppdKS8tibWcbjLst4aSnhMWeuUW1t6gPurdXWOhnbrTPPE6HOJ1WtSexzAOg60iZzOx527dqlV199VRdffHGqpwIAQcmqIQgAAACkwuHKjWRnG82arYiaCt5+p7RgvqWppUp4ze943GUZT+lclqNylXM9k4xEd7fL+bkXJf6pAHQBXSq4vX79et18880EtwGkFa/XUtk8Jb2GIAAAAJBIHZUbiVRoU0FLReOsuNb8bs25y9LJKk90NnK40rEsh9/v/IyT9T2yXM4HGon6uQPoWtKqLEmsNm7cmOopAECbCvItLZhvKSur4xIlLRnbC++N/VZLAAAAIBHCKTcSjYOzl5OhpNhSjx6RlxG0LKdcSp8+znZL+RRXHE7f060sx+qq5Ga3G1vKyeE6CEB4Ep65bYzRM888o3Xr1ik/P18XXXRRm/u98MILamhoiPp56uvr9fjjj0d9PAAkWkG+pSXlCs1ucTmZCcaWArZTQ/DiEuckm4xtAAAApKNENxZMZvZyLHdZLphv6dRTQsunfPiR9M7a2L4v6VaWY+MmJys/WfXJA7ZTDx0AwpHw4Pbtt9+uZcuWSZKWLFmi9957T7Nnzz5kv9/85jdav359TM9ljJFlEQwCkL68XkvTp1maWmoSXkMQAAAAiLeDGwsmsv5yS/Zy0bjEPUcL5y5LpxxKY2P7gemWuyzL5h24y7JonILlUx5ZZOsf1bEFt9OtLEdDg1EyQy19c53rIgAIR8KD288++6wkJ/AsSc8880ybwe1+/frp008/TfR0ACAteDxWyEkwAAAA0Bkkq7FgsrOX43WXZXa2FYx/RMsOSNu2SxVPmpAGnWMLU5MIE4/XFC6Xy/kek/ADIFwJD26PGDFC1dXVsiznl+Hxxx/f5n59+/aVJPXu3VsXXnihvF6vXBEUvdq3b5+WL1+u3bt3x2XeANDZHK5LfapOggEAANC1JLOxYCqyl+Nxl+WQvNjLd9hGeuFFye02IQ06c3OlySUm6SUM4/GawtGSFV9SzLULgPAlPLg9f/583XLLLfq///s/nXHGGfrlL3/Z5n65ubmyLEt33HGHvvnNb0b1XEceeaTKyspimS4AdDoddalP1UkwAAAAupZkNhZMZVPBWO6yHFvonH/H4/vUOqDs80mLK6Sly4zK5jnZ5skQz9d0OC11zMvmcc0CIDIJD24fffTReuKJJzrcryVz+5RTTon6uUaMGBH1sQCQrtrLyH73n9LsW5xbQ1syaNLlJBgAAABdSzIbC3bWpoIej6XJJUaLKxLXbLOpyWmAuWB+cs7tE/2a2qpjDgDhSnhwO1yFhYVqaGhQ//79ox5j4MCBGjVqVBxnBQCp01FGds+eUn29s29HJfBScRIMAACAriWZjQU7c1PBkmJLS5eFJqDEk207AeE5c42WlCspmc7RvibLcq5jcnKk3bujq2MOAO1Jm+D2mDFjNGZMbO9cxx13nCoqKuI0IwBIneoa02FG9r59kY2ZipNgAAAAdB3JaizY2ZsKer2WyuY5iSUuV+IC3I2NTgPM6dMS/32K5jW1lBpZMN/Sqaco6jrmANCe8Ds2JsHKlSvlS1YBLwBIU9U1RjNnJSbT4+CTYAAAACASyWgs2FWaChbkW1ow31JWlvOaEsG2pZWVThnDZIjkNbX8HBfe65QaceqYW/redy1dc7VL3/uus01gG0Cs0iq4ffPNN+sf//hHqqcBAClTW+tkbNt24rrQJ/skGAAAAF1DS2PBROlqTQUL8i0tKbc0tfTA983tkjwe5+94qPM5GdHJEs5r6psrTS2VlpRTQxtA4qVNWRLJqSP7zDPP6Lzzzkv1VAAgJSpXORnbib7bs+UkuGhcYp8HAAAAXUciGwt21aaCXq+l6dMsTS01h5Tl2LDB6KVXYsuGd7ucMYviN+UOtfeaKDUCINnSKrgtSa+++qrKyso0c+ZMZWZmpno6ABARv99odZVzgtfQYJSd7ZzgjS3s+ATP73eaRyYqY/tgqTgJBgAAQOcXj2aJ3bGpoFOWo+X823mNjyyKvUGn5XICyy1jJlNbrwkAki3tgtuS9Pjjj2vVqlWaNGmSSkpKdNJJJ6V6SgDQrtpao8pVTnDa53M6gluWc0dKIODcsje5xLR7wr66yjk2GVJ5EgwAAIDOK5bGgvfeIzU0WGT6fikeDTrtgPThR9Iji+yIEmvSVSzJQgC6p7QLbmdkZOj6669Xbm6uXnzxRT3xxBMaPny4SkpKdNFFF2nQoEGpniIAhKiucepkH5y90vrWQp9PWlwhLV1mVDbPqVXX2sZNTlA80U16JCdLJieHk0MAAABEzmksKM2Za9TY2H6Au61yI2T6OuLRoNM20jtrpX9UR5ZYk27ikSwEoHtKq4aSknTdddfp+uuv15QpU/T444/r1VdfVUlJiZ599llNmDBB//Vf/6VnnnlGe/fuTfVUAUDVNUYzZ4V3W6ZtS01NTpZLdc2hGRoNDbHflhiugO2cTAMAAADRoLFg7OLVoNO2Jb//QKC8JbFmSmnb1x3pprrGaEqpU8u95U7WQKBzvyYAyWOZWO+BiaPS0lLddtttOvHEE9v8+gcffKDKyko999xz2rVrl84991xNmjRJ55xzjjyetEtCRxzV1dWlegrooizLUu6XZ5Q+ny+i2wJra52TsMbGyBpAtmSvLCkPzTqoeNJo0e9MUjK3++ZKK562uLUPcRHLOkJ66V01UR7f2pDH/LmjtKfwxRTNqHthLQGxYx2lht9PY8FoPfa4nZAGndKBcjAL5ltt3jl6OMlcRy3JQsZEVuIm0tcEpALvSW3r27dvXMdLq4hwRUVFu18/+eSTdfLJJ+unP/2p3nrrLa1atUr//d//rczMTF144YUqLi5WQUFBkmYLoLurXOVkbEf6/mTbUmOjc/z0aQdOyOJxW2I4XC6nYQ8XGgAAAIgHGgtGLx4NOg/Htp1z/zlzjZaUK+3KedTWOuUdbTv8a6pEvyZqfgOdT1oFt8NlWZbGjRuno446Sr1799aSJUu0dOlSLV26VCeddJJWrlyZ6ikC6OL8fqceXLQnoLYtrayUppaa4ElSy22JiWwq2ZI1XlLMiRkAAACQatE06IzE4RJr0kG8k4ViQc1voPNKu5rbHdm5c6cWL16sSy65RBdddJGefPJJGWOCfwYOHJjqKQLoBlZXxR6ErvNJVWsObHs8liaXOAHoRGi5ha9sHidkAAAAQLpwGnRayspKzLVAS2KN358+JRHilSwUj9dEzW+gc0urzO0RI0boj3/8o0477bSQxxsbG/XXv/5Vzz77rKqqqhT48rdLS62a4447TsXFxZo0aZKOPfbYpM8bQPezcZPzaX4sZUTcLmecooMeS9RtiW11qQcAAACQHpwGnQrNHnZJlkuyA5IdYzy1JbGmaFz7+7XUT9+2vUH1DUYuy1be4PiX5YhnslBHr6k9kdT8tm2pqcnJsl8wX9T8BtJEWgW3jTHauHGjTjvtNBljtHr1aj377LP661//qoaGhuA+kuT1enXhhRdq0qRJOvXUU1M5bQDdUEODkRXjuYzlchruHFyXMJrbElvm0bOntHfvgZNgY0sB22keeXGJuIUOAAAASGNer6Xp0yxNLQ1t0PnhR9I7a2NLfmkrseZgoWU5jNzu+i/LcighZTkSlSwUiXSs+Q0gcmkV3JakBQsWaO3atXrllVdUW1sr6UBAOzs7W+edd54mTZqkcePGyZWoe/cBoAPZ2VbMnY6NLeXkHHoy5NyW6JwwNTa2fxJ7cEb2qaeILvUAAABAJ9e6Qecji2z9ozq24HZbiTUtqmucIO/Bd4+2Djq3lOVYusyobF7sWcuJShaKRDrV/AYQvbQLbn/++edatmxZMGjk8Xg0ZswYFRcXa+LEicrOzk7xDAFAGpIXW5aB5GRVD8lr+2vt3ZbYXkY2XeoBAACAriUeiTV2QNq2Xap40qihwSg720mEyc42mjVbSS/LkchkoXDEq+b31FJDIhGQYmkX3JacTO2TTz5Z+/fv1/r169Xc3Kzm5uZgrW0ASLWxhc6tebHUieub62RVH87hbkskIxsAAADoPuKRWGMb6YUXJbfbfFluxEQ1ZrzKciQ6Wagj6VLzG0Ds0i64nZeXp7vvvlv5+fmSpPfff1/PPvusfvOb3+jOO+/Uueeeq0mTJumcc85RRkZGimcLoLvyeCxNLnE6akfzab/L5WRdhxOcbn1bIgAAAIDuIx6JNS3ikTMYj7IcyUgWak861PwGEB9pV7T6Bz/4QTCwLUkjR47UnDlz9Prrr+vBBx9UTk6OZs+era9+9au67bbb9Pe//z2FswXQnZUUW+rRwwlUR6KlTnZJMYFqAAAAAO1zEmsiv+5IpJayHH5/dKVFYn1NkSQLtSW+Nb8BpFIa/Wp0DB06tM3HLcvSV7/6Vd19991avXq1fv7zn2vHjh2aPn26xo8fr3vvvVcffvhhcicLoFvw+41ef8Oo4kmjRxbZqnjS2c7NdRo5Wlb4J2Uul2RZznF01gYAAAAQjmgTaxKppSxHtFKZLOTU/I76cEmx1fwGED9pVZakvLxcJ554Yof79ejRQ2eccYY2b96sjz/+WFu2bNGiRYu0aNEinXnmmfr973+fhNkC6Opqa01oQ0e3QurT5eZKk0uk22+T7rrHuTWvvRIlLSdhZfMs5Z/BSRAAAACA8Hi9lsrmOc0cXa7oGyHGU6xlOaJ5TfFKFkp1zW8A8ZNWwe3PPvtMJ510krKzs9v8us/n01/+8hetWrVKNTU1wcct60CXXSvW+0oAQFJ1jdHsW4yamg6cZLU++fH5pMUVUo8e0i2zpfUbdCAQ7nJuUzO2c9LTN9e5ba6kmIxtAAAAAJEryLe0YL7TzLGjxJpkOFCWI/rrm0heUzyThVJd8xtA/KRVcPvmm29WRUWFRo0aFXysqalJL7/8sp599lm9+eabCnwZXTIH3T9y1FFH6Vvf+pZKSkp0wgknJH3eALqW6hqjmbOMjOn4hNG2paYm6fY7pQXzLU0tdW7N27jJOdHLybE0JM856Ym2HhwAAAAASE4weEm5Qu8wbZVYkyzxKssRzmuKd7KQU/PbaHFFdB8SxFrzG0D8pFVw2xij1atXq6CgQG+99ZZWrVqll156SQ0NDcGvt+jdu7cuuOACTZo0SWeddVaqpgygi6mtdTK2bVth12CzbefkZs5coyXllorGWV/emseJDgAAAID48notTZ9maWqpOSSxZsMGo5deib3kRjjiWZajvdeUqGShkmJLS5eF3q0bjnjU/AYQP2kV3JakBx98UI8//rgaGxslhQa0MzIy9LWvfU2TJk3S+PHjlZmZmappQlIgEFBNTY02b96sHTt2qFevXho0aJAKCgqUm5ub6ukBUalc5ZzcRNpcxLadmtuVq4ymT+MkBwAAAEBieTyWisYpJLHmkUVGyarWmoiyHG29pkRJZc1vAPGTdsFtScFMbcmpoZ2fn69Jkybpwgsv1BFHHJHCmaWnt99+W//1X/8V1bEFBQX6wx/+ENExzc3Neuihh7Rs2TLt2LHjkK9nZGRo/PjxuummmzR06NCo5gWkgt/v3AYXbe0625ZWVkpTSw23pwEAAABIuuxsKyRJMFG6SlmOVNX8BhA/aRnclqRhw4apuLhYkyZN0jHHHJPq6eBLmzdv1g9/+EOtW7fusPvs379fL774ot5880394he/UHFxcRJnCERvdVVsDUUkqc7n1NwuGhePGQEAAABA+IbkJb4kSVcry5GKmt8A4iftgtuDBw/W3XffrYKCglRPpdNyuVyywrwPyeMJ/7/Anj17dM0112j9+vXBx7KzszV+/HgNHjxYPp9PVVVV2rRpkySpvr5es2fPVm5uroqKiiJ7EUAKbNxk5HbHdjLodjn14fgfDwAAACDZxhZKubmxJ+0cTjqV5fD7jVZXOddfDQ1G2dlOfe6xhZFnlKei5jeA+Ei74PYNN9xAYDtGTzzxhM4+++y4jzt37tyQwPbZZ5+thQsXql+/fsHHAoGAnnjiCf3617+WMUaBQEAzZ87U888/L6/XG/c5AfHU0KCY69NZLuckiGaSAAAAAJLN47E0ucRocUX05RYPJ13KctTWmtAsa7dzHefEIJzg/uQSE1WWdTJrfgOID1eqJ9AaNZrT07vvvqsXXnghuH388cdr0aJFIYFtSXK73Zo+fbpmzJgRfGzPnj16+OGHkzZXIFrZ2ZE3kmzN2FJODidBAAAAAFKjpNhSjx5OMDpabrfk8Th3pkpOWY6ppdKS8tQGtqtrjKaUOsH7luz0QEDy+w/cgevzSYsrpCmlRtU1ia8/DiC10ipzu7y8XCeeeGKqp4E2PPjggyHbt912mzIzMw+7/7XXXqvKyspgiZKlS5fq+uuvPyQYDqSTIXmWAoHYTn4CtlPnDgAAAABSweu1VDZPmjnLyOUKL4O7pdzIvfdIjY0ubduepX31Rm5Xo/IGp0dZjuoao5mzjIzp+DXZttTU5HwPFsx36moD6JrSKnP7rLPOUnZ2dqqngVb27dunN998M7g9fPhwjRkzpt1jMjIydNlllwW3m5ub9corryRsjkA8tNSni0XfXOfEDwAAAABSpSDf0oL5lrKyOs7gbik3svBeS6POdKlonKWr/79s3TgjR9/7rrOd6sB2ba3R7FuMbDv8ciu27dyZO2euUW0tGdxAV5VWwe1w1NXV6e6779bXv/51nX766ZowYYJ+9rOf6bPPPkv11LqsN954Q83NzcHtCy64IKzjvvGNb4Rsv/zyy3GdFxBvTn266G/fc7mcDtqpPvEDAAAAgIJ8S0vKLU0tPZDE43alZ7mRjlSuMmpqiryMpG1LjY3O8fHk9xu9/oZRxZNGjyyyVfGks+33E0QHki1typI8+eST+uUvf3nI41deeaVuvfVWSdLGjRs1bdo0ff755zJf/kb77LPPtGzZMj333HNatGiR8vPzkzrv7mDt2rUh2+F+j/Py8tS/f3/t3LmzzXGAdFRSbGnpMufEKZIGLC3ZDiXF6XtCCAAAAKB78XotTZ9maWqpUdUaaeMmqb7eKCfH0pC89Cg30hG/32keGW2DTNuWVlZKU0tNzK81kc0sAUQnbYLbl112mf72t7/pjTfeUJ8+fXTppZeqoKBAI0eOlCTt379fP/zhD4MZ2qeddppmzpypI488Uh988IH+3//7f7rxxhv1l7/8RT179kzlS+ly1q9fH7Ld8jMJx4gRI4IlTXbv3q0dO3ZowIABcZ0fEC2/3znB27a9QfUNRi7LVt5gad6d0qzZirg+Xdk8TmAAAAAApB+Px1LROKlIktS5rllWVx1oHhmtOp9UtUYqGhf9GNU1TmmUgxOhWppYtmhpZrl0mVHZPGp9A8mQNsHtzMxMjR07Vps3b9bixYt15JFHhnx95cqV+uijj2RZloYOHary8nJlZWVJkoYNG6b8/HxdeOGFWrFihb73ve+l4iWkjT/+8Y964IEH9O9//1u7du1STk6O+vbtqxEjRmj06NH65je/qT59+oQ93sHB7czMTPXv3z/sY48++uhDxiK4jVQL/bTdyO2u//LTdgU/bT//69Jrr0lNze0HuFsytsvmpfdtfAAAAADQGW3c5GRItw4kR8LtcsYpivJ4mlkC6Sttam7v2bNHDzzwgH79618fEtiWpGXLlgX/fcsttwQD2y2OOuooTZo0Sa+++mrC55runnvuOb399tvatm2bGhsb9cUXX+jTTz/Vn/70J/385z/X+PHjdd9992n//v1hjbd9+/bgvwcNGiTLCv8Xc+uf5datW8M+FkiE6hqjKaVGiysOfPofCEh+/4GTJZ9PevGvkpE08fzOX58OAAAAADqrhgajCMIQbbJcTjmWaNDMEkhvaZO5/eabb8rr9erUU0895Gu7du3Sv/71L1mWpf79+2vcuLbvIyksLNSvfvWrRE+109u7d69++9vfqqqqSr/97W/Vr1+/w+7b2NiowEEfj+bk5ET0XL169QrZrq+vj2yyX4okoA4cTqSftjc3S399Sbr3HkuNjZY2bjKqr5dycqQheVanqE8HJMPBv6P5fd3ZtfXzs/i5JglrCYgd6wiIXbqto5wcK9h3LVp2QPrwI+nRx4yys53rubGF4V3PxdrM8tk/SdOnpf77iORLt7XUVaVNcHvz5s3Ky8tr82sfffSRjDGyLEunnXbaYf9DHHXUUdq1a1cip5nW8vPzNWHCBJ1xxhkaNmyY+vTpo/3792vHjh2qrq7WU089perq6uD+NTU1+sEPfqDFixerR48ebY7ZOhh9uP0OJzMzs93xwpXbkjoLRGn7dluzb6kLK7DdwradsiNzbzP6U2Wuii9Km5tdgLR1xBFHpHoKiIXbfchDHreb9+EUYC0BsWMdAbFLh3U0ckSzAoE9MY1hG+mdtdI/qs2X5SiN+va1dMXlPXT5pVkaOLDta739+41WPlsXWzPLZ6UfzThCGRkEN7uzdFhLXVXaRGoyMzPV2NjY5tc++uij4L9HjBhx2DH2799/SLmS7mDo0KH605/+pKVLl+qaa67RWWedJa/Xq8zMTPXs2VNDhw7VJZdcoj/84Q+6++67QwLUNTU1+u1vf3vYsZuamkK2MzIyIppb6+D24X7GQKIte7pRjY2Rd9i2bamhUXrqGf7vAgAAAECyfa0oQ337xh4Ytu3QcpR1dUYPP9qgb5XU6e/vtF229fU39quuLras8S++MHrjzfDKwgKIXNpkbvfv31/btm1r82sHZxufcsophx3j3Xff1QknnBD3uYVjwoQJ2rJlS8LGv+mmm3TNNde0+bUjjzyyzTrlbZk8ebIyMzP1k5/8JPhYeXm5pk6d2mZ5ktaZ2uHW6W7R3Nwcsh3thw++WFsjo1vz+43+8Ec7pk/b/7C0Qd+5rIkyJEAbLMsKZiLs2rUr5ttGkTq9AoFDTg79gYD28j6cFKwlIHasIyB26biOLp4kLa6IPFmpIy2lQ66+drcW3us6pPnj++vsuDSzfH/dXhXkp01+KZIkHddSOoj3XaFpE9w+9dRTtWnTJm3evFmDBw8OPr579+5gk0iPx6PRo0e3eXxTU5OWLFmi73//+0mZb2f2rW99S8uXL9ebb74pySkV8sorr+jSSy89ZN/WNbZbZ3J3pHVwO9Ka3S34BYBYvLXaKNa4TJ1PWl1lVNR2yX8AXzLG8Du7U2vrZ8fPNBVYS0DsWEdA7NJlHZUUS0uXSU1NiQlwu1zS7FtsLSm35PUeCHDX18enmeW+fenxfUTqpMta6orS5mOjoUOH6vjjj9ejjz4a8vg999yj+vp6WZaliRMnHtKgUHICqDNnztQRRxzRZoAWh2r9faqqqmpzv6ysLLkPqr+5b9++iJ5n7969IdvRBreBWGzc1GYZ2Yi4Xc44AAAAAIDk8notlc2zZFlOIDreWjK4K1eFBh+zs62IG0m2ZmynKSaAxEibzG1J+sEPfqCZM2dq48aNOvXUU/V///d/Wrt2rSzLUlZWln784x+H7G/btl566SUtXLhQGzZs0HXXXSePJzUv6b777os4qzkSxx57bFzHy8/PD9n+7LPPDrvvwIED9fnnn0uStm3bFmzuGY6tW7eGbA8aNCjCmQKxa2iIz6ft9fVGEiclAAAAAJBsBfmWFsyX5sw1UfVT6ohtSysrpamlJliOckhebCVJJClgO+MASIy0Cm5feOGF2rBhgx544AG9/fbbwcezs7N13333BcuVfPHFF/rFL36ht99+Wz6fL5jW/9BDD6mxsVGzZ89O+txPPfXUpD9nLFrX166rqzvsvsOHDw8Gt5ubm1VbW6sBAwaE9Twtxx08FpBszqftsX3czqftAAAAAJBaBfmWlpQ7GdYrKiWfz7nL1nJJdkCyY8yyrvNJVWsULEc5tlDKzVVMZS775kqFY2KbF4DDS6vgtuRkb0+cOFEvv/yytm7dqqOPPlqTJ0+W1+sN7hMIBJSdna1zzz33kOMbGhqSONvOq7GxMWS7dePIgw0bNixYn1uS3n//fZ1zzjlhPc+6deuC/+7Tp0/IzxFIFj5tBwAAAICuweu1NH2apamlRlVrnPKR9fVGH34kvbM2tozulnKURV9uezyWJpeYqJtZulzSxSUKZoIDiL+0C25L0vHHH6/jjz/+sF8fMGCA7rrrriTOqOvZvHlzyHb//v0Pu++ZZ56p8vLy4HZNTU1Ywe2NGzdq586dwe1Ro0ZFMVMgdnzaDgAAAABdi8djqWhcSyDa0iOLbP2jOrbgdlvlKEuKLS1dZiJuZulySVlZzvEAEidtGkoiuV577bWQ7ZNPPvmw+xYVFSkzMzO4/cILL4T1HM8//3zI9nnnnRfBDIH4cT5tj77xCJ+2AwAAAEB6S1Tzx2iaWbpckmVJZfMseb1cRwKJRHC7G9qzZ48qKipCHisqKjrM3lLPnj1Dvr5+/XqtWbOm3efYv3+/nn766eB2ZmamJkyYEOWMgdiVFFvq0SPyADeftgMAAABA+ktkOUqnmaWlrKyOrylbriEX3msp/wyuI4FES0hw+4033tD//M//JGLouNm2bZtuuOGGVE8jZps2bYqoznhTU5N+/OMf64svvgg+dvLJJ2vMmPbrLVx33XUh23feeaeam5sPu//DDz+sTZs2BbevuOKKQ5pYAsnEp+0AAAAA0HW1lKOMRXvlKJ1mlpamlh54HrdL8nicv1uOn1oqLSknsA0kS0KC21/5ylf03HPPac6cOQrE+rFZAnz66ae64oorNHTo0FRPJWavvPKKzjvvPN1///3asGFDu/u+8847+s53vhPSHNLlcmnOnDmyrPZ/6Z522mm64IILgtuffPKJrr766pAguSTZtq3f/e53uv/++4OP9e7dW9dee20kLwtICD5tBwAAAICuKRnlKJ1mli6tfNrSXb+09P2rLX33Cun7VzvbK552vk5yFJA8ljGxViRq25YtW/Td735XxxxzjMrKyjR48OBEPE3EnnnmGc2bN08TJ07sEk0pn3jiiZDXccwxx2jEiBE66qij1Lt3bwUCAe3YsUPV1dX697//fcjxP/vZz3TllVeG9Vy7d+/W5ZdfHhJEz87O1oQJEzR48GDV1dWpqqoqJGPb7Xbr4YcfbrfsSTjq6upiOh44WG2tUeUqoxWVTpNJt9vJ0Da2cxta31znpKakmIxtIByWZSn3y/QVn8+nBJ1aIAl6V02Ux7c25DF/7ijtKXwxRTPqXlhLQOxYR0DsOvM6qq01mlIaffPHJeVcAyJ+OvNaSqS+ffvGdTxPXEc7yDHHHKPFixfruuuu06RJk3TTTTdpypQpcrvdiXrKdm3atEl33XWX/va3v+nSSy/VHXfckZJ5JNqWLVu0ZcuWDvfLzc3VL3/5S51//vlhj92nTx89+uijmjFjhj744ANJUkNDg5577rk298/JydEdd9wRc2AbiDfn03ZLU0uN1rxtadv2LO2rN3K7GpU32LkNjeaRAAAAANC5OOUopZmzjFyu8ALclKMEOreEZW632Lt3r2666Sa99tprGjx4sG644QYVFxcnLci9efNm/e53v9NTTz0lSbr55pvDzlTuDNatW6eKigq98847IRnTh3Psscfq8ssv1+WXXx71JyXNzc168MEH9dRTT2nHjh2HfD0jI0PnnnuubrrpJh133HFRPUdrZG4jUfgkFYgd66jrIHM7tVhLQOxYR0DsusI6qq4xmjPXqLGx/QB3S8Z22TzKUSL+usJaSoR4Z24nPLgtScYY/eEPf9DChQu1Z88e9evXT5MmTdKkSZM0YsSIuD/fnj179Prrr2v58uWqqqqSbdsaOXKkbr/9dp122mlxf750sWfPHn388cf67LPPVFtbq4aGBrndbvXp00der1ennnqqjjzyyLg9XyAQUHV1tTZv3qza2lr17NlTgwYNUkFBQdz/oxLcRqLwZgPEjnXUdRDcTi3WEhA71hEQu66yjg4pR+mSLFfyy1H6/Uarq6SNm6SGBqPsbEtD8pwGmNwx3LV1lbUUb50yuN1i586dmj9/vlatWhVsNNm/f3+dffbZGjVqlE488USdeOKJ6t27d0Tj/uc//9G6dev0/vvva+3ataqpqVEgEJAxRv369dP111+vK6+8Uq5ouwog5QhuI1F4swFixzrqOghupxZrCYgd6wiIXVdbR36/UdUaJ7hcX2+Uk+MElxNdjvKwvZ6MFAhIubnSZHo9dWldbS3FS6cObrf4/PPP9dhjj2nFihXat2+fMxHrwELu06ePBgwYIK/Xq549e6pHjx7KzMxUIBBQU1OTmpqatGvXLm3btk07duwIBsolBf+jDBkyRFOnTtW3v/1t9ejRI7kvEHFHcBuJwpsNEDvWUddBcDu1WEtA7FhHQOxYR7GrrjGafUvHjS1dLqlHD6csSkE+Ae6uhrXUti4R3G7R3Nysv/3tb/rLX/6i1atXa9euXSFfPzjg3Vpb0x46dKgmTJigCy+8UKeeemrc54vUIbiNROHNBogd66jrILidWqwlIHasIyB2rKPYVNcYzZxlZExkDS0XzCfA3dWwltoW7+C2J66jRSgzM1MTJ07UxIkTJUkff/yxampq9PHHH2vz5s3asmWLfD6fGhoagvWjs7Oz1bNnTw0cOFDHHnus8vLy9JWvfEX5+fnq169fKl8OAAAAAAAAuqnaWidj27ad8iPhsG0nwD1nrtGSclGiBIhQSoPbrZ1wwgk64YQTUj0NAAAAAAAAICKVq5xSJJEm6Nq21NjoHD99GsFtIBJ0WAQAAAAAAABi4Pc7zSPDKUXSFtuWVlY64wAIH8FtAAAAAAAAIAarqySfL7Yx6nxS1Zp4zAboPghuAwAAAAAAADHYuElyu2Mbw+1yxgEQvrSquX2wjz76SO+9955qa2uVkZGho446SqeccoqOOeaYVE8NAAAAAAAACGpoMLJiLJdtuaT6eiOJuttAuNIuuP3aa6/pnnvu0fr169v8+vHHH69LLrlEl156qXr37p3k2QFIFb/faHWV8yl2Q4NRdralIXnS2ELJ4+GNHwAAAACQOtnZlkyknSRbMbaUk8P1LRCJtApuP/bYY5o/f/4hvwws68AviE8++UT33HOPHnnkEf30pz/V5MmTUzFVAElSW2tUucppzOHzObd5WZZkjFEgIOXmSpNLjEqKLXm9nAQAAAAAAJJvSJ4UCMQ2RsB2xgEQvrSpub127Vr9+te/liSdcsop+ta3vqWJEyfq9NNPV05OTnA/Y4yMMaqrq9Mtt9yi0tJS1dbWpmraABKousZoSqnR4ooDjTkCAcnvP3DS4PNJiyukKaVG1TV0lQYAAAAAJN/YQif5KhZ9c6XCMfGYDdB9pE3m9qOPPqphw4bpf/7nfzR8+PBDvv7RRx/pnXfe0dtvv623335bu3btkjFGa9eu1X/9139p8eLFGjBgQApmDiARqmuMZs4yMkay7fb3tW2pqUmaOctowXypIJ8MbgAAAABA8ng8liaXOMlZHV3DtsXlki4uoewmEKm0ydx+7733dNttt7UZ2JakE088UVdeeaV+85vfaPXq1Xr44Yd17rnnSpLWr1+v733ve9q5c2cSZwwgUWprjWbfYmTb4Z8U2LZkjDRnrlFtLRncAAAAAIDkKim21KOHE6iOhMslZWU5xwOITNoEtxsbG3XssceGta/b7dY555yjhx56SOXl5RoyZIg2btyouXPnJniWAJKhcpVRU5MTrI6EbUuNjc7xAAAAAAAkk9drqWyeJcsKP8Dtcjl9pcrm0UcKiEbaBLePP/54ffjhhxEfN3r0aD3zzDMaPXq0XnvtNb399tsJmB2AZPH7neaR0dzGJTnHrax0xgEAAAAAIJkK8i0tmG8pK6vjAHdLxvbCey3ln0FgG4hG2gS3v/Od7+ixxx6L6thevXrp0Ucf1fHHH6+nnnoqzjMDkEyrqw40j4xWnU+qWhOP2QAAAAAAEJmCfEtLyi1NLT3QZNLtkjwe52/JaR45tVRaUk5gG4hF2jSUnDRpkpYtW6b58+dr1qxZER+flZWlGTNm6O67707A7AAky8ZNktstBQLRj+F2OeMUxW9aAAAAAACEzeu1NH2apamlRlVrnGvU+nqjnBxLQ/KkwjE0jwTiIW2C2263W/fee6+uvPJKuVwu/eQnP4l4jJEjR9JUEujkGhqMrBjf3y2Xc9IgcaIAAAAAAEgdj8dS0biW5CuuUYF4S5uyJJJ09NFH68Ybb9Qjjzyi6dOn69VXX9WePXvCPv4///mPBgwYkMAZAki07Gwr4kaSrRlbysnhpAEAAAAAAKArS5vM7ebmZs2aNUt//etfZVmWVq9erdWrV8vlcumkk07S6NGjddZZZ2n06NHq06fPIcd/8cUXuueee/Ttb387BbMHEC9D8mIrSSJJAdsZBwAAAAAAAF1X2gS3H3/8cb344ouHPB4IBLRu3TqtW7dO5eXlsixLJ554okaPHq2zzz5bgwYN0muvvaby8nKNGjVK11577WGfY+/evbrrrrv0q1/9KpEvBUAMxhY6DTdiaSrZN9epXwYAAAAAQGfg9xutrnJqczc0GGVnO7W5xxZSmxtoT9oEt5cvX66vf/3ruvTSS+VyubR582a98847Wrt2rWpra4P7GWP04Ycf6sMPP9Tvf//74ONHHXWULrzwQu3YsUODBg1q8znq6uq0fPlygttAGvN4LE0uMVpcIdl25Me7XNLFJbz5AwAAAADSX22tUeUqoxWVTpKX2y1ZlhP/CgSc5K/JJUYlxZa8Xq5zgdbSJri9detWPfTQQzruuOOCj1155ZWSpA0bNmjt2rXBYPdnn30WcqxlWfr888/13//935KcQHdBQYHOPPNMnXnmmTrxxBMlSdu3b0/SqwEQi5JiS0uXGTU1RRbgdrmkrCzneAAAAAAA0ll1jdHsW0KvfVuX6fT5pMUV0tJlRmXzpIJ8rneBg6VNcPsrX/mKXnzxxTbLihx33HE67rjjdNlll0mSPv/8c/39738PBrz//e9/h+z/+eef67nnntNzzz0nSerTp49OP/107d69O+GvA0DsvF5LZfOkmbOMXK7wAtwul/Ppdtk8Ps0GAAAAAKS36hqjmbOMjOn4mte2paYm5xp5wXwC3MDBLGOMSfUkJOmTTz7R97//fY0cOVKXX365vvrVr8rjCS/2vnPnzmBW9zvvvKOPP/5YdqvfDJZlyRgjy7K0bt26RLwEJFBdXV2qp4AUqK4xmjPXqLGx/Tf7loztsnmW8s+I7E3esizl5uZKknw+n9LkVyLQqbCOuo7eVRPl8a0NecyfO0p7Cg/ti4L4Yy0BsWMdAbFjHSVeba3RlFLnWjeSb2/Lte+ScpK6OgPWUtv69u0b1/HSJnP7+OOP17PPPqsHHnhAs2bNkiQVFhbq/PPPV3FxcbvH9u/fX9/4xjf0jW98Q5K0Z8+ekDIm77//vvx+f8JfA4D4Ksi3tKRcofXHXJLlkowtBWyneeTFJaL+GAAAAACgU6hc5ZQiiTTWadtSY6Nz/PRpXP8CUhplbh9s//79WrNmjVavXi2fz6e77rorpvEaGhpUVVWlBQsW6JNPPiFzuxMicxt+v1HVGqdzdH29UU6O0zm6cExszSP5JBWIHeuo6yBzO7VYS0DsWEdA7FhHieX3G118qZHPF/0YfXOlFU9bMV0LI/FYS23rspnbB8vIyFBRUZGKioriMl52drYmTJigPn36qLS0NC5jAkguj8dS0TjJ+a3AGzgAAAAAoPNZXaWYAtuSVOeTqtZIRePiMSOgc3OlegLJdPTRR/MpCQAAAAAAAFJi4ybJ7Y5tDLfLGQdANwxuP/DAA6meBgAAAAAAALqhhgYjK8abkS2XU64TQJqWJUmk8847L9VTAJBAfr/R6irnU+yGBqPsbKc299jC2GpzAwAAAAAQq+xsK+aqAnZA2rZdqnjScN2Lbq/bBbcBdE21tUaVq4xWVDr1y9xuybIkY4wCASk3V5pcYlRSbMnr5c0eAAAAAJB8Q/KkQCC2MWwjvfCi5HYbrnvR7XWrsiQAuqbqGqMppUaLKw405ggEJL//wEmDzyctrpCmlBpV13D7FgAAAAAg+cYWOkHoeOC6FyC4DaCTq64xmjnLqKlJsu3297VtqalJmjmLN3oAAAAAQPJ5PJYml0iuBEXkuO5Fd5N2we29e/emegoAOonaWqPZtxjZdseB7Ra2LRkjzZlrVFvLGz0AAAAAILlKii316JHYADfXvegu0ia4vWvXLl100UUaO3as/vWvf8U01meffaYnnnhCd9xxh+655x7985//jNMsAaSTylVOxnakvThsW2psdI4HAAAAACCZvF5LZfMsWVZiA9xc96I7SJuGkqtWrdInn3wiSdq4caNOOeWUqMZZsmSJ7rrrLvn9/uBjixcv1q233qopU6bEZa4A4sPvN1pdJW3cpIg7PPv9TvPIcDO2W7NtaWWldNV/8UYPAAAAAEiugnxLC+Y72dWNjdFf27an5bp3aqnp8Bob6KzSJri9f/9+jRw5Ut/+9rd1/vnnRzXG3//+d/3yl7+U/eVvhOHDhysjI0MffPCBfvWrX+mss87S8OHD4zltAFGorTWqXOUEp30+ye1WxB2eV1cdaB4ZrTqfVLVGKr4otnEAAAAAAIhUQb6lJeUKvT52SZZLMrYUiEPAu+W6t2hc7GMB6Shtgtt5eXnau3evrrzyyqjH+PnPfy7btuXxeLRw4UJ9/etflyRVVVXp+uuvV1lZmR555JF4TRlAFKprnDrZBzeAbOns3KKlw/PSZUZl85w3/NY2bnKC4q2PjYTbJW3cROY2AAAAACA1vF5L06dZmlpqVLXGudatrzfKybG0YYPRS6/E47pXKorflIG0kjbB7bPOOks7duzQ5s2blZmZqUceeUSvvvqq6urqdOyxx+qiiy5SaWmpcnJy2jz+X//6lzZs2CDLsjR+/PhgYFuSCgsLdf311+u+++7Ttm3bdOSRRybrZQE4SHWN0cxZRsZ0fMvVwR2eF8w/NMDd0GBkxXhXleWS6utjGwMAAAAAgFh5PJaKxrUEoZ2L3UcWxeu61wTHBLqatGko2bt3b1166aW6/fbbddFFF2nJkiX6/PPP1dDQoE8++UQLFy7U5Zdfru3bt7d5/OrVq4P/Pvvssw/5+rRp05STk6O//vWvCXsNAA6vttbJ2Lbt8GuJtdfhOTvbiriRZGvGlg7zeRkAAAAAACkVv+teAtvoutImuC1Jl1xyid566y3t2bNHxhiZL1dwy78//fRT/eAHPwg+frANGzYE//2Vr3zlkK9nZmZq/Pjx+t///d+EzR/A4VWuckqRRPrGfLgOz0PyYrs1S3Lqlw3J400eAAAAAJB+4nfdG5/5AOkobcqSSNLChQslSSeccIKKi4s1ePBg5ebmateuXXr//fe1YsUKvffee3r66ad12WWXhRz72WefBf999NFHtzl+fn6+/vCHPyRs/gDa5vc7zTGi7f7cVofnsYVO48lYmkr2zZUKx0R/PAAAAAAAicJ1L9CxtMnc3rJli15//XX95Cc/0apVq3TNNdfowgsvVGFhob7xjW/oJz/5if7yl7/o1FNP1dNPP33I8fv27Qv+u2fPnm0+x3HHHacdO3Yk7DUAaNvqqtjejKUDHZ5beDyWJpdIrih/i7lc0sUlCgbLAQAAAABIJ1z3Ah1Lm+D2O++8o6OOOkrXXHPNYffp1auXbr75Zr377rtqbGwM+VpDQ0PIfm3p3bu39u7dG58JAwjbxk2S2x3bGC0dng9WUmypR4/I3+hdLikryzkeAAAAAIB0xXUv0L60CW5v375dw4cP73C/r3zlKzLGaNu2bSGP22HUO2hoaFB2dnbUcwQQnYaGeHZ4PsDrtVQ2z5Jlhf9G73JJliWVzbPk9fImDwAAAABIX1z3Au1Lm+B2jx49DsnGbsvevXtlWZZcUdyTsWXLFvXt2zea6QGdit9v9PobRhVPGj2yyFbFk8623x9jm+UoJbLDc0G+pQXzLWVldfxG3/LJ9cJ7LeWfwRs8AAAAACD9cd0LHF7aNJQcPny4Fi5cqN27d6tPnz6H3e9vf/ubsrOzdcwxx0T8HP/61780bNiwWKYJpLXaWqPKVU7zRp/PKQViWZIxRoGA04hicolRSXFyP71NdIfngnxLS8oV+tpdTra3sZ1j++Y6tcaS/doBAAAAAIgV171A29ImuD1q1Ch5PB7dcMMNuu2223TiiScess9LL72ku+++W+PHjw/J3A4EAtq6dWtwe+/evW3W3X755Zc1efLkxLwAIMWqa4xm32LU1CS1VOlpHVD2+aTFFdLSZUZl85w3x2RIRodnr9fS9GmWppYaVa1x6nPX1xvl5FgakuccSxMNAAAAAEBnxXUvcKi0CW5nZWXpiiuu0KOPPqqSkhINGzZMgwcPVp8+fbR79259+OGH2rp1q9xut6677rqQY+fPnx/SUHL16tWaOHFiyD4vvPCCtm7dqnPPPTcZLwdIquoao5mzjIw5ENg+HNuWmpqkmbOMFsxPToDb6fBstLii4/m1JZIOzx6PpaJxUpEkiTd1AAAAAEDXwnUvcIBlTKyVcOOnsbFRl112mT7++GNZrbrPtUxz2LBhysnJ0ahRoxQIBFRVVaVPP/1UxhiNGDFC/fv314YNG7RkyRIdeeSRkqSdO3fq0ksvlcfj0V//+tekvy7Erq6uLtVTSFu1tUZTSo0aGxVRXeuWOlxLypNzu1LLPA/OLA9HoudpWZZyc3MlST6fT2n0KxHoNFhHXUfvqony+NaGPObPHaU9hS+maEbdC2sJiB3rCIgd6wiID9ZS2+LdDzFtMrclJ3v7iSee0I033qi1a0MvrLKzs3Xrrbfq29/+tl588UX95S9/0SeffCLbtjVu3Dh9/etf1yWXXKL33ntPU6ZM0UUXXaQLL7xQ2dnZeu6557Rz507dc889KXplQOJUrnICxpH+jrRtqbHROX76tPgFjf1+o9VVzu1RDQ1G2dnO7VFjC51OzTNnGblc4QW46fAMAAAAAACAw0mrzO2DvfXWW6qqqtLevXt13HHH6Zvf/KYGDBgQ1rH/7//9Pz3yyCPB7G9jjL72ta/pkUceSeSUkUBkbrfN7ze6+FITcy3rFU9bMdflOnwzSx3UzFIadpx01z1OYL29AHdLxnbZvMR2eOaTVCB2rKOug8zt1GItAbFjHQGxYx0B8cFaaluXztw+2Fe/+lV99atfjerYn/zkJxo4cKBWrFih/fv3a8KECfrBD34Q5xkCqbe6KrYmjZJU55Oq1khF46IfI5Jmlj16SLfMltZvEB2eAQAAAABIkPburKbxJLqKtA1ux+p73/uevve976V6GkBCbdzkZEi3DiRHwu1yximK8vhomlnefqe0YL6lqaWiwzMAAAAAAHF0+DurzUF3VhsSytAldNngNtAdNDQYWTG+D1kuJ7AcTYfl2lonY9u2w6/5bdtOyZE5c42WlFsqGmfR4RkAAAAAgDiI5M7qpcuMyuZJBflcj6PzSvvgtt/v15o1a/Tuu+9q+/btcrlcGjRokEaNGqWCgoJUTw9IqexsK+aaTcaWcnKieyNLt2aWAAAAAAB0V9HcWT1zltGC+QS40XmlbXA7EAho0aJFeuKJJ+Q7TFHhoUOH6qabbtLXv/715E4OSBND8mIrSSI5Na6H5EV+nN/v3OLU0Rvm4di2tLJSmlpqKEECAAAAAEAMYr+zWpQoQafkSvUE2vKf//xHU6ZM0cKFCw/bTdQYow0bNuiHP/yh7rrrLgVijfABndDYQqdWViz65jo1riMVz2aWAAAAAAAgevG4sxrojNIuuP3555/rO9/5jv75z3/KGBMMbLf8++DHWh4vLy/XzTffnKopAynj8ViaXOJ80hoNl0u6uCS65o0tzSxj0dLMEgAAAAAARCded1b7/QS40fmkVVmSpqYm3XDDDdq5c6eGDBmiSy+9VKNGjdLRRx+tXr16KTMzU01NTdqzZ482b96sd999V6+99prWrl2rVatWafTo0brssstS/TKApCoptrR0WWiziHC4XFJWlnN8NFLdzBIAAAAAAMT3zuqicfGYEZA8aRXcfuyxx/T+++9r+vTp+slPfiJ3G2mhGRkZ6tWrl4466iidddZZuvrqq/XBBx/opz/9qe6++25NnDhRRxxxRApmD6SG12upbJ7TBMLlCi/A7XJJliWVzbOirqmV6maWAAAAAADgwJ3VsVTsbbmzuih+0wKSIm3KkgQCAVVUVOjcc8/Vf//3f7cZ2D6ck08+Wb/73e/Uo0cPrVixIoGzBNJTQb6lBfMtZWV1XKKkJWN74b2W8s+IPrCcymaWAAAAAADAEd87q4HOJW2C2zU1NfL5fJo5c2ZUx3u9Xl166aV69dVX4zwzoHMoyLe0pNzS1NIDTSbdLsnjcf6WnOaRU0ulJeWxBbal1DazBAAAAAAADufO6tjG4M5qdFZpU5bko48+0gknnKCTTjop6jHOPPNMPfXUU3GcFdC5eL2Wpk+zNLXUqGqNc0tRfb1RTo6lIXlOIDma5pFtcZpZGi2uiK5pRSzNLAEAAAAAgIM7q9GdpU1we8+ePTrqqKNiGqNfv37as2dPnGYEdF4ej6WicS21shIXPE5VM0sAAAAAAOBoubM6lqaS3FmNziptypIcccQRqquri2mMhoYGZWdnx2lGADriNLO0ZFkd1/puEY9mlgAAAAAAwOHcWR3+dXlr3FmNzixtgtvHHHOM1q1bJ18MHzP985//1JAhQ+I3KQAdSkUzSwAAAAAAcEBJsaUePSIPcHNnNTq7tAlun3322crIyNDjjz8e1fFNTU364x//qMLCwjjPDOi6/H6j198wqnjS6JFFtiqedLb9/sg6USS7mSUAAAAAADiAO6vRXaVNze3MzExddNFFeuyxx3TKKafo/PPPD/tYn8+nm266SVu2bNEll1ySwFkCXUNtrVHlKqMVlU5NLrfbeUMzxigQcALUk0uMSorDf4NLZjNLAAAAAAAQyrmzWpoz16ixsf3eWC0Z22XzSEBD52YZYyJL0UygnTt36vzzz1dTU5MmTZqkKVOm6NRTT5VlHbrIbNvWhg0b9Pzzz+uPf/yjduzYoSlTpuhnP/tZCmaORIu1HjsOqK4xmn1Lx00gXS6pRw/nja4gv+u+0VmWpdwv0819Pp/S6Fci0GmwjrqO3lUT5fGtDXnMnztKewpfTNGMuhfWEhA71hEQO9ZR53dIQptLslySsaWA7dxZfXGJIkpoQ+RYS23r27dvXMdLq+C2JL366quaMWOG7C+jbj169NCRRx6p3r17KyMjQ01NTdq3b58+//xz7d+/X5KTbTpy5EgtXbpUmZmZqZw+EoTgdnxU1xjNnGVkTPuB7RYttygtmN91A9y82QCxYx11HQS3U4u1BMSOdQTEjnXUdfj93FmdSqyltsU7uJ02ZUlajB8/Xvfcc49uvfVWNTQ0qLGxUZs2bQrZp/V/hpEjR+q3v/0tge02BAIBvf/++/r4449VW1urQCCgnj176uijj9YJJ5wQUwPOQCCgmpoabd68WTt27FCvXr00aNAgFRQUBBcv0kdtrZOxbdtSuL9PbdsJcM+Za7SkXHyiCwAAAABAJ+HxWCoaJxVJkrieR9eUdsFtSfrWt76lE044QXfddZeqqqpCgtkHlyhxuVy67LLLNHfuXALbrXzxxRd69NFHtXz5cvl8vsPu17dvX40bN0633npr2AHp5uZmPfTQQ1q2bJl27NhxyNczMjI0fvx43XTTTRo6dGh0LwBxV7nKKUUS6QeFti01NjrHT5/GmyEAAAAAAADSQ9qVJWntX//6l1566SX93//9n2pra+X3+3XUUUepoKBAxcXFMWUed1V//vOf9bOf/Ux79uyJ6Jjhw4d3uN/mzZv1wx/+UOvWretw35ycHP3iF79QcXFx2PM4HMqSOLcTra5ybidqaDDKznZuJxpb2PHtRH6/0cWXGrXzOUeH+uZKK562utytS9wmBMSOddR1UJYktVhLQOxYR0DsWEdAfLCW2tbly5K0dsopp+iUU05J9TQ6jccee0z33HNPyGM5OTkqLCzUMccco969e2v37t369NNP9e6772rv3r1hj71nzx5dc801Wr9+ffCx7OxsjR8/XoMHD5bP51NVVVWwjEx9fb1mz56t3NxcFRUVxecFdkOHNIJwO3WwjTEKBKTcXGlyiWm3EcTqKsUU2JakOp9UtUYqGhfbOAAAAAAAIL3EklAHpFLaB7cjsWXLFt1///266667Uj2VlPjTn/4UEtjOycnRj370I333u99Vjx49Dtm/ublZb731ln7/+9+HlHs5nLlz54YEts8++2wtXLhQ/fr1Cz4WCAT0xBNP6Ne//vWXwdeAZs6cqeeff15erzfGV9j9VNc4dbKbmg40gAwEQvfx+aTFFdLSZUZl89Rm48eNm5ygeOtjI+F2OePwMQUAAAAAAF1DPBLqgFRypXoC8fT5559r5cqVqZ5GSuzcuVO/+MUvgtu9evVSRUWFpk2b1mZgW5IyMzM1fvx4PfbYYxo2bFi747/77rt64YUXgtvHH3+8Fi1aFBLYliS3263p06drxowZwcf27Nmjhx9+OJqX1a1V1xjNnBUa2D4c25aamqSZs4yqaw69zaWhwSiMzy/aZbmc7soAAAAAAKDzq64xmlJqtLjiwN3egYDk9x9IjmtJqJtS2na8AUi1LhXc/vTTT1M9hZS56667tGvXruD23XffHddyLg8++GDI9m233dZuE89rr71WeXl5we2lS5fqiy++iNt8urraWidj27Y7Dmy3sG2nWeScuUa1taFvONnZVsSNJA8ZPyBt2y5VPGn0yCJbFU8avf6Gkd/PmxsAAAAAAJ1JPBPqgFRKaFmSTz/9VP/85z8T+RRB+/bt02OPPZaU50o3n332mZ577rng9tixY3X++efHbfx9+/bpzTffDG4PHz5cY8aMafeYjIwMXXbZZbr33nslOSVQXnnlFV166aVxm1dXVrnKeYOJNCBt21Jjo3P89GkHUrWH5MVWkkSSbCO98KLkdhtuUQIAAAAAoJM6OKEu3LiDbUsul5NQt6RcXP8jbSQ0uP2///u/uvXWWxP5FCGMMWHVju5qnnnmGdkHfcx25ZVXxnX8N954Q83NzcHtCy64IKzjvvGNbwSD25L08ssvE9wOg9/v1LoKN2O7NduWVlZKU0tNsOnD2EInCB1rU0kpuprfAAAAAAAgPcQ7oQ5IpYSWJTniiCNkvlwpxpiE/+mu/vSnPwX/3bt3b33ta1+L6/hr164N2c7Pzw/ruLy8PPXv3/+w46Btq6tiD0LX+aSqNQe2PR5Lk0ucT1kTgVuUAAAAAABIf/FKqKNEKdJFQjO3c3Nzg/8ePXq0Tj/9dGVlZSXkufbt26fly5dr9+7dCRk/Xe3atUv//ve/g9unn356u7Wwo7F+/fqQ7ZEjR4Z97IgRI4IlTXbv3q0dO3ZowIABcZ1fV7Nxk9OdOJYyIm6XM07RQY+VFFtauiy8elrR4BYlAAAAAADSWzwT6orGxWNGQGwSGtzu27evJOmss87S4sWLE/lUkqQjjzxSZWVlCX+edPKvf/0rZLuliaQxRq+//rqeffZZvf/++9q6dasyMzPVv39/nX766Tr33HN1/vnnyxVGKu/Bwe2WMcJ19NFHHzIWwe32NTQ4Na1jYbmk+noj6cBAXq+lsnlOdrXLlbgAN7coAQAAAACQnhKVUAekSlIyt1sCrok2YsSIpDxPOvnkk09CtgcPHqwtW7Zozpw5+vvf/x7ytfr6evl8Pn366adavny5hg8frl/84hcaNWpUu8+xffv24L8HDRoUUV3zI488MmR769atYR/bXWVnWzGX2TG2lJNz6M+pIN/SgvlOdnVjY+IC3K1rfgMAAAAAgNRLVEIdkCoJr7k9evRoHX/88Yl8mqCBAwd2GKjtanbt2hWy7ff7dcUVVxwS2G7Lp59+qquuukrPPffcYfdpbGxU4KCP83JyciKaX69evUK26+vrIzq+OxqSF9snqJIUsJ1x2lKQb2lJuaWppU6TScn51NXjcf6Oh9Y1vwEAAAAAQOo5CXWxjXG4hDogFRKaue3xeFRRUZHIpwhx3HHHJfX50kHrGuPz58/Xnj17JEnDhg3TddddpzFjxqhv377y+Xx6++239dBDDwUzvvfv3685c+Zo6NCh+spXvnLI+K2D0T169Ihofq3rf0cb3I4kW7yz++pYKTfXxFQDq2+uNLbQOuz3bcAAS1f/f9JV/2VUtUbauMmovl7KyZE2bJD++rKJ+RalTZs7x8/t4Dl2hvkC6Yh11JW09fM7/PsJ4ou1BMSOdQTEjnXUtQ0dIgUCsUW3A7Y0dAjniB1hLSVHQoPbSLzWweKWwPY555yj+++/PyS4PHDgQBUXF+uCCy7Qj370I7366quSpObmZt12221avnz5IeM3NTWFbGdkZEQ0v9bB7cbGxoiOb3Fwc9LuYMp36vXwow1RlQ1xuaQpV2TL6w0vy774otDt++6vl2U1RP7EB7FcUsDOUm5uZJn+qXbEEUekegpAp8c66uTc7kMe8rjd3e59OB2wloDYsY6A2LGOup4Lv2F0z711qquLPsDdr5+lb1yQq4wMArbhYi0lDsHtOJkwYYK2bNmSsPFvuukmXXPNNYc83lYm9ZFHHql77733kMByi8zMTM2fP18XXXSRPv/8c0nSe++9p6qqKhUWFrY7/v79+yOad3Nzc8h2VlZWRMd3V5dfmqXFFQ0R18V2uaTsLOmyb0f/fc6Jxy1KRurJLUoAAAAAAKSVjAxLV1yeFVNC3RWXZxHYRtoguN3JtVUDu7S0VL179273uF69eumqq67SXXfdFXzslVdeOSS43Xr81pncHWkd3I60ZncLXyw1OjqhzEypbJ5LP77JlssVXoDb5ZIsSyq7y6XMzN1RlzU5cmBsJUkkp2b4kQMb5fNF9v8lFSzLCn6CumvXrpibeQLdEeuo6+gVCBxycugPBLS3m70PpwprCYgd6wiIHeuo67tgotET5VJTU+QJdVlZ0sTzm+TzNXd8QDfHWmpbvO8KJbjdyfXs2fOQxyZMmBDWsRMmTAgJbv/jH/84ZJ+srCy53e5gU8l9+/ZFNL+9e/eGbEcb3O6OvwDyz5AWzLc0Z67pMIO75Q2mbJ6lM06P7ftVOMYoN1cx1/wec7aJOQM82Ywx3fL/GhBPrKPOrq2fHT/TVGAtAbFjHQGxYx11Td7+Tvxg5iwTeULdPEve/t0zThML1lLiENyOk/vuuy/irOZIHHvssW0+PmjQoJBtj8ejYcOGhTVmXl6esrKygnWwt2/f3uZ+AwcODJYv2bZtm4wxYRfC37p1a7vzRfsK8i0tKZcqVxmtqHQCzm6XU9Pa2E4Th7650sUlUkmxJa839tuCPB5Lk0uMFldE9gluC5fLmY/Hwy1KAAAAAACko4J8SwvmK+KEuvwzuNZHeiG4HSennnpqSp73+OOPD9nu1atXRB1Y+/TpEwxuH670x/Dhw4PB7ebmZtXW1mrAgAFhjd9y3MFjITJer6Xp0yxNLTWqWiNt3CTV1xvl5FgakicVjol/ILmk2NLSZSbqW5RKinmzAwAAAAAgnaUioQ6IN4Lbndzw4cNlWVbw1obWNa47cvD+bTWnlKRhw4bpzTffDG6///77Ouecc8Iaf926dcF/9+nTR16vN6L54QCPx1LROKlIkpTYNxSv11LZPEV/ixJveAAAAAAApL1UJNQB8eRK9QQQm549e2rkyJHB7fr6eu3ZsyesYxsaGrR79+7gdr9+/drc78wzzwzZrqmpCWv8jRs3aufOncHtUaNGhXUc0oNzi5KlrCwncN2elozthfdyixIAAAAAAJ2Nk1Bn6XvftXTN1S5977vONoFtpDuC213A+eefH7JdXV0d1nH/+7//K/uglNwRI0a0uV9RUZEyMzOD2y+88EJY4z///PMh2+edd15YxyF9OLcoWZpaKrU0s3W7JI/H+VtyblGaWiotKSewDQAAAAAAgOShLEkXcOGFF+o3v/lNMFD9zDPPhFU25KmnngrZ/upXv9rmfj179lRRUZFefvllSdL69eu1Zs0ajRkz5rBj79+/X08//XRwOzMzUxMmTOhwTkg/3KIEAAAAAACAdERwuwsYOnSoiouLVVlZKcnJrH7ttdfaDXC/+eab+vOf/xzczs3N1UUXXXTY/a+77rpgcFuS7rzzTq1YsSIko/tgDz/8sDZt2hTcvuKKKw5b9gSdQzJrfgMAAAAAgPTj9xutrnIS3xoajLKzncS3sYUkviE1KEvSRfzoRz9STk5OcPvGG2/UqlWr2tz3z3/+s374wx8Gm1BK0owZM9SzZ8/Djn/aaafpggsuCG5/8sknuvrqq/XFF1+E7Gfbtn73u9/p/vvvDz7Wu3dvXXvttRG/JgAAAAAAAKReba3RY4/buvhSo1tuM1r0O6MlS6VFv3O2L77U+Xptrel4MCCOLHNwhBOd2iuvvKIbbrghpI72sGHDdPbZZ6tfv37y+Xxas2aNPv3005DjvvnNb2rBggUdjr97925dfvnl2rBhQ/Cx7OxsTZgwQYMHD1ZdXZ2qqqpCMrbdbrcefvhhFRUVxfTa6urqYjoeOBzLspT7ZUFxn88nfiUCkWMddR29qybK41sb8pg/d5T2FL6Yohl1L6wlIHasIyB2rCO0Vl1jNPsWo6Ym6aCQ0yFcLqlHD6lsnqWCfLK4WUtt69u3b1zHI7jdxaxatUo///nPtW/fvrD2nzJlim699VZ5POFVqNm8ebNmzJihDz74oMN9c3JydMcdd2jSpElhjd0egttIFN5sgNixjroOgtupxVoCYsc6AmLHOsLBqmuMZs4yMqb9wHYLl0uyLGnBfALcrKW2xTu4TVmSLqal9vZFF12krKysNvexLEujRo3S448/rttvvz3swLYkDR48WE899ZR+8IMfaMCAAW3uk5GRofPPP1/Lly+PS2AbAAAAAAAAyVVb62Rs23Z4gW3J2c8Yac5cQ4kSJAUNJbugwYMH695779XevXv1j3/8Q1u3blVdXZ169eqlgQMHatSoUTE1d8zMzNSNN96oGTNmqLq6Wps3b1Ztba169uypQYMGqaCgIO6fwgAAAAAAACB5Klc5pUgiTTi2bamx0Tl++rTunb2NxCO43YX16tVL55xzTsLGd7vdGj16tEaPHp2w5wAAAAAAAEBy+f1GKyrDz9huzballZXS1FIjj4cANxKHsiQAAAAAAAAAglZXST5fbGPU+aSqNfGYDXB4BLcBAAAAAAAABG3cJLndsY3hdjnjAIlEcBsAAAAAAABAUEODkRVjNRHLJdXX01QSiUVwGwAAAAAAAEBQdrYVcSPJ1owt5eRQbxuJRXAbAAAAAAAAQNCQPCkQiG2MgO2MAyQSwW0AAAAAAAAAQWMLpdzc2MbomysVjonHbIDDI7gNAAAAAAAAIMjjsTS5RHJFGTl0uaSLS5xxgEQiuA0AAAAAAAAgREmxpR49Ig9wu1xSVpZzPJBoBLcBAAAAAAAAhPB6LZXNs2RZ4Qe4XS7JsqSyeZa8XoLbSDyC2wAAAAAAAAAOUZBvacF8S1lZHQe4WzK2F95rKf8MAttIDk+qJwB0d36/0eoqaeMmqaHBKDvb0pA8p3kDtakAAAAAAEAqFeRbWlIuVa4yWlEp+XyS2yVZLsnYUsB2mkdeXOKUIiFjG8lEcBtIkdpaE/rG4HZu3THGKBBwuhJPLjG8MQAAAAAAgJTyei1Nn2ZpaqlR1RonQa++3ignx0nQKxxDgh5Sg+A2kALVNUazbzFqapJs23ksEAjdx+eTFldIS5cZlc1zPikFAAAAAABIFY/HUtE4qUiSRJwCqUfNbSDJqmuMZs4KDWwfjm1LTU3SzFlG1TUmORMEAAAAAAAAOgGC20AS1dY6Gdu23XFgu4VtS8ZIc+Ya1dYS4AYAAAAAAAAkgttAUlWucjK2TYQxatuWGhud4wEAAAAAAABQcxtIGr/faR4ZbsZ2a7YtrayUppYamjQAAAAAAIC05vcbra5ymk82NBhlZzvNJ8cW0nwS8UNwG0iS1VVOk8hY1PmkqjVS0bh4zAgAAAAAACC+amuNKlc5CX4+n+R2S5YlGWMUCEi5udLkEqOSYkteL0FuxIayJECSbNzk/EKPhdvljAMAAAAAAJBuqmuMppQaLa44kOAXCEh+v/O35Dy+uEKaUmpUXUP5VcSG4DaQJA0NRlaMH0haLqm+nl/8AAAAAAAgvVTXGM2c5fQa66gkq21LTU3SzFkEuBEbgttAkmRnWxE3kmzN2FJODrfsAAAAAACA9FFbazT7FiPbDr/XmG1Lxkhz5hrV1hLgRnQIbgNJMiTvwC040QrYzjgAAAAAAADponKVk7EdaVKfbUuNjc7xQDQIbgNJMrbQaZoQi765UuGYeMwGAAAAAAAgdn6/0zwy3Izt1mxbWlnpjANEiuA2kCQej6XJJZIrylXnckkXlzjjAAAAAAAApIPVVQeaR0arzidVrYnHbNDdENwGkqik2FKPHpEHuF0uKSvLOR4AAAAAACBdbNwkud2xjeF2OeMAkSK4DSSR12upbJ4lywo/wO1ySZYllc2z5PUS3AYAAAAAAOmjocHIijFcYbmk+nrKkiByBLeBJCvIt7RgvqWsrI4D3C0Z2wvvtZR/BoFtAAAAAACQXrKzrYgbSbZmbCknh7gHIkdwG0iBgnxLS8otTS090GTS7ZI8HudvyWkeObVUWlJOYBsAAAAAAKSnIXlSIBDbGAHbGQeIlCfVEwC6K6/X0vRplqaWGlWtcWpL1dcb5eRYGpInFY6heSQAAAAAAEhvYwudxL1Ymkr2zXXiIECkCG4DKebxWCoaJxVJkghmAwAAAACAzsPjsTS5xGhxhWTbkR/vckkXl5Dgh+hQlgQAAAAAAABA1EqKLfXo0XFvsdZaeo2VFBPYRnQIbgMAAAAAAACImtdrqWyeJcsKP8DtckmWJZXNs+T1EtxGdAhuAwAAAAAAAIhJQb6lBfMtZWV1HOBuydheeK+l/DMIbCN6BLcBAAAAAAAAxKwg39KScktTS50mk5Lkdkkej/O35DSPnFoqLSknsI3Y0VASAAAAAAAAQFx4vZamT7M0tdSoao20cZNUX2+Uk2NpSJ5UOIbmkYgfgtsAAAAAAAAA4srjsVQ0TiqSJBHMRmJQlgQAAAAAAAAA0OkQ3AYAAAAAAAAAdDqUJQEAAAAAAACQEn6/0eoqpzZ3Q4NRdrZTm3tsIbW50TGC2wAAAAAAAACSqrbWqHKV0YpKyeeT3G7JsiRjjAIBKTdXmlxiVFJsyeslyI22UZYEAAAAAAAAQNJU1xhNKTVaXOEEtiUpEJD8fudvyXl8cYU0pdSousakaqpIcwS3AQAAAAAAACRFdY3RzFlGTU2Sbbe/r21LTU3SzFkEuNE2gtsAAAAAAAAAEq621mj2LUa23XFgu4VtS8ZIc+Ya1dYS4EYogtsAAAAAAAAAEq5ylZOxbSKMUdu21NjoHA8cjOA2AAAAAAAAgITy+53mkeFmbLdm29LKSmccoAXBbQAAAAAAAAAJtbrqQPPIaNX5pKo18ZgNugqC2wAAAAAAAAASauMmye2ObQy3yxkHaEFwGwAAAAAAAEBCNTQYWVZsY1guqb6esiQ4wJPqCQAAAAAAAADo2rKzLZlIO0m2YgekbduliieNGhqMsrMtDcmTxhZKHk+MkXN0SgS3AQAAAAAAACTUkDwpEIhtDNtIL7woud1OFrgxRoGAlJsrTS4xKim25PUS5O5OKEsCAAAAAAAAIKHGFjpB6HgIBCS//0Cw3OeTFldIU0qNqmsoW9KdENwGAAAAAAAAkFAej6XJJZIrQdFI25aamqSZswhwdycEtwEAAAAAAAAkXEmxpR49EhvgNkaaM9eotpYAd3dAcBsAAAAAAABAwnm9lsrmWbKsxAa4GxulylUEt7sDgtsAAAAAAAAAkqIg39KC+ZayshIb4F5ZKfn9BLi7OoLbAAAAAAAAAJKmIN/SknJLU0sPNJl0uySPx/k7Hup8UtWa+IyF9OVJ9QQAAAAAAAAAdC9er6Xp0yxNLTWqWiNt3CTV1xvl5FjasMHopVekQCD68d0uZ8yi+E0ZaYjgNgAAAAAAAICU8HgsFY1rCUJbkqRHFhlZVmzjWi4nWN4yJromypIAAAAAAAAASBvZ2ZZMjOWyjS3l5BDY7uoIbgMAAAAAAABIG0PyYitJIkkB2xkHXRvBbQAAAAAAAABpY2zhgUaT0eqbKxWOicdskM4IbgMAAAAAAABIGx6PpcklkivKyKXLJV1c4oyDro3gNgAAAAAAAIC0UlJsqUePyAPcLpeUleUcj66P4DYAAAAAAACAtOL1WiqbZ8mywg9wu1ySZUll8yx5vQS3uwOC2wAAAAAAAADSTkG+pQXzLWVldRzgbsnYXnivpfwzCGx3FwS3AQAAAAAAAKSlgnxLS8otTS090GTS7ZI8HudvyWkeObVUWlJOYLu78aR6AgAAAAAAAABwOF6vpenTLE0tNapaI23cJNXXG+XkWBqSJxWOoXlkd0VwGwAAAAAAAEDa83gsFY2TiiRJBLNBWRIAAAAAAAAAQCdEcBsAAAAAAAAA0OlQlgQAAAAAAABAl+H3G62ucmpzNzQYZWc7tbnHFlKbu6shuA0AAAAAAACg06utNapcZbSiUvL5JLdbsizJGKNAQMrNlSaXGJUUW/J6CXJ3BZQlAQAAAAAAANCpVdcYTSk1WlzhBLYlKRCQ/H7nb8l5fHGFNKXUqLrGpGqqiCMytxG1QCCgmpoabd68WTt27FCvXr00aNAgFRQUKDc3N9XTAwAAAAAAQDdQXWM0c5aRMZJtt7+vbUtNTdLMWUYL5ksF+WRwd2YEtzu5//znPzrvvPPiMtbLL7+sY489tsP9mpub9dBDD2nZsmXasWPHIV/PyMjQ+PHjddNNN2no0KFxmRsAAAAAAADQWm2t0exbjGxbMmEmY9u25HJJc+YaLSkXJUo6McqSQJJkWZZycnI63G/z5s26/PLL9cADD7QZ2Jak/fv368UXX9TkyZO1atWqeE8VAAAAAAAAkCRVrjJqago/sN3CtqXGRud4dF5kbndylmXJ7XZHfJxt2zIHrfpRo0apX79+7R6zZ88eXXPNNVq/fn3wsezsbI0fP16DBw+Wz+dTVVWVNm3aJEmqr6/X7NmzlZubq6KioojnCAAAAAAAAByO3+80j+yoFMnh2La0slKaWmrk8ZC93RkR3O7kjjnmGL3//vsRH3f99dfrlVdeCW5Pnjy5w2Pmzp0bEtg+++yztXDhwpCgeCAQ0BNPPKFf//rXX3aiDWjmzJl6/vnn5fV6I54nAAAAAAAA0JbVVQeaR0arzidVrZGKxsVjRkg2ypJ0Q1988YXeeOON4HZOTo6+8Y1vtHvMu+++qxdeeCG4ffzxx2vRokWHZHu73W5Nnz5dM2bMCD62Z88ePfzww3GaPQAAAAAAACBt3CRFUdAghNvljIPOieB2N/Tss89q//79we2JEyeqZ8+e7R7z4IMPhmzfdtttyszMPOz+1157rfLy8oLbS5cu1RdffBHljAEAAAAAAIBQDQ1GVozVRCyXVF9P3e3OiuB2N7Ry5cqQ7Y5Kkuzbt09vvvlmcHv48OEaM2ZMu8dkZGTosssuC243NzeHlEEBAAAAAAAAYpGdbUXcSLI1Y0s5OdTb7qwIbnczH3zwgdatWxfcPuaYY3T22We3e8wbb7yh5ubm4PYFF1wQ1nO1LnXy8ssvRzBTAAAAAAAA4PCG5EmBQGxjBGxnHHROBLe7mRUrVoRsl5SUyOrg/o21a9eGbOfn54f1XHl5eerfv/9hxwEAAAAAAACiNbZQys2NbYy+uVJh+wUKkMYIbncjfr9ff/rTn0Ie66gkiSStX78+ZHvkyJFhP+eIESOC/969e7d27NgR9rEAAAAAAADA4Xg8liaXSK4oI5wul3RxiTMOOieC293I66+/rtra2uD2qFGjQpo+Hs7Bwe3MzMyQbOyOHH300YcdCwAAAAAAAIhFSbGlHj0iD3C7XFJWlnM8Oi+C291IpI0kW2zfvj3470GDBnVYxuRgRx55ZMj21q1bwz4WAAAAAAAAaI/Xa6lsniXLCj/A7XJJliWVzbPk9RLc7sw8qZ4AksPn8+mVV14JbmdnZx/S8LEtjY2NChxUmT8nJyei5+3Vq1fIdn19fUTHt4gkoA5E4uD/W/w/A6LDOupK2vr5Wfxck4S1BMSOdQTEjnWEzujMAksL7zWafYutxkbJtg+/b0vG9j13uZR/RuL+j7OWkoPgdjfx3HPPaf/+/cHtiRMnHhJ4bkvrYHSPHj0iet7MzMx2xwtXbqzdAYAwHHHEEameAtDpsY46Obf7kIc8bjfvwynAWgJixzoCYsc6QmcyYbz0XKWtp55p1B/+2Ki6OiO328nQNkYKBKR+/SxdcXmWLvt2lgYOTF5BC9ZS4hDc7iZWrFgRsh1uSZKmpqaQ7YyMjIiet3Vwu7GxMaLjAQAAAAAAgHAMHOjSDdfn6Jqrs/XGm/u1fkNA++qNeuZYGnacW0XjMpSRQRZ1V0JwO04mTJigLVu2JGz8m266Sddcc01Ux3766af65z//Gdw+5phjNGbMmLCObZ2pfXD2dziam5tDtrOysiI6voXP54vqOKAjlmUFP0HdtWuXjDEpnhHQ+bCOuo5egcAhJ4f+QEB7eR9OCtYSEDvWERA71hG6ioJ858/B9u1L3vOzltoW77tCCW53A8uXLw/ZLikpCbvWT+sa260zuTvSOrgdac3uFvwCQDIYY/i/BsSIddTZtfWz42eaCqwlIHasIyB2rCMgPlhLiZO84jJICdu29eyzz4Y8Fm5JEsnJtHYfVH9zX4Qfce3duzdkO9rgNgAAAAAAAAAcjMztOLnvvvsizmqOxLHHHhvVcW+99Za2b98e3B41apTy8vIiGmPgwIH6/PPPJUnbtm2TMSbszO+tW7eGbA8aNCiiP9f9fgAAORZJREFU5wYAAAAAAACAthDcjpNTTz011VNoU+tGkhdffHHEYwwfPjwY3G5ublZtba0GDBgQ1rEtxx08FgAAAAAAAJAO/H6j1VXSxk1SQ4NRdralIXnS2ELJ46H5ZLojuN2F7dmzRy+//HJwOzs7WxdeeGHE4wwbNkxvvvlmcPv999/XOeecE9ax69atC/67T58+8nq9ET8/AAAAAAAAEE+1tUaVq4xWVEo+n+R2S5bl1McOBKTcXGlyiVFJsSWvlyB3uqLmdhf2l7/8RY2NjcHt888/X7169Yp4nDPPPDNku6amJqzjNm7cqJ07dwa3R40aFfFzAwAAAAAAAPFUXWM0pdRocYUT2JakQEDy+52/JefxxRXSlFKj6hqaQaYrgttd2PLly0O2L7nkkqjGKSoqUmZmZnD7hRdeCOu4559/PmT7vPPOi+r5AQAAAAAAgHiorjGaOcuoqUmy7fb3tW2pqUmaOYsAd7oiuN1Fbdy4MSTD+uijj9aYMWOiGqtnz54qKioKbq9fv15r1qxp95j9+/fr6aefDm5nZmZqwoQJUT0/AAAAAAAAEKvaWqPZtxjZdseB7Ra2LRkjzZlrVFtLgDvdENzuolo3kiwpKZFlRV8f6LrrrgvZvvPOO9Xc3HzY/R9++GFt2rQpuH3FFVeoX79+UT8/AAAAAAAAEIvKVU7GtokwRm3bUmOjczzSC8HtLsgYo2effTbkscmTJ8c05mmnnaYLLrgguP3JJ5/o6quv1hdffBGyn23b+t3vfqf7778/+Fjv3r117bXXxvT8AAAAAAAAQLT8fqd5ZLgZ263ZtrSy0hkH6cOT6gkg/tasWaMtW7YEt88880wNGTIk5nF/+ctf6qOPPtKGDRskSW+//bYmTJigCRMmaPDgwaqrq1NVVVVIxrbb7daCBQvk9Xpjfn4AAAAAAAAgGqurDjSPjFadT6paIxWNi8eMEA8Et7uglStXhmzHmrXdok+fPnr00Uc1Y8YMffDBB5KkhoYGPffcc23un5OTozvuuCOkXjcAAAAAAACQbBs3SW63FAhEP4bb5YxDpCt9UJaki9m3b59efPHF4HZ2drYuvPDCuI0/ePBgPfXUU/rBD36gAQMGtLlPRkaGzj//fC1fvlyTJk2K23MDAAAAAAAA0WhoMIqhHZ0kyXJJ9fWUJUknZG53MT179lRNTU1CnyMzM1M33nijZsyYoerqam3evFm1tbXq2bOnBg0apIKCAvXt2zehcwAAAAAAAADClZ1tyUTaSbIVOyB9+JH0yCJb2dmWhuRJYwsljyfGqDmiRnAbUXO73Ro9erRGjx6d6qkAAAAAAAAAhzUkL7aSJJJkG+mdtdI/qiVjjAIBKTdXmlxiVFJsyeslyJ1slCUBAAAAAAAA0KWNLXQC0bGybcnvPxAo9/mkxRXSlFKj6hpKliQbwW0AAAAAAAAAXZrHY2lyieRKQDTUtqWmJmnmLALcyUZwGwAAAAAAAECXV1JsqUePxAW4jZHmzDWqrSXAnSwEtwEAAAAAAAB0eV6vpbJ5liwrcQHuxkapchXB7WQhuA0AAAAAAACgWyjIt7RgvqWsrMQFuFdWSn4/Ae5kILgNAAAAAAAAoNsoyLe0pNzS1NIDTSbdLsnjkVxW7OPX+aSqNbGPg455Uj0BAAAAAAAAAEgmr9fS9GmWppYaVa2RNm6S6uuNPvxIemetk4EdLbdL2riJzO1kILgNAAAAAAAAoFvyeCwVjZOKJEmWHllk6x/VsQW3LZdUXx+nCaJdlCUBAAAAAAAAAEnZ2ZZMjEnXxpZycuIzH7SP4DYAAAAAAAAASBqSJwUCsY0RsKUheXEo3o0OEdwGAAAAAAAAAEljCw80mYxW31ypcEw8ZoOOENwGAAAAAAAAADk1uCeXSK4oo6Yul3RxiTMOEo/gNgAAAAAAAAB8qaTYUo8ekQe4XS4pK8s5HslBcBsAAAAAAAAAvuT1WiqbZ8mywg9wu1ySZUll8yx5vQS3k4XgNgAAAAAAAAAcpCDf0oL5lrKyOg5wt2RsL7zXUv4ZBLaTieA2AAAAAAAAALRSkG9pSbmlqaUHmky6XZLH4/wtOc0jp5ZKS8oJbKeCJ9UTAAAAAAAAAIB05PVamj7N0tRSo6o10sZNUn29UU6OpSF5UuEYmkemEsFtAAAAAAAAAGiHx2OpaJxUJEkimJ0uKEsCAAAAAAAAAOh0CG4DAAAAAAAAADodypIAAAAAAAAAQJz4/U597m3bG1TfYOSybOUNlsYWUp873ghuAwAAAAAAAECMamuNKlcZraiUfD4jt7teliUZIwUCUm6uNLnE/P/t3XmcjXX/x/H3mY3BMMYww+AWZaeUYrQIlZSduCXuqBQile7olixDdKfFktLdMhGyRrLFj5Qt6z2DiAiNdYaxjTHb+f0xj7nuuc6cc+bMPpdez8ejx32+1/ley9yP83bNfM73+n7VqYNNwcEUufMD05IAAAAAAAAAQB7s3mNXrz52Rc6W4uPTt6WmSikp6f8rpW+PnC316mPX7j32orrUmwrFbQAAAAAAAADIpd177Hp5uF03bkhpae77pqVJN25ILw+nwJ0fKG4DAAAAAAAAQC7Extr1+ht2paVlX9jOkJaWPlXJiH/ZFRtLgTsvKG4DAAAAAAAAQC4s+y59xLY9hzXqtDQpMTF9f+QexW0AAAAAAAAAyKGUlPTFIz0dse0oLU36dln6cZA7FLcBAAAAAAAAIIe2bP3f4pG5dTFe2rotP67mr4niNgAAAAAAAADk0PETkrd33o7h7ZV+HOQOxW0AAAAAAAAAyKHr1+2y2fJ2DJuXlJDAtCS55VPUFwAAAAAAAAAAVuPvb5M9pytJOkhLlQ79Js36T5r8/W36W3WpRbjk45PHqvlfBMVtAAAAAAAAAMihv1WXUlPzdow0u7Rjp7Rrt2S325WaKgUGSl062dWpg03BwRS53WFaEgAAAAAAAADIoRbh6YXovEpLk1JS/lcoj4+XImdLvfrYtXsPU5a4Q3EbAAAAAAAAAHLIx8emLp0krwKosKalSTduSC8Pp8DtDsVtAAAAAAAAAMiFTh1sKlGi4Arcdrs04l92xcZS4HaG4jYAAAAAAAAA5EJwsE2TJ9pksxVcgTsxUVr2HcVtZyhuAwAAAAAAAEAu3dnEpvfftalkyYIrcH+7TEpJocDtiOI2AAAAAAAAAOTBnU1smvuVTf/o879FJr29JR8fycuW9+NfjJe2bsv7cW42PkV9AQAAAAAAAABgdcHBNj3Tz6Z/9LFr23abzp4rqWsJdv33v9e1Y2f6COzc8vaSjp+Q7s+/y70pUNwGAAAAAAAAgHzi42PT/ffZFBjoL0l6591E7dptz1Nx2+YlJSTYJeXDMPCbCNOSAAAAAAAAAEAB8feX7HmcLtueJpUqRWHbEcVtAAAAAAAAACggf6tuU2pq3o6Rmib9rXr+XM/NhOI2AAAAAAAAABSQFuH/W2Qyt8oHSuHN8+Nqbi4UtwEAAAAAAACggPj42NSlk+SVy0qsl5fUuVP6cWBGcRsAAAAAAAAAClCnDjaVKJHzAreXl1SyZPr+yIriNgAAAAAAAAAUoOBgmyZPtMlm87zA7eUl2WzS5Ik2BQdT3HaG4jYAAAAAAAAAFLA7m9j0/rs2lSyZfYE7Y8T2B1NsanIHhW1XKG4DAAAAAAAAQCG4s4lNc7+y6R99/rfIpLeX5OOT/r9S+uKR/+gjzf2KwnZ2fIr6AgAAAAAAAADgryI42KZn+tn0jz52bd0mHT8hJSTYVaqUTX+rLoU3Z/FIT1HcBgAAAAAAAIBC5uNj0/33SfdLkihm5wbTkgAAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsh+I2AAAAAAAAAMByKG4DAAAAAAAAACyH4jYAAAAAAAAAwHIobgMAAAAAAAAALIfiNgAAAAAAAADAcihuAwAAAAAAAAAsx2a32+1FfREAAAAAAAAAAOQEI7cBAAAAAAAAAJZDcRsAAAAAAAAAYDkUtwEAAAAAAAAAlkNxGwAAAAAAAABgORS3AQAAAAAAAACWQ3EbAAAAAAAAAGA5FLcBAAAAAAAAAJZDcRsAAAAAAAAAYDkUtwEAAAAAAAAAluNT1BcAAHlx7do17du3T8ePH9elS5dkt9sVEBCgsLAwNW7cWIGBgfl2rqSkJEVHR+v3339XfHy80tLSFBAQoKpVq6p27dqqXLlyno69a9cuxcTE6MKFCwoMDFRoaKiaNm2qUqVK5dvPALhSGFmKjY1VVFSUTp8+ratXr8rHx0dly5ZVrVq1VL9+fZUsWTLP5yBLKErXr183Pn/x8fEqU6aMQkJC1LhxY1WqVCnfzhMVFaU//vhDZ8+elb+/v3GOkJCQfDk+OUJRK8gspaam6o8//tDhw4d17tw5Xbt2TaVKlVJgYKDq16+vW2+9VTabLV9+DrKEolRY96SCRo5Q1AozS9QccofiNoACce3aNR04cEBRUVGKiopSdHS0YmJijPfDwsL0f//3f7k+fnR0tD799FOtX79eKSkpTvvYbDaFh4erf//+uv/++3N9rpMnT2rWrFlasWKFEhISXPYLCQnRAw88oLFjx8rb29ujY1+9elUffPCBli9frkuXLmV5v1SpUmrbtq1effVVVaxYMdc/A6zrZsjSqlWrFBkZqT179rjsU6JECbVr104DBgxQrVq1cnwOsgR3CjpHx44d0/Tp07V27VolJSVled/b21vNmzfX4MGDddddd+XqHGlpaZo9e7Zmz56tkydPZnnfy8tL4eHhGjZsmBo3bpyrc5AjZMeqWYqNjdXatWu1adMm7dixQ1evXnXZNygoSD169NA//vEPBQUF5ernIEtwx6o58sSpU6f0+OOPZ/mbaf369apatWqOjkWOkJ2bKUvUHPLGZrfb7UV9EQBuHl988YWWLFmiI0eOKC0tzWW/vNxopk2bppkzZyo1NdXjfbp27arx48fLxydn3+lFRkbq3XffdXozcyUqKkolSpTItt/+/fs1ZMgQ0w3YlaCgIE2ZMkUtWrTw+DpgbTdDlhISEvTKK69ow4YNHh/fz89PI0aMUO/evT3ehyzBlcLI0cKFCzV27FglJydn29fb21sDBgzQsGHDcnSOixcvatiwYdq2bVu2fX19ffXKK6+of//+OToHOYI7Vs7St99+qzfeeCNH9zpJqlChgiZOnKgHH3wwR/uRJbhi5Rx5asCAAfrxxx+zbM9pcZscwZ2bLUvUHPKOkdsA8tWOHTv022+/Fdjxp06dqhkzZpi2lS1bVi1atFD16tXl7e2tM2fOaNu2bTp9+rTRZ8mSJUpKStKUKVM8Ptf48eM1Z84c07bAwEA1b95clStXlr+/v+Lj4/Xbb79p3759SkxM9PjYp06d0oABAxQbG2tsK1eunFq1aqXQ0FCdP39emzZt0vnz5yVJFy5c0ODBgzVv3jzVrVvX4/PAuqyepdTUVL3wwgvavn27aXtYWJiaN2+uSpUqKSUlRSdOnNDmzZuNUXRJSUkaN26cfHx81LNnz2x/DrIEdwo6R3PmzNH48eNN2ypWrKj77rtPoaGhun79uv773/9q7969stvtSk1N1cyZM+Xr66vBgwd7dI7k5GQNGTJEO3bsMLb5+PioZcuWqlWrlq5du6adO3fq0KFDRv/JkycrICBATzzxhEfnIEfIjpWzFB8fn6WwXapUKTVp0kTVq1dX+fLldf36df3666/asWOH0TcuLk6DBw/W1KlT1aZNG49+DrIEd6ycI0+sWLHCaWE7p8gRsnMzZYmaQ/6guA2gwJUqVUoNGjTQ/v373T5ik51Dhw7p448/Nm3r3bu3hg8fnmWOqNTUVM2fP19vv/228W3rihUr1K5dOz300EPZnuuTTz4x3WQCAwM1YsQIdejQwemI1YSEBG3YsEGzZ8/O9th2u11Dhw413WTat2+vcePGqXTp0sa2jALil19+aZxj0KBBWrVqlUff0uLmY6UszZ8/31TY9vX11VtvvaVu3brJy8u8nvXVq1c1adIkLVy40Ng2adIkPfjgg27nECZLyI38ylF0dLQmTZpk2jZw4EANGjRIfn5+pu179uzRyy+/bHxRNHXqVDVq1EgPPPBAtud57733TIXt2rVra+bMmVlGwC1fvlxvvPGGkdOxY8eqcePGqlOnjtvjkyPkltWy5OPjo1atWqlnz55q3ry5fH19s/Q5efKk3njjDf3yyy+SpJSUFA0fPlxr1qzJdl5VsoTcsFqOXImPj9fEiRMlpU+TFRQUZMqCp8gRcsuKWaLmkH+8su8CAJ4rUaKEGjdurN69e+vtt9/WihUrtGvXLs2ZM0fly5fP07Hnzp1rGnnTvn17jR492uniB97e3urdu7dGjhxp2j5v3rxsz3PkyBFNmzbNaIeEhGjx4sXq0qWLy6kYSpUqpccff1zz58/P9iawevVqRUdHG+0WLVro3XffNd1kpPTpGUaOHKmuXbsa22JiYjz6GWB9Vs+S4wiEN998U0888USWwrYklSlTRhEREWrbtq2xLSEhQd9++63bc5AlZKcgc/T++++bHlUdPHiwhg0bluUPH0lq0qSJvvrqK9Nn89///rfbR2kl6cyZM6YsVahQQV999ZXTR7s7duyoiIgIo52cnKwPP/ww25+DHMETVs6St7e32rdvr9WrV2v69Om6//77nRa2JalatWr67LPPdPfddxvbEhISNHPmzGx/DrKE7Fg5R9mZNGmS4uLiJEk9e/ZUzZo1c3UccgRP3AxZouaQv5hzG0Chad26tTHXU27mv2rbtq3++OMPo71y5cpsF55LTU1Vy5YtjUdtfH19FRUV5bTAlqFXr17avXu3pPSRBwsXLlTDhg1zdK3udOzY0Xh83MvLS6tXr9bf/vY3l/0vXbqk1q1bG9M2BAcH68cff8zx/OG4eRT3LJ09e9Y0YqFixYratGmT29xJ0uHDh9W+fXuj3aJFC33xxRcu+5Ml5EVecnT06FG1a9fOaIeFhWnt2rXZfpZmzZplmtLnww8/1KOPPuqyf0REhGl0zsSJE9WtWze353jqqadMI72XLVvm9tFScoS8Ku5ZSklJyfHn89ixY2rXrp0y/lQODg7Wzz//LJvN5nIfsoS8KO45cmfLli3q16+fpPTf+VatWqVBgwYZT0BIns+5TY6QV1bJEjWH/MXIbQCWcfbsWeN1QEBAtsU4KX20TqNGjYx2cnKy4uPjXfbfuXOncZORpG7duuXrTeaPP/4wbjKSdN9997m9yUjp82I9/vjjRjs2NtZUuAByqqCzlPn4ktS4ceNsC9uSdNttt6lMmTJG+9y5cy77kiUUpa1bt5ranTt39uiX/+7du5uKYytXrnTZ1263a+3atUa7XLlypi9/XOnVq5epvWbNGpd9yRGKWmFkKTd/mN9yyy2qX7++0Y6NjdWpU6dc9idLKEqFkSNXrl+/rtGjRxvtkSNHKiAgIMfHkcgRil5hZYmaQ/6juA3AMjI/3lOyZEmP93M21YIrixYtMrWfeuopj/f1xPr1603tzNMwuJP5G2RnxwFyoqCz5PhQmL+/v8fnyNzX3Qg5soSitH//flO7SZMmHu0XFBSkGjVqGO2ffvpJN27ccNp33759pi+KHnzwQY/mPmzTpo1pygV3n3FyhKJWGFnKLcdCQMaUC86QJRSloszR1KlTdfLkSUnpBbTMxbGcIkcoaoWVJWoO+Y/iNgDLyPwoW3x8vMcrBWc8liSlfyPpah6ulJQU0wi3WrVq5fsqwTt37jS1Pb1hNm7cWN7e3i6PA+REQWfJ8bFTd6PdMrt+/bouXrxotKtXr+6yL1lCUcr8OZXkduFTR5n7JiQkaN++fU777dq1y9T29DNesmRJ1atXz2gfOnRIly9fdtqXHKGoFUaWcuvatWumtrvRe2QJRamocrR//35FRkZKSr/3jBkzxuN9nSFHKGqFkSVqDgWD4jYAy7j//vuN18nJyfrhhx+y3efkyZOmhRRatmzpcjTob7/9ZlpZuWnTpnm4WueOHj1qvC5ZsqTHi62ULl3aVOg7duxYltGxgKcKOksVKlQwPc4dFRXlUYF7zZo1SklJMdqtWrVy2ZcsoSg5jsZxtsiQK46jr3///Xen/Ry3Z85UdjIXtyVzXlxtJ0coCoWRpdyw2+06fPiwaVtoaKjL/mQJRakocpSamqpRo0YZC5QPHDhQ1apV8/i8zpAjFLXCyBI1h4JBcRuAZfTt29c0LcLkyZONx+CcSUhI0Ouvv24Uy/z8/PTCCy+47O/47WrG/MLJyclatWqVBg8erEceeURNmjRRixYt1LFjR40ZM0Y//fSTR9efnJysP//802iHhoa6nXbBUZUqVYzXiYmJplG0QE4UdJYk6fnnnzdep6SkaMSIEW5HiB87dkzvvPOO0a5Ro4Y6duzotC9ZQlFznE/U1choZxz7uvrjx7EgXblyZY/Pkfkz7uxYEjlC8VAYWcqNHTt2mL6UrV27toKCgpz2JUsoakWRo88//1wHDhyQJN1666165plnPD6nM+QIxUFhZImaQ8GguA3AMsLCwhQREWEsTHf+/Hl169ZNn3zyiX7//XclJSUpNTVVp06d0sKFC9WpUyfjsW5vb29NmDDB7cJ5R44cMbWrVq2qQ4cOqXv37ho2bJjWrVun48ePKyEhQXFxcTp06JDmzZunZ599Vj169MgywsdRbGysaVRqTgoVUtbHos6cOZOj/YEMBZ0lSXr00UdNC9tt375dXbp00dKlS3XmzBmlpqYqKSlJhw8f1owZM9StWzdjPtPy5ctr2rRpLucXJksoapUqVTK1He8frtjt9ix9T58+7bRv5vm2fXx8VLFiRY+vz3GEqbPPODlCcVAYWcqN6dOnm9qPPvqoy75kCUWtsHN04sQJIyM2m01jx441rfWQG+QIxUFhZImaQ8GguA3AUh5//HH95z//MR57u3Tpkt577z099thjatSokerXr69WrVpp1KhROnHihCSpTp06ioyMdDkKNMOlS5dM7djYWPXq1UsHDx7M9rr++9//6u9//7u2b9/usk/mx4+knC10KaU/JuTueEBOFGSWMrz11lsaOXKkypQpIyl99OiIESPUsmVL1a9fX40aNVL79u01depUY27TVq1aacmSJapdu7bL45IlFLU777zT1N64caNH++3cuVNXrlwxbXP1+cu83d/fP0ejbjz5jJMjFAeFkaWcWrhwoen3ucDAQLeLfZElFLXCztHo0aONp/G6deuWL9MqkCMUB4WRJWoOBYPiNgDLuffee7Vy5Ur179/ftOCBM+3atdOsWbN09913Z3tcx0eJxo4daxTcbr/9dk2fPl1btmxRdHS0NmzYoHHjxpm+Cb169aqGDh3q8ltax4WJXI1KdcWxv1VuNCi+CipLGWw2m55++mmtXLnS7fzZkuTr66shQ4bovffeyzKlgiOyhKIWHh6ukiVLGu3169dnO5JGkmbOnJllmyfF7Zx+xh3niHR2DnKE4qAwspQThw8f1oQJE0zbXn/9dZUrV87lPmQJRa0wc7R48WJt3bpVUvqTdq+99loOr9Y5coTioDCyRM2hYFDcBmA5GzduVKdOnfT5558bi5i4smrVKj300EOaOHFilgUiHDn+w53x7WuPHj30zTff6OGHH1aFChXk5+enKlWqqGfPnlq+fLluv/12Y5/4+HhNnDjR6fGTkpJM7Zw+vudYrHA3fzHgiYLKUoa0tDR9/vnn6tixozZs2OC2b3JysqZNm6bWrVvrm2++cduXLKGoBQYGqlu3bkY7JSVFw4YNU2xsrMt9pk2bps2bN2fZ7urzlzlnBfEZJ0coDgojS566ePGiBg8erOvXrxvb2rZtq65du7rdjyyhqBVWjuLi4kzro4wYMUKBgYG5u2gH5AjFQWFkiZpDwaC4DcBSPvroIz3//PPG4lhBQUF65ZVXtHz5cu3evVtRUVFat26dJkyYoNtuu01SetEsMjJSffv2zfJNZmbOvtWsV6+e3nrrLZePg5ctW1Yffvih6fGddevW6Y8//sjS1/FGkZycnO3Pm5njjSrzt8pAThVklqT0z+vAgQM1efJkxcfHS0pfkGvChAlat26doqOjtXv3bi1btkwvv/yysVDXxYsXNXr0aI0fP97lsckSioMhQ4aYRtIcOXJEnTp10pw5c3Tq1Cmlpqbq6tWr2rJli5577jljflLHxz0d2xky35MK4jNOjlBcFHSWPHH9+nW98MILOn78uLGtbt26LosHmZElFAeFkaOIiAjjd7p77rlHnTt3zrfrJ0coLgrz97sM1BzyjuI2AMtYuXKlPvzwQ6Ndr149LV++XM8//7zq1Kmj0qVLq0SJEqpWrZq6d++uJUuWmH7p2rt3r0aPHu3y+M7moxowYIB8fHzcXlflypVN3/CmpaU5nZ/L8Qbn6ehXV/1zOn8WkKGgsyRJEyZMMOWgc+fOWrJkibp3765q1arJz89PpUuXVt26dfXCCy9o+fLlqlevntF/zpw5WrBggdNjkyUUB+XLl9f06dNVvnx5Y1tsbKzGjx+vVq1aqX79+rrrrrvUr18/bdq0SVL66Jlx48aZjhMQEOD0+Jk/lzn9jDv+YeLsM06OUFwUdJayk5ycrCFDhmjv3r3GtqpVq+rTTz811oxwhyyhOCjoHG3cuFErV66UlF48Gzt2bL5ePzlCcVGYv99loOaQdxS3AVhCcnKyafRMiRIl9NFHH6lixYou9/Hz81NERITq1KljbFuxYoWio6Od9ne8EXh5eally5YeXV/r1q1N7d27d2fp43hjyG7kqyPH/la50aB4KYwsHTp0yDS1SN26dRUREeH2sbiKFStqxowZptEM7733ntNfyMgSiouGDRtq4cKFHs1FX6VKFX322We69dZbTdtdzeWb+XN5/fp1paWleXxdnnzGyRGKk4LMkjtpaWn65z//qZ9++snYVrFiRX3xxReqVKmSR8cgSyguCipH165d05gxY4z2gAEDVLNmzTxfb2bkCMVJQd6TqDkUDIrbACzh559/1vnz5412+/bts110Tkr/FrV///6mbcuWLXPaNzQ01NQOCwvz+BHX2rVrm9pnz57N0ic4ONj0jeyZM2c8Orar/o7XC3iiMLL07bffym63G+1+/fp5NN9bWFiY2rdvb7QvXrxojIjIjCyhOKlWrZrmzJmjyMhIPfnkk6pdu7YCAwPl6+ur0NBQhYeHa/z48VqxYoWaNWumP//807R/rVq1nB43JCTEeJ2SkuJ2vkdHjosMOfuMkyMUNwWVJXfGjBljjEaV0osR//nPf1S9enWPj0GWUJwURI4iIyON+0qNGjX0/PPP5/t1kyMUNwV1T6LmUDDcj3sHgGIi86OiUvo8b55y7Ltv3z6n/RxvQGXLlvX4HI59M+ajy8zX11dVq1Y15sY6c+aM7Ha7y7m1HGUuVvj7+yssLMzj6wMyFEaWHM/RrFmzHJ1j8eLFRjs6OloPP/ywqQ9ZQnHUvHlzNW/ePNt+UVFRpnajRo2c9qtVq5Z27txptE+dOuXxSFLH4razP7DIEYqr/M6SK++8847pKaNSpUpp1qxZqlu3bo6OQ5ZQHOVnji5evGi8Pn78uO64445sj+u4UPkjjzxiav/www+mzzo5QnFVEL/fZUbNIX8wchuAJVy4cMHUdjeFgqPg4GBTO/MvaJllLJqXISeLLzjOb+psoQjJfDNLTEw0FvPLztWrV02LHNWoUcPjGxSQWWFkyfEcjvvlxznIEqwq8yOkPj4+atCggdN+jo98HzhwwONzOPZ19fg4OYKVeZolZ2bOnKnPPvvMaPv5+emjjz7yqGjnDFmCVeU0R3a7Xampqdn+58jx/cxP+GUgR7AyT7NEzaFgUNwGYAmO/3AnJiZ6vK9jX39/f6f9atWqpQoVKhhtZ4/5uOL4+E5QUJDTfnfddZep7WyeLGeioqJM8602bdrU42sDMiuMLDmu0p2ThUw8PQdZghWdPn1au3btMtoPPvigywXrHD/je/bs8egciYmJOnjwoNGuU6eOy0WNyBGsKidZcvT111/rgw8+MNo+Pj764IMPFB4enuvrIUuworzkqCCQI1hVTrJEzaFgUNwGYAmO/3D//vvvHu975MgRUzvzzSQzLy8v0yINly5d8vg8jkWHevXqOe3Xpk0bU3vNmjUeHX/16tVujwN4qjCy5Li9IM5BlmBF8+bNM/3R8MQTT7js27BhQ9O82xs3bvToi6J169aZRgG5+4yTI1hVTrKU2bJlyzR+/Hij7eXlpcmTJ+f5M0yWYEWe5uhf//qXDh06lKP/HKeyW79+ven9qlWrZjkPOYJV5eSeRM2hYFDcBmAJjRs3NrVXrVrl8b4rVqwwtd09cvr444+b2osWLfLoHI797r33Xqf9atSoYZrLcfPmzaZHf5y5dOmSabGj4OBgj1ZuBpwpjCw5nuP777/36Ph2uz1LX1fnIEuwmhMnTujLL7802nXq1NH999/vsr/NZlPbtm2N9uXLl7Nk0Jn58+eb2pmP4YgcwYpymqUM69ev1xtvvGGaDmHcuHGmhYxziyzBanKbo4JEjmBFuckSNYf8R3EbgCXcfffdpgUUDhw4oK+//jrb/fbs2aMFCxaYtrVq1cpl//DwcNPjN7Nnz9avv/7q9hwLFiwwfYtaq1YttWjRwmX/gQMHGq/T0tI0ZswYp/POZZg0aZKuXLlitJ977jnTCshAThRGljKPRpDSi22uFp/M7Msvv9Rvv/1mtAMDA9WkSROX/ckSrCIuLk4DBgwwRl57eXlp/Pjx8vb2drvfM888Y5rmZ8qUKS7noZekb7/9Vjt27DDabdq0yXZxPHIEK8ltlrZt26aXX35ZKSkpxraRI0d6POLbE2QJVpHbHBUGcgQryW2WqDnkP4rbACyhRIkSeuaZZ0zbIiIiNGPGDKdzBtvtdn333Xd69tlnTY9nt2rVSg0bNnR7rtdee824ISUnJ6t///7avHlzln5paWmaPXu2xowZY9r+6quvysvL9T+vbdu2Na2evGXLFg0fPlzXrl0z9UtKStLbb7+tJUuWGNvCwsLUq1cvt9cPuFMYWbrjjjtMIwlu3Lih/v37a/Xq1U5/qUpISND777+vyZMnm7Y///zzWebvzowsoaj17dtXCxcu1OXLl52+n5aWprVr16pr1646duyYsb1///66/fbbsz1+aGionnrqKaMdFxenvn376s8//8zSd/ny5Ro1apTR9vX11UsvvZTtOcgRioOCzNK+ffs0aNAg07Q+Q4cO1dNPP50v156BLKGoFfQ9qTCQIxQHhZElag75y2Z3V7oHgByKiYnRww8/7PQ9x5WzXX2j+eWXX2aZp01K/4f3mWee0S+//GLaHhgYqBYtWqhq1ary9vbWuXPntG3bNsXExJj6Va5cWd98841pDlNXvv76a40bN860rUGDBrrzzjsVEBCg2NhYbd68Ocs5nnvuOQ0fPjzb4586dUrdu3dXXFycsa1cuXJq3bq1QkJCFBsbqx9//FHnz5833i9VqpTmzZuX7Sg83BysnqWYmBj17NnT9BmWpOrVq+uee+5RpUqVlJKSouPHj2vbtm26dOmSqd99992nTz75JNsRA2QJ7hRkjiSpWbNmio+Pl6+vrxo2bKg6deooKChIN27cMPLjmIGOHTtq8uTJbv8gySwpKUn9+vXTzp07jW2+vr5q2bKlatasqYSEBO3YsUOHDh0y7RcREeHxqFRyhOxYOUsjR440/dHu7hrdmThxojp37uy2D1mCO1bOUU716dPH9Hvm+vXrnc6z7Qw5QnZulixRc8g/1hljDsAS7HZ7lhuKK676ufrOzc/PTx999JFGjhypH374wdgeHx9vmh/KmXr16umDDz7wqLAtSb1799aNGzf03nvvGaNV9+/fr/379zvtb7PZNHToUA0aNMij41epUkWzZs3S0KFDjZvVpUuXtHTpUqf9y5cvrylTpljuJoPcs3qWwsLCFBkZqWHDhpmmGjlx4oROnDjhdt/HHntMERERHj0KR5bgTkHmKLPk5GTt2bMny0I/mXl7e2vQoEEaPHiwbDabR9ckped12rRpeumll4xCQXJystatW+e0v4+Pj15++eUcTbdAjpAdK2fJ2Xk9/Vkyy7xYmCtkCe5YOUeFiRwhOzdLlqg55B+mJQFgKQEBAZo+fbpmzJihZs2aZXsDufXWWzV69GgtWLBANWrUyNG5+vfvr0WLFqlVq1by9fV12sfHx0cPPvigFi1a5PFNJkPDhg21bNky9enTR+XKlXPax9/fX507d9Z3333ncsEIIDcKI0u1atXS4sWLNWrUKNWsWdNtXy8vL4WHh+vjjz/W+++/r9KlS3v6o5AlFJmePXuqbt26bvNTokQJdejQQcuXL9eLL76YqyJCUFCQIiMjNXLkSFWrVs1pHy8vL7Vo0ULz5s3Ts88+m+NzkCMUpcLKUmEgSygq5AjIH4WZJWoO+YNpSQBY2pUrVxQVFaU///xTly9fVlpamsqUKaOQkBA1atTI45Ha2blw4YL27Nmjs2fP6vLlyypbtqxCQ0N19913KyAgIM/HT0pK0s6dOxUTE6MLFy6oXLlyqly5spo2bZqjIh+QW4WRpTNnzig6Olrnzp3T1atX5eXlpbJly6patWpq3LixypQpk+dzkCUUhYsXL2rfvn06efKkMT9j2bJldcstt+iOO+6Qv79/vp3LbrcrOjpax44d07lz51SyZEmFhITo9ttvz7d7HjlCUSnMLBUGsoSiQI6A/FHYWaLmkHsUtwEAAAAAAAAAlsO0JAAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcitsAAAAAAAAAAMuhuA0AAAAAAAAAsByK2wAAAAAAAAAAy6G4DQAAAAAAAACwHIrbAAAAAAAAAADLobgNAAAAAAAAALAcn6K+AAAAAAA3r8OHD2vv3r2Ki4uTv7+/QkND1axZMwUGBuboODExMdq/f7/OnTunhIQEVapUSXfeeaeqV6/u0f5JSUmKi4tTXFycLly4YPzXp08f+fr6SpL27NmjPXv2yM/PT+Hh4apVq1ZOf1wAAAAUIpvdbrcX9UUAAAAAKBzbt29X37593fZ58cUXNWTIENO2Pn366JdffnHaf/369apatapp2+bNm/Xuu+/qwIEDCgsL0y233KLz58/r6NGjSktL02OPPabXXntNISEhbq9l+fLl+v777xUbG6uyZcuqRIkSSk5O1uHDh3X27Fk1aNBAL730klq2bOn2OK1bt1ZMTEyW7bt375YkDRs2TDt27FCjRo20b98+3bhxQ//85z/19NNPuz0uAAAAig7FbQAAAOAv5Nq1azp8+LBOnTqluXPnaseOHcZ7bdu2Vc+ePXXrrbdmKTrv27dPc+bM0dKlSyVJAQEB6t27t5o1a6amTZvKz8/P6Dtz5kx9+OGHCggI0IQJE/TII48Y7x09elTDhw/X/v37FRISoi+//FI1a9Z0eq1Tp07VjBkzFBYWpilTpqhJkybGe2lpaVq1apXGjBmjy5cv6+9//7vGjBkjm83m9Fgff/yxTp8+rZ07d+rIkSPG9l27dun111+XzWbThAkTtHv3br3wwguSJC8vL23evFlBQUGe/t8LAACAQkRxGwAAAPiLSkxMVNu2bXXmzBlJ6QXgVq1aud3n4Ycf1uXLlzV37lyn03a88847+uyzz2Sz2fTZZ5/p3nvvzdInNjZWnTt31vnz51W7dm0tXrzYVByXpBs3bqhp06ZKSkqSJDVp0kTz58/PcqxffvlFffv2ld1uV79+/TRixAi315+UlKRHH33UGMU9duxYzZ49W0uXLpWfn5+++OILTZo0yei/dOlS1a9f3+0xAQAAUDRYUBIAAAD4iypZsqR69OhhtBcuXOi2f2pqqq5evaphw4Y5LWxv3bpVn3/+uSTp0UcfdVrYlqTg4GD169dPkvTbb79pyZIlWfrcuHFDycnJRtvb29vpse655x7jPJGRkTp58qTbn8HPz0+NGzc22p9++qlGjRplFNfbtWunSpUqSZLuu+8+1a1b1+3xAAAAUHQobgMAAAB/YT169DAWVNy4caNOnTrlsu+GDRuUmpqqLl26ZHkvNTVVb775pjIeDO3du7fb87Zv3954vXjx4izvly1bViNGjFC5cuVUo0YNvfHGGy6PlTGyOi0tTT///LPb80rpRf0MaWlpat68udEODQ3VDz/8oNWrV+vTTz+Vlxd/MgEAABRX/KYGAAAA/IVVrFhRDz30kKT0AvU333zjsu+8efPUpUsXU3E4w8aNG41R0/7+/qb5sZ0JCQlRaGioJOnAgQNKSEjI0ufpp5/WL7/8ojVr1qhBgwYuj5V5SpO4uDi353XUokWLLPN0lyxZUrfccguFbQAAgGLOp6gvAAAAAEDRevLJJ7Vq1SpJ6VOTDB48OMsc2MePH9eWLVs0atQop8fYuHGj8To0NFQ+Ptn/qVGxYkWdOXNGKSkpiomJ0W233ea2f3x8vH788UcdOHBAv/76q06dOqXLly/rypUrRp+cLilUr169HPUHAABA8UFxGwAAAPiLu+eee3Tbbbfp8OHDiouL05o1a9ShQwdTn3nz5ql58+a65ZZbnB7j4MGDxutjx46pTp06OboGZyO3M2zfvl2RkZHatGmTkpOTVaVKFbVo0UKdOnVSaGioVq9erQULFuTofBkyRo8DAADAeihuAwAAAFCvXr00btw4SdLcuXNNxe3ExEQtXbpU48ePd7n/pUuXjNd169bVpEmTPD63zWZzOmr78uXLmjx5shYtWiRJqlmzpoYOHapHHnnEtMDk7t27PT6Xo9KlS+d6XwAAABQtitsAAAAA1KlTJ02ZMkXXrl3T7t27dfDgQdWtW1eS9P3336tEiRJq3bq1y/1LlChhvLbZbHme7uPChQt66qmn9Pvvv0uSWrdurX//+98qU6ZMno7riHm1AQAArIvf5AAAAACoTJky6tixo9GeO3eu6XWPHj3czqNdrVo143VOF3V0ZsyYMUZhu0GDBpo6dWq+F7YBAABgbRS3AQAAAEhKX1gyw3fffacrV64oKipKBw8e1BNPPOF23+bNmxuvz507p/j4+Fxfx9mzZ7V27VqjPWjQIPn6+rrs72oRyblz5+rnn3/O9XUAAACgeKO4DQAAAECSVLt2bTVt2lRS+gKPS5cu1dy5c9WmTRuFhIS43bd9+/YqWbKk0d68ebNH50xNTdXQoUN18uRJY9u+fftMBeu7777b7THOnz/vdPuqVau0Z88ej64DAAAA1kNxGwAAAIAh8+jtr776SitXrlSvXr2y3S8oKEjPPfec0V6yZIlH59uwYYN++uknBQcHG9uuX79u6uPv7+9yf7vdri1btnh0LgAAANxcKG4DAAAAMDzyyCNGofnkyZOqUqWKwsPDPdp34MCBuueeeyRJP//8s7Zv3+62/9WrVzV58mQ9/fTTpgL2bbfdZuq3d+9el8dYunSpYmJijHbmEd8pKSmm0eQAAAC4uVDcBgAAAGDw9fVV9+7djbYno7YzeHt764MPPlCTJk0kSa+++qoOHTrktG9sbKyeffZZVapUSQMHDjS9V6dOHbVu3dpoT5o0SdeuXctyjK1btyoiIkJvvvmmURz/888/JaUXuU+cOKHbb789y34JCQnG68TERI9/PgAAABQvNrur1VcAAAAA/CWdPn1abdq0kZ+fnzZt2qSyZcvmaP/k5GRNnjxZX3/9tXx9fdW5c2c98MADqlixoq5cuaLt27drwYIFuu+++xQREeF02pHExESNHj1ay5YtkyTVqFFDzz33nGrXrq3z58/rhx9+0MqVK/Xiiy9qwIABmjx5sj7//HP5+/vr7bff1uHDhxUdHa1PP/1UknTw4EHFxcVp7969mjVrllHUDg0N1ZNPPqm6deuqfPnyql69ugIDA/P2fyAAAAAKBcVtAAAAAFl06dJF9evX14QJE3J9jKNHj2rRokXaunWrjh8/rhs3bqhChQpq2rSpevbsqWbNmmV7jP3792vJkiXatWuXYmJilJiYqMqVK6t58+Z66qmnVLt2bUnpBfX3339f3377rdLS0tShQwe9+uqrxrQkrVu3Nk1f4srbb7+trl275vpnBgAAQOGhuA0AAADA5Pjx42rbtq0WLVqkhg0bFvXlAAAAAE4x5zYAAAAAk/nz56tRo0YUtgEAAFCsUdwGAAAA/mIuXLigtWvX6syZM1neu3HjhpYsWZKjhSQBAACAouBT1BcAAAAAoPAkJCSoa9euOn36tAICArR8+XJVqVLFeH/evHkqXbq02rdvX4RXCQAAAGSPkdsAAADAX8jhw4d1+vRpSdKVK1e0d+9e4734+Hh98sknGjZsmPz8/IroCgEAAADPUNwGAAAA/kKqVq0qb29vSVJYWJjCw8MlSUlJSXrppZdUo0YNdejQoSgvEQAAAPAIxW0AAADgL6RChQp65pln5O3trSeeeEJHjx7V0qVL1blzZ8XHx2v69Omy2WxFfZkAAABAtmx2u91e1BcBAAAAoHDNnz9fkZGROnnypCpXrqyOHTvq2Weflb+/f1FfGgAAAOARitsAAAAAAAAAAMthWhIAAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5VDcBgAAAAAAAABYDsVtAAAAAAAAAIDlUNwGAAAAAAAAAFgOxW0AAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5VDcBgAAAAAAAABYDsVtAAAAAAAAAIDlUNwGAAAAAAAAAFgOxW0AAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5VDcBgAAAAAAAABYDsVtAAAAAAAAAIDlUNwGAAAAAAAAAFgOxW0AAAAAAAAAgOVQ3AYAAAAAAAAAWA7FbQAAAAAAAACA5fw/aVWfzwxojKIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1390,9 +1386,13 @@ } ], "source": [ - "post = after_marg.posterior.switchpoint.values.reshape(-1)\n", - "bins = np.arange(post.min(), post.max())\n", - "plt.hist(post, bins, rwidth=0.9);" + "lp_switchpoint = after_marg.posterior.lp_switchpoint.mean(dim=[\"chain\", \"draw\"])\n", + "x_max = years[lp_switchpoint.argmax()]\n", + "\n", + "plt.scatter(years, lp_switchpoint)\n", + "plt.axvline(x=x_max, c=\"orange\")\n", + "plt.xlabel(r\"$\\mathrm{year}$\")\n", + "plt.ylabel(r\"$\\log p(\\mathrm{switchpoint}=\\mathrm{year})$\");" ] }, { @@ -1444,7 +1444,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Last updated: Wed Feb 07 2024\n", + "Last updated: Sat Feb 10 2024\n", "\n", "Python implementation: CPython\n", "Python version : 3.11.6\n", @@ -1453,13 +1453,13 @@ "pytensor: 2.18.6\n", "xarray : 2023.11.0\n", "\n", - "pandas : 2.1.4\n", - "pymc : 5.11\n", "matplotlib : 3.8.2\n", - "pytensor : 2.18.6\n", "pymc_experimental: 0.0.15\n", - "numpy : 1.26.3\n", + "pandas : 2.1.4\n", + "pytensor : 2.18.6\n", "arviz : 0.17.0\n", + "numpy : 1.26.3\n", + "pymc : 5.11\n", "\n", "Watermark: 2.4.3\n", "\n" diff --git a/examples/howto/marginalizing-models.myst.md b/examples/howto/marginalizing-models.myst.md index e61a83c89..eed7ce409 100644 --- a/examples/howto/marginalizing-models.myst.md +++ b/examples/howto/marginalizing-models.myst.md @@ -84,7 +84,7 @@ with pmx.MarginalModel() as explicit_mixture: plt.hist(pm.draw(y, draws=2000, random_seed=rng), bins=30, rwidth=0.9); ``` -The other way is where we use the built-in `NormalMixture` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with `pmx.MarginalModel` instead of `pm.Model`. This different class is what will allow us to marginalize out variables later. +The other way is where we use the built-in {class}`NormalMixture ` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with {class}`pmx.MarginalModel ` instead of {class}`pm.Model `. This different class is what will allow us to marginalize out variables later. ```{code-cell} ipython3 with pm.Model() as prebuilt_mixture: @@ -121,7 +121,7 @@ az.summary(idata) As we can see, the `idx` variable is gone now. We also were able to use the NUTS sampler, and the ESS has improved. -But `MarginalModel` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the `recover_marginals` method. +But {class}`MarginalModel ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals Date: Sat, 10 Feb 2024 16:51:33 +0100 Subject: [PATCH 3/6] Fixing --- examples/howto/marginalizing-models.ipynb | 62 ++++++++++----------- examples/howto/marginalizing-models.myst.md | 4 +- 2 files changed, 33 insertions(+), 33 deletions(-) diff --git a/examples/howto/marginalizing-models.ipynb b/examples/howto/marginalizing-models.ipynb index aefe77f93..00596a99d 100644 --- a/examples/howto/marginalizing-models.ipynb +++ b/examples/howto/marginalizing-models.ipynb @@ -148,7 +148,7 @@ "id": "2e1b1cab-56ce-4ddd-95d3-6454c8d0aae0", "metadata": {}, "source": [ - "The other way is where we use the built-in {class}`NormalMixture ` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with {class}`pmx.MarginalModel ` instead of {class}`pm.Model `. This different class is what will allow us to marginalize out variables later." + "The other way is where we use the built-in {class}`NormalMixture ` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with {class}`pmx.MarginalModel ` instead of {class}`pm.Model `. This different class is what will allow us to marginalize out variables later." ] }, { @@ -237,7 +237,7 @@ "\n", "
\n", " \n", - " 100.00% [12000/12000 00:13<00:00 Sampling 4 chains, 0 divergences]\n", + " 100.00% [12000/12000 00:09<00:00 Sampling 4 chains, 0 divergences]\n", "
\n", " " ], @@ -252,7 +252,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 14 seconds.\n", + "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 10 seconds.\n", "The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n" ] }, @@ -371,7 +371,7 @@ "\n", "
\n", " \n", - " 100.00% [12000/12000 00:13<00:00 Sampling 4 chains, 0 divergences]\n", + " 100.00% [12000/12000 00:09<00:00 Sampling 4 chains, 0 divergences]\n", "
\n", " " ], @@ -386,7 +386,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 13 seconds.\n", + "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 10 seconds.\n", "The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n", "The effective sample size per chain is smaller than 100 for some parameters. A higher number is needed for reliable rhat and ess computation. See https://arxiv.org/abs/1903.08008 for details\n" ] @@ -531,7 +531,7 @@ "\n", "
\n", " \n", - " 100.00% [12000/12000 00:13<00:00 Sampling 4 chains, 0 divergences]\n", + " 100.00% [12000/12000 00:09<00:00 Sampling 4 chains, 0 divergences]\n", "
\n", " " ], @@ -546,7 +546,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 14 seconds.\n" + "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 10 seconds.\n" ] }, { @@ -626,7 +626,7 @@ "source": [ "As we can see, the `idx` variable is gone now. We also were able to use the NUTS sampler, and the ESS has improved.\n", "\n", - "But {class}`MarginalModel ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals \n", " \n", - " 100.00% [4000/4000 00:12<00:00 Sampling 2 chains, 0 divergences]\n", + " 100.00% [4000/4000 00:07<00:00 Sampling 2 chains, 0 divergences]\n", " \n", " " ], @@ -942,7 +942,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 13 seconds.\n", + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 8 seconds.\n", "We recommend running at least 4 chains for robust computation of convergence diagnostics\n", "/home/zv/upstream/pymc-experimental/pymc_experimental/model/marginal_model.py:169: UserWarning: There are multiple dependent variables in a FiniteDiscreteMarginalRV. Their joint logp terms will be assigned to the first RV: disasters_unobserved\n", " warnings.warn(\n", @@ -985,7 +985,7 @@ "\n", "
\n", " \n", - " 100.00% [4000/4000 05:03<00:00 Sampling 2 chains, 0 divergences]\n", + " 100.00% [4000/4000 03:11<00:00 Sampling 2 chains, 0 divergences]\n", "
\n", " " ], @@ -1000,7 +1000,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 303 seconds.\n", + "Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 191 seconds.\n", "We recommend running at least 4 chains for robust computation of convergence diagnostics\n" ] } @@ -1276,7 +1276,7 @@ " 0.005\n", " 1734.0\n", " 1150.0\n", - " 1.0\n", + " 1.00\n", " \n", " \n", " late_rate\n", @@ -1288,19 +1288,19 @@ " 0.002\n", " 1871.0\n", " 1403.0\n", - " 1.0\n", + " 1.00\n", " \n", " \n", " switchpoint\n", - " 1889.836\n", - " 2.397\n", + " 1889.764\n", + " 2.458\n", " 1886.000\n", " 1894.000\n", - " 0.076\n", - " 0.054\n", - " 967.0\n", - " 1680.0\n", - " 1.0\n", + " 0.070\n", + " 0.050\n", + " 1190.0\n", + " 1883.0\n", + " 1.01\n", " \n", " \n", "\n", @@ -1310,12 +1310,12 @@ " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", "early_rate 3.077 0.289 2.529 3.606 0.007 0.005 \n", "late_rate 0.932 0.113 0.725 1.150 0.003 0.002 \n", - "switchpoint 1889.836 2.397 1886.000 1894.000 0.076 0.054 \n", + "switchpoint 1889.764 2.458 1886.000 1894.000 0.070 0.050 \n", "\n", " ess_bulk ess_tail r_hat \n", - "early_rate 1734.0 1150.0 1.0 \n", - "late_rate 1871.0 1403.0 1.0 \n", - "switchpoint 967.0 1680.0 1.0 " + "early_rate 1734.0 1150.0 1.00 \n", + "late_rate 1871.0 1403.0 1.00 \n", + "switchpoint 1190.0 1883.0 1.01 " ] }, "execution_count": 19, @@ -1343,7 +1343,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AABybUlEQVR4nOzde5yVZb03/u8cOCoHURw8KwQo6ai4LTF34OZpi+ZD2hNFaYqJx60p+FRauk1jm+bGSgx6Qncqpu7cjynZDhUSTdEEQTHI4UlRPA2ggCQwzMCs3x/+XM1ac1oDM8xc8H6/Xr5ec91zndbtNTf3fNY91yrKZDKZAAAAAACAhBS39wQAAAAAAKClhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByStt7AjRt7dq17T2FVldUVBS9e/eOiIh169ZFJpNp3wlBAaxbUmTdkhprlhRZt6TIuiVF1i2pacs1u8cee7RaX6nz5DYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJKW3vCQAAALDzO2FEbXtPod08PddzZQDQFvwLCwAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkp7S9J9BWVqxYEUuXLo3Kysqora2NsrKyGDhwYAwaNKjVxli8eHG8/vrrsXLlyujWrVuUlZVFeXl5lJWVtdoYAAAAAADU12HC7UmTJsWMGTNyjp1++ulx4403tqifJ598MqZNmxaLFi1q8PuDBw+O8ePHx+jRo7dpnrW1tTFjxoyYMWNGvPnmm/W+X1xcHMOGDYvLL788ysvLt2kMAAAAAACa1iG2JXnxxRfjV7/61Xb1kclk4t/+7d/i/PPPbzTYjoioqKiIb33rWzFx4sSorq5u0Rhr166Nc845J2644YYGg+2Ij8LvZ555Jr72ta/Ff/zHf7SofwAAAAAACtPuT27X1NTENddcE7W1tdvVz+TJk+Puu+/OOTZ06NA44ogjoqSkJCoqKmLevHmRyWQiIuJ3v/tdlJSUxM0331zwPC+99NKYP39+9lhpaWkMHz48BgwYEBs2bIgFCxZERUVFtv5NN90UPXr0iDFjxmzXawMAAAAAIFe7h9u/+MUvYtmyZRER0bdv31i9enWL+3jiiSdi+vTp2XLPnj3j1ltvjWHDhuXUW7p0aVx00UVRWVkZEREzZ86MY445JsaOHdvsGLfccktOsD1o0KCYNm1a7L///jn1Zs6cGd/97nejpqYmIiKuu+66KC8vj8GDB7f4dQEAAAAA0LB23Zbktddei5///OcREdGtW7eYOHFii/vIZDJxyy23ZMtFRUUxderUesF2RMSQIUPizjvvjC5dumSP3XbbbVFVVdXkGJWVlXHPPfdky3vuuWfcfffd9YLtiIjRo0fHpEmTsuWampr46U9/2qLXBAAAAABA09ot3M5kMnHNNddk972++OKLY7/99mtxP7Nnz84++R0R8YUvfCGOPfbYRusfcsghce6552bLq1evjgceeKDJMW6//fac/bmvuOKK2GOPPRqtf9ppp+XMYc6cOfHKK680OQYAAAAAAIVrt3D7/vvvjwULFkTER1t8nHPOOdvUz6xZs3LKZ5xxRrNtxo4dGyUlJY32UVcmk4nHHnssW+7Vq1eceuqpzY7x1a9+Naf86KOPNtsGAAAAAIDCtEu4vXLlypg8eXJEfLSNyHXXXRedOnVqcT9btmyJp556KlveZ599ory8vNl2ZWVlcdRRR2XLixYtijVr1jRY989//nOsXLkyWx4xYkTOtiaNGTlyZM5rmjNnTrNtAAAAAAAoTLuE2z/4wQ/ib3/7W0REfPnLX46hQ4duUz/Lli2L9evXZ8tHH310wW3r1t26dWssXLiwwXovvPBCo+2a0rVr1zjssMOy5YqKipy5AgAAAACw7XZ4uP3YY4/F448/HhEffTDjFVdcsc19vfrqqznlumFyc4YMGZJTfu211woaI79dU/Ln09gYAAAAAAC0zA4Nt//2t7/FD37wg2z5yiuvjF69em1zf/lh8b777ltw23322afJvho7nt+uKfnzEW4DAAAAALSOHRpu/+hHP4pVq1ZFRMTxxx8fo0eP3q7+6u6FHRHRr1+/gtvm162srGx2jNLS0ujbt2+rjwEAAAAAQMuU7qiB5s+fHw888EBERHTu3Dmuvfba7e5z48aNOeXddtut4Lb5dfP7auh4t27doqioqNXHaEpLxktF3de0M74+dk7WLSmybkmNNUuKrFsK0dHWhnVLiqxbUmPN7hg7JNyurq6Oa665JjKZTEREXHjhhXHwwQdvd7/5YXHnzp0LbtulS5cm+2roeH6b5uTPZ1vC7d69e7e4TUq2Z1saaC/WLSmybkmNNUuKrNvmvN/eE2g3Hfn3OuuWFFm3pMaabTs7ZFuSn/3sZ7F8+fKIiDjkkEPivPPOa5V+N2/enFNuSbidX7eqqqrZMTp16tSC2RU+BgAAAAAALdPmT25XVFTEHXfckS1fd911LQqhm5L/JHV1dXXBbfPrdu3atdExNm3aFBERNTU1LZpfoWM0Zd26dS1u09EVFRVl37H64IMPsk/0Q0dm3ZIi65bUWLOkyLqlEB3t9zrrlhRZt6SmLddsR/6LoB2tTcPt2trauOaaa7Kh8Omnnx6f/vSnW63/7t2755RbEm7nP/Wd31fd4x+H2/ltmpM/n8bGaMrOfrHOZDI7/Wtk52PdkiLrltRYs6TIuqUxHXldWLekyLolNdZs22nTbUlmzJgRL730UkR89I7Ct7/97VbtPz8s3rBhQ8Ft8+s2FW5/bNOmTVFbW9vqYwAAAAAA0DJtFm5XVVXFT37yk2z529/+dvTp06dVxygrK8spV1ZWFtz23XffzSn369ev2TG2bNkS7733XquPAQAAAABAy7TZtiTV1dWxcePGbPmaa66Ja665psk2+Y/nP/TQQzFz5sxs+bTTTosbbrghWx4wYEBO/Xfeeafg+eUH4f3792+w3oABA2LBggU5Y+y9994FjZEfbufPFwAAAACAbdOm25LUtXXr1mb/y9/yI5PJNPn9/LB46dKlBc9nyZIlOeXGwu384y0ZI79uY2MAAAAAANAyOyzcbgsDBw6Mnj17ZssvvvhiwW0XLVqU/bqkpCSGDh3aYL1jjjmm0XZNqaqqildeeSVbHjx4cPTo0aPg+QEAAAAA0Lg225akZ8+eUVFR0aI2f/rTn+Kss87Klk8//fS48cYbG61fWloan/3sZ+ORRx6JiI+2AXnppZfiyCOPbHKclStXZj/oMiLi6KOPbnQ/8MMPPzzKyspi5cqVERExd+7c2Lx5c3Tp0qXJMWbPnh01NTXZ8siRI5usDwAAAABA4ZJ+cjsi4uSTT84p33vvvc22uf/++2Pr1q3Z8qhRoxqtW1RUFCeddFK2vH79+myY3twYddXtAwAAAACA7ZN8uD1y5MgYNGhQtvzwww/H/PnzG62/fPnyuOOOO7Llvn37xpgxY5oc49xzz43OnTtny5MnT461a9c2Wv+hhx7KmcPIkSPj0EMPbXIMAAAAAAAKl3y4XVRUFBMnTsyWM5lMXHzxxfHss8/Wq7t06dIYN25cbN68OXvskksuia5duzY5Rr9+/eLMM8/Mlt9///0466yz4q233qpXd+bMmXH11Vdny506dYrLLrusRa8JAAAAAICmtdme2zvSiSeeGOedd15Mnz49Ij7aOmTcuHExdOjQKC8vj+Li4qioqIh58+ZFJpPJths9enSMHTu2oDEmTJgQixcvjgULFkRExLJly2LUqFExfPjw6N+/f2zcuDHmz59fb5/xa6+9NgYPHtxKrxQAAAAAgIidJNyOiJg4cWJUVVXFjBkzsscWLlwYCxcubLD+KaecEpMmTSq4/86dO8eUKVPisssui+effz4iImpqamL27NkN1i8tLY0JEyY0u+UJAAAAAAAtl/y2JB8rLi6Oq6++On7xi1/EUUcd1Wi9QYMGxY9+9KP48Y9/HF26dGnRGH369Im77rorrrrqqjjggAMancfxxx8f9913X4wfP75F/QMAAAAAUJiiTN19OnYib7zxRixZsiRWrVoVW7dujbKyshg4cGCrbRGSyWTi5ZdfjuXLl8eqVauia9euUVZWFkceeWSUlZW1yhgR0eQHV6aqqKgoevfuHRER69ati510CbKTsW5JkXVLaqxZUmTdFu6EEbXtPYV28/TcjvVcmXVLiqxbUtOWa3aPPfZotb5St9NsS5LvoIMOioMOOqjN+i8qKory8vIoLy9vszEAAAAAAGhYx3r7GAAAAAAACiDcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJJT2t4TAAAA0nXCiNr2nkK7eXquZ4UAANqTuzEAAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJJT2t4TAAAA2NmcMKK2vafQLp6e6/kpAGDHcecBAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHJKd+RgtbW1sWLFinjjjTdi5cqVsX79+qiuro7u3btH796949BDD42BAwdGSUnJdo+1YsWKWLp0aVRWVkZtbW2UlZXFwIEDY9CgQa3wSj6yePHieP3112PlypXRrVu3KCsri/Ly8igrK2u1MQAAAAAAqK/Nw+01a9bEHXfcEQsXLoy//OUvsWnTpibr9+rVK0aPHh3nnntu7LPPPi0e78knn4xp06bFokWLGvz+4MGDY/z48TF69OgW9x3xUUA/Y8aMmDFjRrz55pv1vl9cXBzDhg2Lyy+/PMrLy7dpDAAAAAAAmtbm25K8/fbbcfvtt8fChQubDbYjIj744IOYMWNGnHLKKfHggw8WPE4mk4l/+7d/i/PPP7/RYDsioqKiIr71rW/FxIkTo7q6uuD+IyLWrl0b55xzTtxwww0NBtsRH4XfzzzzTHzta1+L//iP/2hR/wAAAAAAFGaHbksSEbHXXnvFoEGD4qCDDopevXpFSUlJrFu3Lv7yl7/Eiy++GLW1tRERsXHjxrjqqquiuro6xo4d22y/kydPjrvvvjvn2NChQ+OII46IkpKSqKioiHnz5kUmk4mIiN/97ndRUlISN998c0HzrqmpiUsvvTTmz5+fPVZaWhrDhw+PAQMGxIYNG2LBggVRUVGRrX/TTTdFjx49YsyYMQWNAQAAAABAYdo83C4pKYljjz02TjrppPjMZz4T/fv3b7Tu22+/Hddff33MnTs3e+yGG26I448/Pg488MBG2z3xxBMxffr0bLlnz55x6623xrBhw3LqLV26NC666KKorKyMiIiZM2fGMcccU1B4fsstt+QE24MGDYpp06bF/vvvn1Nv5syZ8d3vfjdqamoiIuK6666L8vLyGDx4cLNjAAAAAABQmDbflmTIkCFxzz33xNe//vUmg+2IiP322y+mTp0an/nMZ7LHNm/eHL/61a8abZPJZOKWW27JlouKimLq1Kn1gu2P53LnnXdGly5dssduu+22qKqqanJelZWVcc8992TLe+65Z9x99931gu2IiNGjR8ekSZOy5ZqamvjpT3/aZP8AAAAAALRMm4fbLVVSUhJXXHFFzrE//vGPjdafPXt2LFu2LFv+whe+EMcee2yj9Q855JA499xzs+XVq1fHAw880OScbr/99pz9ua+44orYY489Gq1/2mmn5cxhzpw58corrzQ5BgAAAAAAhetw4XZExCc/+cno3r17tvzuu+82WnfWrFk55TPOOKPZ/seOHRslJSWN9lFXJpOJxx57LFvu1atXnHrqqc2O8dWvfjWn/OijjzbbBgAAAACAwnTIcDsiYrfddst+/fGHQObbsmVLPPXUU9nyPvvsE+Xl5c32XVZWFkcddVS2vGjRolizZk2Ddf/85z/HypUrs+URI0bkbGvSmJEjR0anTp2y5Tlz5jTbBgAAAACAwnTIcHvTpk2xbt26bPmAAw5osN6yZcti/fr12fLRRx9d8Bh1627dujUWLlzYYL0XXnih0XZN6dq1axx22GHZckVFRc5cAQAAAADYdh0y3J41a1bU1NRkyyNGjGiw3quvvppTrhsmN2fIkCE55ddee62gMfLbNSV/Po2NAQAAAABAy3S4cPuVV16Jm266KVvu3bt3nH322Q3WzQ+L991334LH2WeffZrsq7Hj+e2akj8f4TYAAAAAQOsobe8JZDKZ+PDDD2PZsmUxa9asuP/++6O6ujoiIrp37x633npr7LXXXg22rbsXdkREv379Ch43v25lZWWzY5SWlkbfvn1bfQwAAAAAAFpmh4fbr732Wpx66qnZcm1tbYMfGDl8+PC46qqr4pBDDmm0r40bN+aU634IZXPy6+b31dDxbt26RVFRUauPAQAAAABAy+zwcDuTycTWrVsb/X5xcXGcccYZMX78+GafxM4Pizt37lzwPLp06dJkXw0dz2/TnPz5bEu43ZIwPRV1X9PO+PrYOVm3pMi6JTXWLKkpKiqybvM4Bw3raOfFuiVF1i2psWZ3jHbfliRfbW1tzJgxI+6///4488wzY+LEiY2G1ps3b84ptyTczq9bVVXV7BidOnUquP+WjNGU3r17t7hNSnr16tXeU4AWs25JkXVLaqzZlLzf3hNoN/n36rnrdtc8L03//rJrnpOIjv17nestKbJuSY0123Z2eLg9YMCAqKioyJarq6tj3bp18Ze//CVmzZoVv/3tb6OmpiZqamril7/8ZSxbtix+/vOfNxhc5z9J/fFe3YXIr9u1a9cG63Xp0iU2bdoUERE1NTUF99+SMQAAAAAAaJl2f3K7c+fOsffee8fee+8dw4cPj7PPPjsuvPDCePfddyMi4plnnonbbrstJk6cWK9t9+7dc8otCbfzn/rO76vu8Y/D7fw2zcmfT2NjNGXdunUtbtPRFRUVZd+x+uCDDxrccx06GuuWFFm3pMaaJTXr1q2zbvPsjL+/tIaOdl6sW1Jk3ZKatlyzHfkvgna0dg+38x166KExffr0OP3007NPSt91111xzjnnxB577JFTNz8s3rBhQ8Hj5NdtKtx+//2P/nxu06ZNUVtbG8XFxa06RlN29ot1JpPZ6V8jOx/rlhRZt6TGmiUF+WvUut35f3/ZVh35vFi3pMi6JTXWbNspLKXdwQYOHBinnHJKtlxVVRVPPvlkvXplZWU55crKyoLH+PjJ8I819uGVdcfYsmVLvPfee60+BgAAAAAALdMhw+2IiOOPPz6nXHef7o8NGDAgp/zOO+8U3H9+EN6/f/8G623PGPnhdn5fAAAAAABsmw4bbu+111455Q8//LBenfyweOnSpQX3v2TJkpxyY+F2/vGWjJFft7ExAAAAAABomQ4bbueH2T179qxXZ+DAgTnHX3zxxYL7X7RoUfbrkpKSGDp0aIP1jjnmmEbbNaWqqipeeeWVbHnw4MHRo0ePgucHAAAAAEDjOmy4nf/U8z777FOvTmlpaXz2s5/Nlt9999146aWXmu175cqVOfWOPvro6NOnT4N1Dz/88Jx9t+fOnRubN29udozZs2dnPxAzImLkyJHNtgEAAAAAoDAdMtyuqqqK3/72tznH8vfg/tjJJ5+cU7733nub7f/++++PrVu3ZsujRo1qtG5RUVGcdNJJ2fL69evjkUceKWiMuur2AQAAAADA9mnTcLu6ujpna45C1NbWxrXXXpvzwY1HHnlko/tVjxw5MgYNGpQtP/zwwzF//vxG+1++fHnccccd2XLfvn1jzJgxTc7p3HPPjc6dO2fLkydPjrVr1zZa/6GHHsqZw8iRI+PQQw9tcgwAAAAAAArXpuF2VVVVnHbaafHNb34znnjiiaiurm6y/ksvvRRnnXVWPPTQQ3+fYHFxfO9732u0TVFRUUycODFbzmQycfHFF8ezzz5br+7SpUtj3LhxOduKXHLJJdG1a9cm59WvX78488wzs+X3338/zjrrrHjrrbfq1Z05c2ZcffXV2XKnTp3isssua7J/AAAAAABaprStB8hkMvHoo4/Go48+Gt26dYtDDz00PvGJT0SvXr2iW7dusWHDhqisrIyXX3453nzzzZy2RUVFMWnSpDjyyCObHOPEE0+M8847L6ZPnx4RH20dMm7cuBg6dGiUl5dHcXFxVFRUxLx58yKTyWTbjR49OsaOHVvQ65gwYUIsXrw4FixYEBERy5Yti1GjRsXw4cOjf//+sXHjxpg/f35UVFTktLv22mtj8ODBBY0BAAAAAEBh2jzcrmvTpk2xaNGiWLRoUbN1y8rK4rrrrosTTzyxoL4nTpwYVVVVMWPGjOyxhQsXxsKFCxusf8opp8SkSZMKm3hEdO7cOaZMmRKXXXZZPP/88xERUVNTE7Nnz26wfmlpaUyYMKHZLU8AAAAAAGi5Ng23d9ttt7jpppvij3/8Y8yfPz9WrlzZbJshQ4bE6aefHl/84hdj9913L3is4uLiuPrqq+Mf//EfY+rUqfHiiy82WG/QoEExfvz4+MIXvlBw3x/r06dP3HXXXXH33XfHPffcU+9J84/ncdxxx8WECROivLy8xWMAAAAAANC8Ng23S0pK4rTTTovTTjstIiJWrVoVr776arz11lvxwQcfxObNm6N79+6x++67x/777x+f/OQno2fPnts15vDhw2P48OHxxhtvxJIlS2LVqlWxdevWKCsri4EDB273FiHFxcUxbty4OPvss+Pll1+O5cuXx6pVq6Jr165RVlYWRx55ZJSVlW3XGAAAAAAANG2Hbkuy9957x957771DxjrooIPioIMOarP+i4qKory83NPZAAAAAADtoLi9JwAAAAAAAC0l3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOaXtPQEAADqeE0bUttPI77fTuH/39FzPfwAAQArcuQMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkJzSHT3gunXrYtmyZfHGG2/EunXrIpPJRK9evWLfffeNo446Knr06NEq46xYsSKWLl0alZWVUVtbG2VlZTFw4MAYNGhQq/QfEbF48eJ4/fXXY+XKldGtW7coKyuL8vLyKCsra7UxAAAAAACor83D7dra2liwYEE8/vjj8dxzz8WyZcsarVtUVBTDhg2LcePGxfDhw7dpvCeffDKmTZsWixYtavD7gwcPjvHjx8fo0aO3qf/a2tqYMWNGzJgxI95888163y8uLo5hw4bF5ZdfHuXl5ds0BgAAAAAATWvzcHvUqFHxxhtvFFQ3k8nEvHnzYt68efH5z38+rr/++th9990LbnvDDTfE3Xff3WS9ioqK+Na3vhVz586NG2+8MTp37lxQ/xERa9eujcsvvzyee+65RuvU1tbGM888E88//3xMnDgxvvGNbxTcPwAAAAAAhWnzcHvNmjX1jh188MFRXl4ee+21V3Tp0iUqKyvj2WefjcrKymyd3/3ud7Fq1aq44447okuXLs2OM3ny5HrB9tChQ+OII46IkpKSqKioiHnz5kUmk8n2X1JSEjfffHNBr6OmpiYuvfTSmD9/fvZYaWlpDB8+PAYMGBAbNmyIBQsWREVFRbb+TTfdFD169IgxY8YUNAYAAAAAAIXZYXtu77fffjFmzJg4/fTTo1+/fvW+v3Xr1vj1r38dP/zhD2Pz5s0RETF//vz4yU9+Et/5znea7PuJJ56I6dOnZ8s9e/aMW2+9NYYNG5ZTb+nSpXHRRRdlQ/SZM2fGMcccE2PHjm12/rfccktOsD1o0KCYNm1a7L///jn1Zs6cGd/97nejpqYmIiKuu+66KC8vj8GDBzc7BgAAAAAAhSlu6wH23XffuOGGG+Lxxx+Piy66qMFgOyKipKQkvvrVr8aUKVOiuPjv05oxY0asXLmy0f4zmUzccsst2XJRUVFMnTq1XrAdETFkyJC48847c54Ev+2226KqqqrJ11BZWRn33HNPtrznnnvG3XffXS/YjogYPXp0TJo0KVuuqamJn/70p032DwAAAABAy7T5k9sPPvhglJYWPszw4cPj85//fPz2t7+NiI/C4Tlz5sTXvva1BuvPnj0750Mqv/CFL8Sxxx7baP+HHHJInHvuuTF16tSIiFi9enU88MAD8fWvf73RNrfffntUV1dny1dccUXssccejdY/7bTT4r/+67+yT3rPmTMnXnnllTj00EMbbQMAAMCu54QRte008vvtNO5Hnp7b5s/aAbALaPN/TVoSbH/s85//fE755ZdfbrTurFmzcspnnHFGs/2PHTs2SkpKGu2jrkwmE4899li23KtXrzj11FObHeOrX/1qTvnRRx9ttg0AAAAAAIXpkG+VHnjggTnl9957r8F6W7Zsiaeeeipb3meffaK8vLzZ/svKyuKoo47KlhctWtTgB19GRPz5z3/O2RZlxIgRBX3A5ciRI6NTp07Z8pw5c5ptAwAAAABAYTpkuL1hw4accmNPfy9btizWr1+fLR999NEFj1G37tatW2PhwoUN1nvhhRcabdeUrl27xmGHHZYtV1RU5MwVAAAAAIBt1yHD7YqKipxyYx9C+eqrr+aU64bJzRkyZEhO+bXXXitojPx2TcmfT2NjAAAAAADQMh0y3J45c2ZO+bjjjmuwXn5YvO+++xY8xj777NNkX40dz2/XlPz5CLcBAAAAAFpHhwu3n3/++Xj++eez5R49esQJJ5zQYN26e2FHNP6Ed0Py61ZWVjY7RmlpafTt27fVxwAAAAAAoGU6VLi9adOmuOaaa3KOnXPOObHbbrs1WH/jxo055cbqNSS/bn5fDR3v1q1bFBUVtfoYAAAAAAC0TMOf1NhOrrvuunj99dez5f79+8f48eMbrZ8fFnfu3Lngsbp06dJkXw0dz2/TnPz5bEu43ZIwPRV1X9PO+PrYOVm3pMi6hW3j54VCFRUVudbmcQ4a5rzU55zQUq63pMaa3TE6TLh91113xW9+85tsuXPnznHzzTc3GShv3rw5p9yScDu/blVVVbNjdOrUqeD+WzJGU3r37t3iNinp1atXe08BWsy6JUXWLS33fntPoN3s7Pdfrc9a+VjutXbXPC9N//zsmuckwnlpiGst28O9LamxZttOh9iWZNasWXHjjTfmHLv++uvj8MMPb7JdfvBdXV1d8Jj5dbt27drsGDU1NQX335IxAAAAAABomXZ/cvvZZ5+Nb33rW1FbW5s9dsUVV8Tpp5/ebNvu3bvnlFsSbuc/9Z3fV93jmzZtarBNc/Ln09gYTVm3bl2L23R0RUVF2XesPvjgg8hkMu08I2iedUuKrFvYNjvj/RdtY926da61efz8NMx5qc85oaVcb0lNW65Zf/3yd+0abi9evDguvvjinBD43HPPjfPPP7+g9vlh8YYNGwoeO79uU+H2++9/9GdimzZtitra2iguLuyB90LHaMrOfrHOZDI7/Wtk52PdkiLrFgrnZ4VC5a8V11o/P41xXupzTtgerrekxpptO+22LcmyZcvivPPOy/mQxTFjxsS3v/3tgvsoKyvLKVdWVhbc9t13380p9+vXr9kxtmzZEu+9916rjwEAAAAAQMu0S7i9YsWK+MY3vpHzZ0ijRo2K66+/vkX9DBgwIKf8zjvvFNw2Pwjv379/q4+RH27n9wUAAAAAwLbZ4eH2ypUrY9y4cbF69ersseHDh8e///u/F7zdx8fyw+KlS5cW3HbJkiU55cbC7fzjLRkjv25jYwAAAAAA0DI7NNxes2ZNjBs3Lt5+++3ssU996lNx6623RqdOnVrc38CBA6Nnz57Z8osvvlhw20WLFmW/LikpiaFDhzZY75hjjmm0XVOqqqrilVdeyZYHDx4cPXr0KHh+AAAAAAA0boeF2x9++GGMHz8+Xnvtteyx8vLymDZtWnTt2nWb+iwtLY3Pfvaz2fK7774bL730UrPtVq5cmVPv6KOPjj59+jRY9/DDD8/Zd3vu3LmxefPmZseYPXt21NTUZMsjR45stg0AAAAAAIXZIeF2VVVVXHjhhTlbgQwaNChuv/322H333ber75NPPjmnfO+99zbb5v7774+tW7dmy6NGjWq0blFRUZx00knZ8vr16+ORRx4paIy66vYBAAAAAMD2afNwe8uWLXHZZZfF/Pnzs8cOPvjg+OUvfxm9evXa7v5HjhwZgwYNypYffvjhnLHyLV++PO64445suW/fvjFmzJgmxzj33HOjc+fO2fLkyZNj7dq1jdZ/6KGHcuYwcuTIOPTQQ5scAwAAAACAwrVpuJ3JZOLKK6+MuXPnZo/tt99+ceedd8Zee+3VKmMUFRXFxIkTc8a8+OKL49lnn61Xd+nSpTFu3LicbUUuueSSZrdF6devX5x55pnZ8vvvvx9nnXVWvPXWW/Xqzpw5M66++upsuVOnTnHZZZe16DUBAAAAANC00rbs/J133onf/va39Y61dP/p/fbbLx5//PFGv3/iiSfGeeedF9OnT4+Ij7YOGTduXAwdOjTKy8ujuLg4KioqYt68eZHJZLLtRo8eHWPHji1oDhMmTIjFixfHggULIiJi2bJlMWrUqBg+fHj0798/Nm7cGPPnz4+Kioqcdtdee20MHjy4Ra8XAAAAAICmtWm4XTdIrnus7n7XhSik/sSJE6OqqipmzJiRPbZw4cJYuHBhg/VPOeWUmDRpUsFz6Ny5c0yZMiUuu+yyeP755yMioqamJmbPnt1g/dLS0pgwYUKzW54AAAAAANByO+QDJXeE4uLiuPrqq+MXv/hFHHXUUY3WGzRoUPzoRz+KH//4x9GlS5cWjdGnT5+466674qqrrooDDjig0Xkcf/zxcd9998X48eNb1D8AAAAAAIVp0ye3999//3rbdLS14cOHx/Dhw+ONN96IJUuWxKpVq2Lr1q1RVlYWAwcO3O4tQoqLi2PcuHFx9tlnx8svvxzLly+PVatWRdeuXaOsrCyOPPLIKCsra6VXAwAAAABAQ9o03G5PBx10UBx00EFt1n9RUVGUl5dHeXl5m40BAAAAAEDDdpptSQAAAAAA2HUItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDklLb3BAAA2tsJI2rbewrt4um5nnMAAADS5TcaAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOaXtPYG2sGLFili6dGlUVlZGbW1tlJWVxcCBA2PQoEGtNsbixYvj9ddfj5UrV0a3bt2irKwsysvLo6ysrNXGAAAAAACgYTss3N6wYUMsXbo0Fi9eHIsXL46XX3453n777ez399tvv/jDH/6wXWM8+eSTMW3atFi0aFGD3x88eHCMHz8+Ro8evU3919bWxowZM2LGjBnx5ptv1vt+cXFxDBs2LC6//PIoLy/fpjEAAAAAAGhem4fbv/zlL+PBBx+Mv/71r1FbW9smY2Qymbjhhhvi7rvvbrJeRUVFfOtb34q5c+fGjTfeGJ07dy54jLVr18bll18ezz33XKN1amtr45lnnonnn38+Jk6cGN/4xjcK7h8AAAAAgMK1ebg9f/78WLZsWZuOMXny5HrB9tChQ+OII46IkpKSqKioiHnz5kUmk4mIiN/97ndRUlISN998c0H919TUxKWXXhrz58/PHistLY3hw4fHgAEDYsOGDbFgwYKoqKjI1r/pppuiR48eMWbMmFZ6lQAAAAAAfKxd9tzu3r17fPKTn4wlS5bExo0bt6uvJ554IqZPn54t9+zZM2699dYYNmxYTr2lS5fGRRddFJWVlRERMXPmzDjmmGNi7NixzY5xyy235ATbgwYNimnTpsX++++fU2/mzJnx3e9+N2pqaiIi4rrrrovy8vIYPHjwNr8+AAAAAADqK27rAbp06RLl5eVxxhlnxA9/+MN45JFH4oUXXoh77rkn9thjj+3qO5PJxC233JItFxUVxdSpU+sF2xERQ4YMiTvvvDO6dOmSPXbbbbdFVVVVk2NUVlbGPffcky3vueeecffdd9cLtiMiRo8eHZMmTcqWa2pq4qc//WmLXhMAAAAAAM1r8ye3f/zjH7dZ37Nnz87Z8uQLX/hCHHvssY3WP+SQQ+Lcc8+NqVOnRkTE6tWr44EHHoivf/3rjba5/fbbo7q6Olu+4oormgzlTzvttPiv//qv7JPec+bMiVdeeSUOPfTQgl8XAAAAAABNa/Mnt9vSrFmzcspnnHFGs23Gjh0bJSUljfZRVyaTicceeyxb7tWrV5x66qnNjvHVr341p/zoo4822wYAAAAAgMIlG25v2bIlnnrqqWx5n332ifLy8mbblZWVxVFHHZUtL1q0KNasWdNg3T//+c+xcuXKbHnEiBE525o0ZuTIkdGpU6dsec6cOc22AQAAAACgcMmG28uWLYv169dny0cffXTBbevW3bp1ayxcuLDBei+88EKj7ZrStWvXOOyww7LlioqKnLkCAAAAALB9kg23X3311Zxy3TC5OUOGDMkpv/baawWNkd+uKfnzaWwMAAAAAABaLtlwOz8s3nfffQtuu88++zTZV2PH89s1JX8+wm0AAAAAgNaTbLhddy/siIh+/foV3Da/bmVlZbNjlJaWRt++fVt9DAAAAAAAWq60vSewrTZu3JhT3m233Qpum183v6+Gjnfr1i2KiopafYzmtGTMVNR9TTvj62PnZN2SIuuW5lgXDXNeKFRRUZFrbR7noGHOS33OCS3lektqrNkdY6cJtzt37lxw2y5dujTZV0PH89s0J38+2xpu9+7de5vapaJXr17tPQVoMeuWFFm3zXm/vSfQLpq+z9g1z0nEzn//1fqslY/lXmt3zfPiutIw56U+11q2h3tbUmPNtp1ktyXZvHlzTrkl4XZ+3aqqqmbH6NSpUwtmV/gYAAAAAAC0XLJPbuc/SV1dXV1w2/y6Xbt2bXSMTZs2RURETU1Ni+ZX6BjNWbdu3Ta168iKioqy71h98MEHkclk2nlG0DzrlhRZtzRnZ7zPaA3OC4Vat26da20ePz8Nc17qc05oKddbUtOWa9Zfv/xdsuF29+7dc8otCbfzn/rO76vu8Y/D7fw2zcmfT2NjNGdnv1hnMpmd/jWy87FuSZF1S0OsiYY5LxQqf6241vr5aYzzUp9zwvZwvSU11mzbSXZbkvyweMOGDQW3za/bVLj9sU2bNkVtbW2rjwEAAAAAQMslG26XlZXllCsrKwtu++677+aU+/Xr1+wYW7Zsiffee6/VxwAAAAAAoOWSDbcHDBiQU37nnXcKbpsfhPfv37/Vx8gPt/P7AgAAAABg2+004fbSpUsLbrtkyZKccmPhdv7xloyRX7exMQAAAAAAaLlkw+2BAwdGz549s+UXX3yx4LaLFi3Kfl1SUhJDhw5tsN4xxxzTaLumVFVVxSuvvJItDx48OHr06FHw/AAAAAAAaFqy4XZpaWl89rOfzZbffffdeOmll5ptt3Llypx6Rx99dPTp06fBuocffnjOvttz586NzZs3NzvG7Nmzo6amJlseOXJks20AAAAAAChcsuF2RMTJJ5+cU7733nubbXP//ffH1q1bs+VRo0Y1WreoqChOOumkbHn9+vXxyCOPFDRGXXX7AAAAAABg+yUdbo8cOTIGDRqULT/88MMxf/78RusvX7487rjjjmy5b9++MWbMmCbHOPfcc6Nz587Z8uTJk2Pt2rWN1n/ooYdy5jBy5Mg49NBDmxwDAAAAAICWSTrcLioqiokTJ2bLmUwmLr744nj22Wfr1V26dGmMGzcuZ1uRSy65JLp27drkGP369YszzzwzW37//ffjrLPOirfeeqte3ZkzZ8bVV1+dLXfq1Ckuu+yyFr0mAAAAAACaV9rWA7z99tvxuc99rsHv1d0e5O23344hQ4Y0WO/OO++MT33qUw1+78QTT4zzzjsvpk+fHhEfbR0ybty4GDp0aJSXl0dxcXFUVFTEvHnzIpPJZNuNHj06xo4dW9BrmDBhQixevDgWLFgQERHLli2LUaNGxfDhw6N///6xcePGmD9/flRUVOS0u/baa2Pw4MEFjQEAAAAAQOHaPNzOZDI5IXZTGqtXN5RuyMSJE6OqqipmzJiRPbZw4cJYuHBhg/VPOeWUmDRpUkFziojo3LlzTJkyJS677LJ4/vnnIyKipqYmZs+e3WD90tLSmDBhQrNbngAAAAAAsG2S3pbkY8XFxXH11VfHL37xizjqqKMarTdo0KD40Y9+FD/+8Y+jS5cuLRqjT58+cdddd8VVV10VBxxwQKPzOP744+O+++6L8ePHt6h/AAAAAAAK1+ZPbu+///71tutoK8OHD4/hw4fHG2+8EUuWLIlVq1bF1q1bo6ysLAYOHLjdW4QUFxfHuHHj4uyzz46XX345li9fHqtWrYquXbtGWVlZHHnkkVFWVtZKrwYAAAAAgMa0ebjdHg466KA46KCD2qz/oqKiKC8vj/Ly8jYbAwAAAACAxu0U25IAAAAAALBrEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJKW3vCQAAQCpOGFHb3lNoF0/P9UwMAAAdj7tUAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5pe09AQAAAICPnTCitr2n0G6enusZRICWcNUEAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSU9reEwAAAAAAWscJI2rbewrt4um5nuHdFfm/DgAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByStt7AgAAAAA07YQRte09hXbx9FzPZQKNc4UAAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5pe09AQAAAABoqRNG1Lb3FNrN03M9rwoRntwGAAAAACBBwm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSU9reE0jZunXrYuHChVFZWRkffvhh7L333rH//vvH0UcfHSUlJe09PQAAAACAnZZwexssX748Jk+eHHPnzo2ampp63+/bt2985StfiQsuuCA6d+7cDjMEAAAAANi52ZakhR5++OH44he/GI8//niDwXZExOrVq+O2226Lr3zlK/HWW2/t4BkCAAAAAOz8PLndAk8++WRceeWVUVtbmz128MEHx6c//eno3bt3rFixIp544omoqqqKiIilS5fGBRdcEP/5n/8Zu+++e3tNGwAAAABgpyPcLtCqVatiwoQJ2WC7qKgovvOd78TZZ58dxcV/fwB+zZo1cdlll8Xzzz8fERF//etf41//9V/jlltuaZd5w87ohBG1zVdqE++307gfeXquP7YBAAAA+JikpEDTpk2LDRs2ZMuXXnppnHPOOTnBdkREnz594vbbb48BAwZkj/33f/93LF26dIfNFQAAAABgZ+fJ7QK899578cADD2TLBx54YJx//vmN1u/SpUtcc801MW7cuIiIyGQyMW3atJgyZUpbTxWAOtrvKf/21dRT/rvqOYnw1w8AAAA7G7/lFWDOnDk5Hx755S9/OTp16tRkm2HDhkX//v2z5SeffDI2btzYZnMEAAAAANiVCLcL8Ic//CGnPGrUqILanXTSSdmvN2/eHM8880yrzgsAAAAAYFcl3C7ACy+8kP16r732igMOOKCgdkcffXROef78+a06LwAAAACAXZVwuxkrV66Mv/3tb9nyYYcdVnDbIUOG5JRfffXVVpsXAAAAAMCuTLjdjNdeey2nvO+++xbcdq+99srZm3v58uWtNi8AAAAAgF2ZcLsZK1euzCn369ev4LZFRUVRVlbWaF8AAAAAAGyb0vaeQEe3cePGnHL37t1b1H633XbLfr1ly5bYvHlzdOnSpeD2RUVFLRovBXVfU92vPzN8a3tMp90982RJe0+BRDR1PdhVf34i/Aw15OO10tj1dlflHNTnnDTMeanPOWlYUVGRa20e56Bhzkt9zknDnJf63Ns2zDmor6OdE2t2xxBuNyM/3G5JMN1Q/Q0bNrSoj969e7dovNT06tWrTun9dptHe9rZ/x+3DWulvl3znEQ4Lw1p6Jz8/Xq7a56TCGulIc5Jw5yX+pyThuWfF/e21kpjnJf6nJOGOS/1ubdtmLVSX0fOV3LvEWhNwu1mbN68Oadcdw/tQnTu3LnJ/vi7JS/t2d5TIBHWSn3OScOcl/qck4Y5L/U5Jw1zXupzThrmvNTnnDTMeanPOWmY81Kfc9Iw54VdiT23m5H/lHVNTU2L2ldXVzfZHwAAAAAALSfcbkb+HtstffI6v37dPbgBAAAAANg2wu1m5IfbGzZsaFH7uvVLS0s9uQ0AAAAA0AqE280oKyvLKa9cubLgtplMJqd+fl8AAAAAAGwb4XYzBgwYkFN+++23C2773nvv5ezR3b9//1abFwAAAADArky43Yy99947evTokS3/5S9/Kbjt0qVLc8rCbQAAAACA1iHcLsAxxxyT/fr999+PFStWFNRu4cKFOeVjjz22VecFAAAAALCrEm4XYOTIkTnlWbNmFdTu0UcfzX7dpUuX+MxnPtOq8wIAAAAA2FUJtwvwT//0T9GpU6ds+YEHHsjZS7shzz77bCxfvjxbHj58eHTv3r3N5ggAAAAAsCspbe8JpGCvvfaKL3/5y/GrX/0qIiJWrFgRv/jFL+Jf/uVfGqy/efPmmDRpUrZcVFQUF1100Q6Za1M2bNgQf/7zn+ONN96IDz74IDKZTPTo0SP222+/KC8vj969e2/3GO+9914sXrw43n333fjwww+jtLQ0evbsGQMGDIghQ4ZE165dt3uM6urqeOGFF+Ltt9+ONWvWRO/evaNfv37xD//wD+32BsLWrVtj0aJF8eabb8bq1atj9913j379+sXQoUNb5bzuylJft1VVVfH//t//i1dffTXWrl0bVVVV0bNnz9hrr73iyCOPjH79+m33/Ol4Ul+3HZnrbduxbknNjliza9asiQULFsTq1avjww8/jD59+mTvO7t167b9LyLc2+5qUl+37m13Tamv247M9bbtWLe7DuF2gS644IJ46KGHYsOGDRERMWXKlOjevXucffbZUVz89wfg16xZE5dddln89a9/zR475ZRTYsiQIY32vWHDhli6dGksXrw4Fi9eHC+//HK8/fbb2e/vt99+8Yc//GGb5/7yyy/H9OnTY86cObFly5YG6xQVFcWwYcPiG9/4RvzjP/5ji8f4/e9/H3fddVcsWrSo0TpdunSJk08+Oc4///wYMGBAi8f48MMP4yc/+UnMnDkzPvjgg3rf7969e5x00klxxRVXRN++fVvc/7aorq6On//85/HrX/86Vq9eXe/7nTp1ihNPPDGuuOKKOPjgg3fInHYU67Zxr776asyaNSueeeaZWLx4cZN/6fGJT3wizjzzzPjSl76U8xcirW3KlClx2223bVPbCy+8MCZMmNDKM2of1m3jrrzyyvjNb37T4vlEREyaNCnGjBmzTW0L5Xpr3ebbnutaXZ/61KdixowZ293Px1xvd441++yzz8aUKVNi4cKFkclk6n2/e/fu8bnPfS4mTpy4zWGee9uOxbptnHvbjsu6bZx7247Lum2Ye9ttJ9wuUFlZWdxyyy1x0UUXRW1tbWQymbjxxhvj/vvvj+OOOy569+4db7zxRjzxxBNRVVWVbfeJT3wirr/++gb7/OUvfxkPPvhg/PWvf43a2to2mfeUKVNi2rRpsXXr1ibrZTKZmDdvXsybNy+++MUvxg9+8IMoLW1+eWzcuDEmTpwYTzzxRLN1N2/eHA899FD893//d1x55ZVxxhlnFPw6lixZEpdeemnOBa+hufzmN7+JJ598MiZPnhzHH398wf1vizfffDMuvfTS+Mtf/tJonZqamnjsscfi6aefjuuvvz7+5//8n206px3Bum163V5zzTXx61//utl+P/bXv/41vv/978evf/3rmDx5cvTv37/gthTOui38etsRud5at23JtnGtZ2dYs1u2bInrr78+/vM//7PJehs3boyHH344nnjiibjhhhvic5/7XIteh3vbjsO6bZp7247Juk2b661125Z2xXtb4XYLjBgxIn74wx/G97///di0aVNERLz++uvx+uuvN1j/sMMOi9tuuy123333Br8/f/78WLZsWVtNN2699db42c9+lnOsZ8+ecfzxx8eBBx4YJSUlUVlZGc8991y8++672ToPPvhgVFdXx+TJk5vsf+vWrXHhhRfGn/70p5zj++23Xxx33HGx9957x5YtW2LFihXxzDPPxIcffhgRH71Def3110dpaWl85StfafZ1vPPOO3H++efHe++9lz3Wq1evOPHEE6Nfv36xevXqeOqpp7Lvdq5Zsyb+5V/+Je6777449NBDm+1/W/ztb3+L888/P1577bXssW7dusWJJ54YBxxwQKxbty6effbZWLFiRUR8dGH7zne+E717996mdwU7Euu26XX7/vvv1zu25557xjHHHBNlZWXRs2fPWLt2bSxcuDBeeeWVbJ2lS5fGWWedFffee28ceOCBTb6G1lBSUtImdTsq67aw621dLfn/XlRU1KK+W8L11rptTFFR0TZdn/J/2fnnf/7nFvfRErvS9Tb1NRsRMXHixJwPhY/46GGVT33qU9G7d+9Ys2ZNPPfcc9n7//Xr18eECRNi+vTpMWzYsIJeh3vbjsW6bXrdurftmKzbwq63dbm3bX/WbdPr1r3tthNut9Bpp50W5eXlMXny5HjyyScb/JOsvn37xpe//OW48MILo3Pnzi3qv3v37vHJT34ylixZEhs3btzmeVZUVMTPf/7znGNnnHFG/O///b/rvYuzdevWuP/+++OHP/xh9vU88sgjcfLJJ8f/+B//o9Ex7r///pxfWDt16hTXXntt/K//9b9ytmqJ+OjPLm+88cZ44IEHssduvPHGGDFiRJSVlTU6RiaTiW9+85s5N/+nnnpqXH/99bHbbrtlj318Ibrzzjsj4qN/AC6++OL4/e9/H126dGm0/231ve99L+cfo09/+tPxk5/8JPr06ZM9tnXr1rjzzjvj5ptvjkwmE1u3bo0JEybErFmzYq+99mr1ObUn67a+Hj16xOjRo2PMmDFx2GGHNVjnueeeiyuvvDL7D+vq1atj4sSJ8cADD7TpDVXER79w7Oqs28Zt758CtibX21zW7d9dcsklcckllxT2gv9/77//fnz2s5/N/olq9+7dY9SoUS3qo6V29ettSmv2rrvuyvmFtXv37nHDDTfEySefnFMvk8nE//2//zeuu+66qK6ujpqamvjmN78Zv//975u95ri3TYN1W597247Pum2ce9uOy7r9O/e22064vQ369+8fP/vZz7LvUFdWVsaGDRtir732igMOOCCGDh1a0LsTXbp0ifLy8jjiiCPi8MMPjyOOOCIGDBgQxcXF8U//9E/b9YN977335rx7c+qpp8a//uu/Nli3pKQk+6e/dbdQue+++5r8wb7nnntyytdcc02j+1LtvvvuMWnSpFi/fn32YrBx48Z46KGH4oILLmh0jFmzZsXLL7+cLR9//PHx7//+7/Vujjp37hxXXXVVrF+/Ph588MGIiHj77bfjvvvui3HjxjXa/7ZYvHhxzgXtE5/4RNx+++313sgoKSmJc889NzZt2hRTpkyJiI/epf0//+f/xPe+971WndOOZN02vW532223uOiii2L8+PGN/tXGx4477ri49957Y8yYMdlfcl9++eWYNWtWvX8g2T7WbfPX247I9da6be11+9vf/jZn78V//ud/zgkU2T4pr9kNGzbE1KlTs+WioqKYOnVqg09ZFRUVxZe+9KXYbbfd4vLLL4+Ij57Mmjp1aqNz+ph7247Hum163bq37Zis2+avtx2R661129rr1r3tR4qbr0Jj9thjjxg5cmScccYZcf7558cXv/jFOPbYYwt+7P7HP/5xPPDAA/Gv//qv8cUvfjEGDhxY70mmbfXcc8/llC+++OJm24wdOzbnw2r+9Kc/NboP0sqVK3Pebezbt29BH7hw6aWXNjnPfNOmTct+XVxcHN///vebfNf/yiuvzLnpmj59eqMfILCt6s4p4qNf1pt6Qv+CCy7I+VO8+++/P9asWdOqc9qRrNum1+0Pf/jDuPzyy5u9+f/Yvvvum/0H72P5f+bE9rNum7/edkSut9Zta6/b/A+WOv3001u1/11dymv2kUceiXXr1mXLp556arN/PnzyySfn/In4r3/961i5cmWTbdzbdjzWbdPr1r1tx2TdNn+97Yhcb63b1l637m0/ItzeSdX9genRo0cMGDCg2TYlJSVxxBFHZMs1NTU5P7yN9R8RUV5eXtBFaeDAgTk3RqtWrWq07uuvvx4VFRXZ8gknnBAHHXRQk/336tUrPv/5z2fL7733XsyfP7/ZeRVqw4YN8fTTT2fLAwYMiOOOO67JNp06dcr5hb66urrD/ElUR7MzrNtCPoQi36hRo3LmsXjx4hb3QfvZGdZtR+R627Z2xXX7yiuv5OwHu99++8WnP/3pVuufttXWa/aZZ57JKX/pS18qaF5f/vKXc/qfPXt2o3Xd2+56doZ1695217MzrNuOyPW2be2K69a97d8Jt3dSdd9t6tq1a8HtCv1U1Uwmk1Pu1q1bwWPUrdvUkypz5szJKZ900kkF9Z//J2/5/WyPP/7xj1FdXd3iOeXvedSac9qZ7Azrdlv06NEjZ4+1hj64h45rV123bc31tm3tiuv2460dPnbaaacl93OxK2vrNVt3/8ji4uI48sgjC2p39NFH55Qff/zxRuu6t9317Azrdlu4t03brrpu25rrbdvaFdete9u/E27vpPbff//s1+vWrYuqqqqC2r399tvZr3v16hV77LFHs/1HfPSp74XYtGlTrF27Nltu6pOzFyxYkFPOvyg0pry8PGdrmPx+tse2zunAAw+MPffcs03mtDPZGdbttqq7v9i2PCFD+9mV121bcr1tW7vaut2yZUs88sgjOcdOO+20VumbHaOt12zdddezZ8+C35Dp27dvzn3nCy+8kLPnZ13ubXc9O8O63VbubdO1K6/btuR627Z2tXXr3jaXcHsnVXdfn5qamoLeHXrzzTdzPuBm+PDhjb7rs+eee8aQIUOy5cWLFxf0i+ujjz6as0/giSee2Gjdunt1du3aNfr3799s/xEffehJ3V+Gly9fXu8Jsm1Vd04RkXMOmlP3U8XXr18fq1evbpU57Ux2hnW7LVasWJHzC0C/fv1atX/a1q66btua623b2tXW7VNPPZXz5OA//MM/JPeGz66urdfs5s2bs183tf9pQ+rWr66ujjfffLPBeu5tdz07w7rdFu5t07arrtu25nrbtna1deveNpdweyd11lln5fx5xU033dTkD9DGjRvjO9/5TvYXys6dO8eFF17Y5BgXXHBB9ustW7bElVde2eS7Y8uXL48f/ehH2fLBBx8co0ePbrDu/9fe3QdVVeZxAP+KXAiuvJmKcMU1bUG3MNdEHM3ZZDXLWghfNi0bS2hwd9R9yWG3mU1wRNdqFnNNXdzNhdpVyTIhw1xqF1ctlNLSMEUjDCFCElAQvDdg/2A8e8+5b+fivcB5zvcz4wzP8ZxzD8yXh999zj3PY7FYcOnSJak9fPhwtx6viIyMlL5ub2+X3Y27FdZ/kPz8/GR3UN25JuW5qJvWc9tThYWFsrarudc8ISsrC/PmzcPUqVNxzz33YPr06UhOTkZmZib+9a9/eXyxKpGJmNuWlhasXr0aiYmJiI+Px4QJE/CTn/wECxYswPr163H48GGPDaw4wv7Wu0TMrTN9udgO+1vP8HZmg4KCpK9bWlpUX5fZbEZbW5ts25dffmmzH2tbfdJ6bnuKta22iZhb1rbiEzG3zrC2lePgtqBMJhOysrKkhTwuX76MefPmIScnB19++SXMZjM6OjpQW1uLPXv2ICkpCZ988gmA7kn1161b53IC/gcffBCLFi2S2seOHUNycjLefvtt1NXVoaOjA2azGefPn8eWLVswb9486c5SWFgYNm/eDH9/f7vnbmhokP1CREREuPX9h4eHy9p1dXVuHe+I9cJW7r4p8dY1iUTrue2JpqYmvP7667Jtyrk1veH111/H559/ju+++w7t7e2or6/HmTNnsGvXLqxYsQIPPPAA3nnnHa9fhwhEzG1zczPy8/Nx7tw5NDU1oa2tDXV1dTh16hTy8vKQmpqKxMRE2aI4nsb+1rtEzK0jTU1N+M9//iO1AwICbOav9Cb2t57h7cwOGzZM+vr69euygWhnzp8/b7PNXp/D2laftJ7bnmBtq30i5pa1rfhEzK0jrG1tcfIrgT388MMIDQ1FRkYGqqur0dzcjOzsbGRnZzs8JiYmBs8//zzi4uJUvUZGRgZGjRqFzZs3o6WlBZWVlfj973/v9JgZM2Zg9erVNncfrVk/xgaon+T/JqPR6PR8PdHe3i6bG8ndaxo0aJDHr0lEWs5tT6xbt062IvOUKVMwadIkj75GT9TU1GDVqlUoKytDZmambMV7sqW33AJARUUFUlNTsXz5cixfvtyj52Z/2zv0ktt3330XFotFaj/wwAM2GelL7G/V82ZmJ06ciLNnz0rtkpISLF682OU1Wb+5vKm1tdVmG2tb/dJybnuCta0Y9JZbgLWtCPSSW9a2ttijC27atGkoKirC0qVLZZPY2/PQQw9h+/btqt+wAsCAAQPw1FNPoaioyOW8mAaDAStWrEB2drbLN6zKX3Z3P7ml3N8Tnb/yHO5ek3JeJv5BckyruXXX3r17ZY9t+vv7Y/Xq1R59DWsGgwEJCQlYs2YN3nzzTRw/fhzl5eUoKyvD22+/jfT0dJhMJtkx+fn52LBhg9euSSQi5DYwMBBz5szBhg0bUFBQgLKyMpSXl6O0tBT5+flYsWKF7BHKrq4ubN68GXl5eapfQw32t71HhNy6olxJvjce22R/6z3eyqwyn7m5uS4Xo2pqasKuXbtsttvrc1jb6ptWc+su1rZiESG3rG31R4TcusLa1hYHtwVXUlKCpKQk7Nixw+WKrAcOHMDMmTOxfv162WT5znR2dmLHjh1ITEy0e0fKmsViwebNm5GQkID8/Hyn+5rNZlnbYDCoup6blJ2/2pVynVH+TPrDNYlKq7l1x2effYbMzEzZtt/97ncuH/PvqZkzZ+LQoUPYtm0bFi5ciNjYWISEhMDX1xfBwcH40Y9+hJSUFBw8eBBPPvmk7Ni8vDwcPXrUK9clEq3nduHChTh8+DA2btyI5ORkjB07FsHBwfD19UVYWBgmTJiA5cuXo7i42OaxtxdeeMGjc3Wyv+09Ws+tKxcuXMDnn38utU0mk9fnfmV/613eyuz06dMRHR0ttaurq/Hcc885nDfyxo0bePbZZ9HQ0GD3/5RY2+qbVnPrDta24tF6blnb6pPWc+sKa1v7OC2JwLZu3YpNmzZJ7cGDB+Opp57C/fffjxEjRsDX1xf19fU4duwYcnNzcf78eVgsFuTl5eGzzz7Djh07bB6BtGY2m7FixQqUlJRI26Kjo7FkyRLEx8cjPDwcFosF1dXVKCkpQV5eHq5cuYLGxkasXr0aFRUVeP755+2eW9l5Wz9yoYbyDcRtt93m1vH2KO+u9odrEpGWc6vWV199hbS0NNkftblz5+KJJ564pfM6Y73CtjMGgwF/+MMfYDabZYNLGzduxLRp07x1eZonQm4nTJig6ns1Go3YuHEj2tracOjQIQBAR0cH/vznP8t+BreC/W3vECG3rigX20lKSnJrjsueYH/rPd7M7IABA7BmzRo8+eST0hvVoqIiVFVVIS0tDfHx8QgJCUFjYyM+/PBDbNu2TRr4MBqNsk9m23vcnLWtfmk5t2qxthWPCLllbas/IuTWFda29vGT24IqKiqS/VKPGzcOhYWFSEtLQ0xMDIxGI/z9/REVFYX58+dj7969ePTRR6X9P/30U5ePkK1bt072hvXRRx/F3r17MX/+fERFRcHPzw9GoxFjx47FsmXLUFhYKPul+Mc//oE33njD7rmVHYq7d7aU+99K5+HoHO5ek/IPkieuSTRaz60adXV1SElJQWNjo7RtxowZWLt2bY/P6Q3p6ekICwuT2qdPn3a62rSe6SG3Sj4+PsjMzJR96uTf//63zUrgPcX+1vv0kNuOjg7Z4/FA764krxb7W3V6I7MTJ07EmjVrZI8xnzlzBr/61a8wZcoUjBs3DlOnTsWqVaukN6zDhw/HypUrZecJCgqyOTdrW33Sem7VYG0rHj3kVom1rfbpIbesbR3j4LaALBYL1q9fL7X9/f2xdetWDB061OExfn5+yMrKQkxMjLRt//79OH36tN39z507J7sTM3bsWGRlZTl9vGbo0KHYsmWL7K5ldna23Y5d2Vm7O+G+cn9PdP633XabrBNz95paWlo8fk0iESG3rly5cgVLly5FTU2NtC0uLg6bNm2Cr2//epBm0KBBNivbf/TRR310Nf2XHnLrSGRkJKZOnSq1zWYzTpw44ZFzs7/1Lr3k9ujRo6ivr5fakyZNwsiRI3t0Lm9if+tab2T2pvnz52P79u2IiopyeV1xcXHYuXOnzSemQkJCbPZlbas/IuTWFda24tFDbh1hbatdeskta1vHOLgtoCNHjuDy5ctS+5FHHlG1MJPBYMDSpUtl2woKCuzuu2/fPnR1dUntp59+WtW8USaTCY888ojUbmxsxH//+1+b/YYMGSIriOrq6lye25py/+HDh7t1vCPDhg2Tvv72229lP4O+uiZRiJBbZ1paWpCamiqbu+2uu+7CX/7yF7cXFOktykf5rN+4UDfRc+uKMiO1tbUeOzf7W+/RS2737dsna/fHT7bcxP7Wud7IrLX77rsPBw4cwEsvvYSHH34YI0eOlD7xNXLkSDz44IPYunUrXnvtNZhMJly6dEl2vL05hlnb6o8IuXWGta2YRM+tK6xttUkvuWVt61j/up1KHvHpp5/K2pMnT1Z9rHJf64nqnb1GfHy8W6/x1ltvSe3Tp09j1qxZsn0MBgNGjBiBqqoqAN2deVdXl+q5hL755hvp64CAAJtVW3tqzJgx0rnNZjMaGhqc3g10dE03z0X/J0JuHWlvb8eyZctQXl4ubRs9ejT+9re/YdCgQaqvobdZrxwOQPa4KXUTObdqeDMj7G+9Rw+5vXbtGt5//32pHRAQYLNYVH/C/ta53sisksFgQGJiIhITE13ua/0pL4PBgLFjx9o9H2tbfREht46wthWXyLlVg7WtNukht6xtneMntwV05coVWVtthwl0f6rEmqMAKl9DeZwnXsO6w25vb0dlZaWq87e0tODixYtSe9SoUR6bYH/06NGy9pkzZ1Qf+8UXX0hfBwcHu/Uz0wNRcqtksViwcuVKlJWVSdtMJhNyc3MxePBg1a/fF5SrcPfXT+H0JVFzq5ZyHkLlgmm3gv2t9+ght0VFRbLpTGbNmtWvB1zY3zrXG5ntqba2Nln/NG7cOId9IWtbfRElt0qsbcUmam7deQ1rrG21QQ+5ZW3rHAe3BaQMjTJUzij3DQgIsLuf8pfRnfkw1b7GvffeK2urne/q1KlT6OzslNqTJk1SfW2uKK/p5MmTqo67ePEivvvuO69ckyhEya21zs5OpKenS6tuA91/aHNzcxEeHq76tfuKctEH5d1XEjO37lA+YufJjLC/9R495Fa5kvzcuXPdPkdvYn/rXG9ktqeKi4tl+baeVkeJta2+iJJba6xtxSdibt3B2lab9JBb1rbOcXBbQMo75tbzoLly4cIFWdtRAJXbvfEaP/3pT2XtgwcPqjr/e++95/Q8t2L69OmyN+z94ZpEIUpurWVkZKCoqEhqh4aG4u9//3u/XPTBHus3LkD3XWaSEzG3anV1deHw4cOybZ7MCPtb7xE9t1VVVbI3jJGRkZgyZYpb5+ht7G+d643M9tTOnTulr/38/JCUlORwX9a2+iJKbq2xthWfiLlVi7WtdomeW9a2rnFwW0Djx4+XtQ8cOKD62P3798vaykngHb3Gu+++q+r8XV1dNvs6eo1Ro0bJ5iI6evSo7JFMe5qbm2UF15AhQxAXF6fq2tQwGo2YPn261K6srERpaanTYywWC958802p7efnh4SEBI9dkyhEye1NL774It544w2pHRQUhFdffRU//OEPVb1mXztx4oRsRWM/Pz+35i7TC9Fy6479+/dLc8cCQEREBO68806PnZ/9rfeInlvlJ1uSkpI8NoWDN7C/da03MtsThYWFsjebCxYsQGhoqMP9Wdvqiyi5vYm1rT6Illt3sLbVLtFzy9rWNQ5uCyguLg7BwcFS+8yZM/jnP//p8riTJ0/KChYAmDFjht19lR3q7t27VU28n5ubi4qKCqkdGhqKH//4xw73/8UvfiF93dnZiczMTKerCm/YsAHXrl2T2s8884xsZXp7EhISEBMTI/1TPoqktGzZMll77dq1MJvNDvfPycnB119/LbUXLlzY7+ej6wsi5TYnJwevvvqq1A4ICEBOTg7uvvtul6+llju5raiocGs17traWvzmN7+RbXvsscc8/oiWCETJ7blz51yez9oXX3yBzMxM2bYlS5a4PI79bf8gSm7t6erqQmFhoWzbra4kz/627/VGZt114sQJZGRkSO1hw4bht7/9rcvjWNvqh0i5ZW2rH6LklrWtvoiSW3tY26rDwW0B+fv7IyUlRbYtKysLW7ZssTv3UFdXF9555x2kpqbCYrFI22fMmOGwYJkwYQKmTZsmtW/cuIGlS5fivffesxv869evY+PGjXjhhRdk29PS0pxOpj979mzExsZK7Q8//BCrVq1Ca2urbD+z2Yw//vGP2Lt3r7TNZDJh0aJFDs/dU+PHj8fs2bOl9oULF5CammqziEFnZyd27NiBV155RdoWFBSEtLQ0j1+TCETJbX5+PrKzs6W2n58ftm7dajPHWm96+eWXkZiYiN27d9vk1Nr333+Pffv2Ye7cuairq5O233777bI34/R/ouQ2PT0dCxcuREFBAVpaWhx+v+3t7cjLy8OiRYtk+91xxx144oknHB7XU+xvvUOU3NpTWlqK2tpaqX3vvffiBz/4gerjbxX7W+/ojcwC3X3MM888g5KSEtlx1trb27F9+3Y8/fTTuH79OgDAx8cHa9euVbWwE2tb/RAlt6xt9UWU3LK21RdRcmsPa1t1BnS5MwRPHlVTU4NZs2bZ/b+Ojg5Ze+DAgXb3y83NtfvxfrPZjJSUFBw/fly2PTQ0FFOnTsWIESMwcOBA1NfXo7S0FDU1NbL9IiIikJ+f73RhkJqaGjz22GO4fPmybPvIkSMxefJkDBs2DN9//z0uXryI0tJSNDc3y/a77777kJOT4/LTJ7W1tZg/f75sEYWQkBAkJCQgPDwcDQ0NOHTokOw6AgMDsWvXLtmjn44kJCTIvv8PPvgAI0aMcHrM1atX8fOf/xxfffWVtC0gIAAJCQmIiopCY2MjPvroI9ld1oEDByInJ0f2KJIWMbfOc6vME+D45+BMcXExTCaTw/93J7e//OUv8cEHH0jXMmbMGMTExGDIkCEwGo24fv06ampqUFZWZvMHKzAwEHl5eTaPemkNc+s8t0lJSTh79iwAwGAwIDo6GtHR0QgLC0NgYCBaW1tRVVWFjz/+WPYJQqD7Efndu3cjKirK4fXfxP7WPcytujrBWnp6OgoKCqR2VlYWFixYoPp4e9jfqqf1zFZUVOBnP/sZgO5BhHvuuQejR49GcHAwrl69ikuXLqG0tFR6swoAAwYMQEZGhluDzqxt+xfm1jnWtv0Tc+sca9v+ibl1H2tbddS/WyCP6+rqsvkFdsTRfo7uTdy8o/7cc8+huLhY2t7U1CSbt8+ecePG4eWXX3a54rXJZEJeXh5+/etfyx4h/vrrr2UdsT1z5sxBVlaWqjeskZGR2L59O1auXCn9AjY3N9vMO3RTWFgY/vSnP6kq/nsqODgYf/3rX7F8+XLpj2ZbW5vDOUUDAwOxZs0azf8xAphbtbm1pvbnZc1b9x07OjpQUVEh+94diY6ORnZ2tmbmUnSGuVWfW4vFgvLycpSXl7vcd/LkyXjxxRcRERGh6tw9wf6WuVWrtbVV9r0EBATgoYceUn28p+mxv9V6Zq1du3YNR44cwZEjRxzuExoainXr1mHmzJmqzwuwtu1vmFv3sbbte8yteqxt+w/m1j2sbdXj4LbAgoKC8Morr+D999/Ha6+9huPHjzstKu688048/vjjWLBggepHgMeMGYO33noL+fn52LlzJyorKx3u6+Pjg/j4eCxZssTteYzuvvtuFBQUYNOmTSgsLLT5dBfQ/Ys+e/ZsrFq1CkOHDnXr/D0RFRWFPXv2YNu2bdizZ4/NJ9OA7rvE999/P5599lnccccdXr8mEYiU2/4iOTkZAwcOxCeffCL7lJg9Pj4+iI2NxeOPP445c+a4NR2Anmk9t4sXL0ZxcTFOnjyJq1evOt3X19cXcXFxWLx4MRISEuDj4/0ZztjfeofWc6t08OBB2SdlZs2a1aPHP28F+1vv8nZmhwwZguTkZBw7dkz2CLDS4MGDMW/ePKSkpCAsLKxH3wtrW/0QKbf9Bfta79N6blnb6pPWc6vE2lY9TkuiI9euXcOpU6dw6dIlXL16FZ2dnRg0aBDCw8MRGxvr1l0qR+rq6nD69GnU19ejpaUFPj4+CA4ORlRUFMaPH++RX0Sz2YyPP/4YNTU1uHLlCkJCQhAREYFJkybBaDTe8vl7oqOjAydOnEB1dTUaGhpgNBoxfPhwTJw4UfPFY18TJbf9xbfffovKykp88803aGxsxI0bN+Dv74/g4GBERkZi/PjxCAoK6uvL1Dwt57a6uhpVVVWoq6tDc3Mzbty4gcDAQOncsbGxfboAE/tb79Fybvsj9rfe583MVldX4+zZs6itrUVrayt8fX1x++23Izo6GnfddZdHBz9Y2+qLKLntL9jX9g4t55a1rX5pObf9UX/ubzm4TURERERERERERESaI96tBCIiIiIiIiIiIiISHge3iYiIiIiIiIiIiEhzOLhNRERERERERERERJrDwW0iIiIiIiIiIiIi0hwObhMRERERERERERGR5nBwm4iIiIiIiIiIiIg0h4PbRERERERERERERKQ5HNwmIiIiIiIiIiIiIs3h4DYRERERERERERERaQ4Ht4mIiIiIiIiIiIhIczi4TURERERERERERESaw8FtIiIiIiIiIiIiItIcDm4TERERERERERERkeZwcJuIiIiIiIiIiIiINIeD20RERERERERERESkORzcJiIiIiIiIiIiIiLN4eA2EREREREREREREWkOB7eJiIiIiIiIiIiISHM4uE1EREREREREREREmsPBbSIiIiIiIiIiIiLSHA5uExEREREREREREZHmcHCbiIiIiIiIiIiIiDSHg9tEREREREREREREpDkc3CYiIiIiIiIiIiIizeHgNhERERERERERERFpDge3iYiIiIiIiIiIiEhz/ge2dkseRBTFWgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AABxV0lEQVR4nOz9e5zVZb03/r/nwHBQDio4eFYIUNJRcVti7gY3uy2aN2FF0batlHjcmoLfSkszjW2aGys16Q7dqZi6875NyXaomGiKJgiKQQ53iuJpAAUkgWEGZv3+8MeKNcysWQMzzFzD8/l49HjM9ZnrtK4uP6x5zWeuVZTJZDIBAAAAAAAJKW7vCQAAAAAAQEsJtwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOSUtvcEyG/16tXtPYVdRlFRUfTp0yciItasWROZTKZ9JwQ7wH6ms7Gn6UzsZzoT+5nOxH6mM7Gf6aj22GOPVu3Pk9sAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkp7S9JwAAAJDPCSPq23sK7e7p2Z5LAgBoyDskAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDnCbQAAAAAAkiPcBgAAAAAgOcJtAAAAAACSI9wGAAAAACA5wm0AAAAAAJIj3AYAAAAAIDml7T2BtrJs2bJYvHhxVFdXR319fZSXl8egQYNi8ODBrTbGwoUL4/XXX4/ly5dH9+7do7y8PCoqKqK8vLzVxgAAAAAAYFsdJtyePHlyTJ8+PefaaaedFtddd12L+nnyySdj6tSpsWDBgka/P2TIkJgwYUKMHj16u+ZZX18f06dPj+nTp8ebb765zfeLi4tj+PDhcckll0RFRcV2jQEAAAAAQH4d4liSF198MX71q1/tUB+ZTCb+4z/+I84555wmg+2IiKqqqvjmN78ZkyZNitra2haNsXr16vja174W1157baPBdsRH4fczzzwT//qv/xr/9V//1aL+AQAAAAAoTLs/uV1XVxdXXnll1NfX71A/U6ZMibvuuivn2rBhw+KII46IkpKSqKqqijlz5kQmk4mIiN/97ndRUlISN9xwQ8HzvOiii2Lu3LnZa6WlpVFZWRkDBw6MdevWxbx586Kqqipb//rrr4+ePXvG2LFjd+i1AQAAAACQq93D7V/84hexZMmSiIjo169frFy5ssV9PPHEEzFt2rRsuVevXnHTTTfF8OHDc+otXrw4zj///Kiuro6IiBkzZsQxxxwT48aNa3aMG2+8MSfYHjx4cEydOjX233//nHozZsyI73znO1FXVxcREVdffXVUVFTEkCFDWvy6AAAAAABoXLseS/Laa6/Fz3/+84iI6N69e0yaNKnFfWQymbjxxhuz5aKiorj11lu3CbYjIoYOHRp33HFHdO3aNXvtlltuiZqamrxjVFdXx913350t77XXXnHXXXdtE2xHRIwePTomT56cLdfV1cVPf/rTFr0mAAAAAADya7dwO5PJxJVXXpk99/qCCy6I/fbbr8X9zJo1K/vkd0TE5z73uTj22GObrH/IIYfEWWedlS2vXLky7r///rxj3HbbbTnnc1966aWxxx57NFl/zJgxOXN4/PHH45VXXsk7BgAAAAAAhWu3cPu+++6LefPmRcRHR3x87Wtf265+Zs6cmVM+/fTTm20zbty4KCkpabKPrWUymXj00Uez5d69e8epp57a7Bhf+cpXcsqPPPJIs20AAAAAAChMu4Tby5cvjylTpkTER8eIXH311dGlS5cW97Np06Z46qmnsuV99tknKioqmm1XXl4eRx11VLa8YMGCWLVqVaN1//znP8fy5cuz5REjRuQca9KUkSNH5rymxx9/vNk2AAAAAAAUpl3C7R/84Afxt7/9LSIivvSlL8WwYcO2q58lS5bE2rVrs+Wjjz664LZb1928eXPMnz+/0XovvPBCk+3y6datWxx22GHZclVVVc5cAQAAAADYfjs93H700Ufjsccei4iPPpjx0ksv3e6+Xn311Zzy1mFyc4YOHZpTfu211woao2G7fBrOp6kxAAAAAABomZ0abv/tb3+LH/zgB9nyZZddFr17997u/hqGxfvuu2/BbffZZ5+8fTV1vWG7fBrOR7gNAAAAANA6dmq4/aMf/ShWrFgRERHHH398jB49eof62/os7IiI/v37F9y2Yd3q6upmxygtLY1+/fq1+hgAAAAAALRM6c4aaO7cuXH//fdHRERZWVlcddVVO9zn+vXrc8q77bZbwW0b1m3YV2PXu3fvHkVFRa0+Rj4tGY8ds/VaW3dSZz/T2djTdCb2M9ujo+4V+5nOxH6mM7Gf2VXslHC7trY2rrzyyshkMhERcd5558XBBx+8w/02DIvLysoKbtu1a9e8fTV2vWGb5jScz/aE23369GlxG3bcjhyXAx2N/UxnY0/TmdjPhXq/vSfQ7lL4ucB+pjOxn+lM7Gc6s51yLMnPfvazWLp0aUREHHLIIXH22We3Sr8bN27MKbck3G5Yt6amptkxunTp0oLZFT4GAAAAAAAt0+ZPbldVVcXtt9+eLV999dUtCqHzafgkdW1tbcFtG9bt1q1bk2Ns2LAhIiLq6upaNL9Cx8hnzZo1LW7D9ikqKsr+NvODDz7I/qUBpMh+prOxp+lM7Ge2R0f9ucB+pjOxn+lM7Gc6qtb+a7Q2Dbfr6+vjyiuvzIbCp512Wnzyk59stf579OiRU25JuN3wqe+GfW19fUu43bBNcxrOp6kx8nHzaR+ZTMba02nYz3Q29jSdif1MoVLYJ/YznYn9TGdiP9OZtemxJNOnT4+XXnopIj5K5b/1rW+1av8Nw+J169YV3LZh3Xzh9hYbNmyI+vr6Vh8DAAAAAICWabNwu6amJn7yk59ky9/61rdizz33bNUxysvLc8rV1dUFt3333Xdzyv379292jE2bNsV7773X6mMAAAAAANAybXYsSW1tbaxfvz5bvvLKK+PKK6/M26bhn0g8+OCDMWPGjGx5zJgxce2112bLAwcOzKn/zjvvFDy/hkH4gAEDGq03cODAmDdvXs4Ye++9d0FjNAy3G84XAAAAAIDt06bHkmxt8+bNzf6v4ZEfmUwm7/cbhsWLFy8ueD6LFi3KKTcVbje83pIxGtZtagwAAAAAAFpmp4XbbWHQoEHRq1evbPnFF18suO2CBQuyX5eUlMSwYcMarXfMMcc02S6fmpqaeOWVV7LlIUOGRM+ePQueHwAAAAAATWuzY0l69eoVVVVVLWrzpz/9Kc4444xs+bTTTovrrruuyfqlpaXx6U9/Oh5++OGI+OgYkJdeeimOPPLIvOMsX748+0GXERFHH310k+eBH3744VFeXh7Lly+PiIjZs2fHxo0bo2vXrnnHmDVrVtTV1WXLI0eOzFsfAAAAAIDCJf3kdkTEySefnFO+5557mm1z3333xebNm7PlUaNGNVm3qKgoTjrppGx57dq12TC9uTG2tnUfAAAAAADsmOTD7ZEjR8bgwYOz5Yceeijmzp3bZP2lS5fG7bffni3369cvxo4dm3eMs846K8rKyrLlKVOmxOrVq5us/+CDD+bMYeTIkXHooYfmHQMAAAAAgMIlH24XFRXFpEmTsuVMJhMXXHBBPPvss9vUXbx4cYwfPz42btyYvXbhhRdGt27d8o7Rv3//+OpXv5otv//++3HGGWfEW2+9tU3dGTNmxBVXXJEtd+nSJS6++OIWvSYAAAAAAPJrszO3d6YTTzwxzj777Jg2bVpEfHR0yPjx42PYsGFRUVERxcXFUVVVFXPmzIlMJpNtN3r06Bg3blxBY0ycODEWLlwY8+bNi4iIJUuWxKhRo6KysjIGDBgQ69evj7lz525zzvhVV10VQ4YMaaVXCgAAAABARCcJtyMiJk2aFDU1NTF9+vTstfnz58f8+fMbrX/KKafE5MmTC+6/rKwsbr755rj44ovj+eefj4iIurq6mDVrVqP1S0tLY+LEic0eeQIAAAAAQMslfyzJFsXFxXHFFVfEL37xizjqqKOarDd48OD40Y9+FD/+8Y+ja9euLRpjzz33jDvvvDMuv/zyOOCAA5qcx/HHHx/33ntvTJgwoUX9AwAAAABQmKLM1ud0dCJvvPFGLFq0KFasWBGbN2+O8vLyGDRoUKsdEZLJZOLll1+OpUuXxooVK6Jbt25RXl4eRx55ZJSXl7fKGBGR94MraV1FRUXRp0+fiIhYs2ZNdNL/NNhF2M90NvY0nYn93HInjKhv7ym0u6dnd8znkuxnOhP7mc7Efqaj2mOPPVq1v05zLElDBx10UBx00EFt1n9RUVFUVFRERUVFm40BAAAAAEDjOuav/wEAAAAAIA/hNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJKW3vCQAA0PmdMKK+vafQ7p6e7bkSAABoTd5hAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJKW3vCQAAwK7uhBH17T2Fdvf0bM/dAADQMt5BAgAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAySndmYPV19fHsmXL4o033ojly5fH2rVro7a2Nnr06BF9+vSJQw89NAYNGhQlJSU7PNayZcti8eLFUV1dHfX19VFeXh6DBg2KwYMHt8Ir+cjChQvj9ddfj+XLl0f37t2jvLw8Kioqory8vNXGAAAAAABgW20ebq9atSpuv/32mD9/fvzlL3+JDRs25K3fu3fvGD16dJx11lmxzz77tHi8J598MqZOnRoLFixo9PtDhgyJCRMmxOjRo1vcd8RHAf306dNj+vTp8eabb27z/eLi4hg+fHhccsklUVFRsV1jAAAAAACQX5sfS/L222/HbbfdFvPnz2822I6I+OCDD2L69OlxyimnxAMPPFDwOJlMJv7jP/4jzjnnnCaD7YiIqqqq+OY3vxmTJk2K2tragvuPiFi9enV87Wtfi2uvvbbRYDvio/D7mWeeiX/913+N//qv/2pR/wAAAAAAFGanHksSEdG3b98YPHhwHHTQQdG7d+8oKSmJNWvWxF/+8pd48cUXo76+PiIi1q9fH5dffnnU1tbGuHHjmu13ypQpcdddd+VcGzZsWBxxxBFRUlISVVVVMWfOnMhkMhER8bvf/S5KSkrihhtuKGjedXV1cdFFF8XcuXOz10pLS6OysjIGDhwY69ati3nz5kVVVVW2/vXXXx89e/aMsWPHFjQGAAAAAACFafNwu6SkJI499tg46aST4lOf+lQMGDCgybpvv/12XHPNNTF79uzstWuvvTaOP/74OPDAA5ts98QTT8S0adOy5V69esVNN90Uw4cPz6m3ePHiOP/886O6ujoiImbMmBHHHHNMQeH5jTfemBNsDx48OKZOnRr7779/Tr0ZM2bEd77znairq4uIiKuvvjoqKipiyJAhzY4BAAAAAEBh2vxYkqFDh8bdd98d//Zv/5Y32I6I2G+//eLWW2+NT33qU9lrGzdujF/96ldNtslkMnHjjTdmy0VFRXHrrbduE2xvmcsdd9wRXbt2zV675ZZboqamJu+8qqur4+67786W99prr7jrrru2CbYjIkaPHh2TJ0/Oluvq6uKnP/1p3v4BAAAAAGiZNg+3W6qkpCQuvfTSnGt//OMfm6w/a9asWLJkSbb8uc99Lo499tgm6x9yyCFx1llnZcsrV66M+++/P++cbrvttpzzuS+99NLYY489mqw/ZsyYnDk8/vjj8corr+QdAwAAAACAwnW4cDsi4uMf/3j06NEjW3733XebrDtz5syc8umnn95s/+PGjYuSkpIm+9haJpOJRx99NFvu3bt3nHrqqc2O8ZWvfCWn/MgjjzTbBgAAAACAwnTIcDsiYrfddst+veVDIBvatGlTPPXUU9nyPvvsExUVFc32XV5eHkcddVS2vGDBgli1alWjdf/85z/H8uXLs+URI0bkHGvSlJEjR0aXLl2y5ccff7zZNgAAAAAAFKZDhtsbNmyINWvWZMsHHHBAo/WWLFkSa9euzZaPPvrogsfYuu7mzZtj/vz5jdZ74YUXmmyXT7du3eKwww7LlquqqnLmCgAAAADA9uuQ4fbMmTOjrq4uWx4xYkSj9V599dWc8tZhcnOGDh2aU37ttdcKGqNhu3wazqepMQAAAAAAaJkOF26/8sorcf3112fLffr0iTPPPLPRug3D4n333bfgcfbZZ5+8fTV1vWG7fBrOR7gNAAAAANA6Stt7AplMJj788MNYsmRJzJw5M+67776ora2NiIgePXrETTfdFH379m207dZnYUdE9O/fv+BxG9atrq5udozS0tLo169fq48BAAAAAEDL7PRw+7XXXotTTz01W66vr2/0AyMrKyvj8ssvj0MOOaTJvtavX59T3vpDKJvTsG7Dvhq73r179ygqKmr1MfJpyXjsmK3X2rqTOvuZzsaepjPYsnft58ZZi/w66vrYz3Qm9jOdif3MrmKnh9uZTCY2b97c5PeLi4vj9NNPjwkTJjT7JHbDsLisrKzgeXTt2jVvX41db9imOQ3nsz3hdp8+fVrchh3Xu3fv9p4CtBr7mc7Gnk7V++09gXbX2Pu6v+9n65P/fa/1SeHnAvdnOhP7mc7EfqYz63BnbtfX18f06dPjn//5n+O6667LHlHSmI0bN+aUWxJuN6xbU1PT7BhdunQpuP+WjAEAAAAAQMvs9Ce3Bw4cGFVVVdlybW1trFmzJv7yl7/EzJkz47e//W3U1dVFXV1d/PKXv4wlS5bEz3/+80aD64ZPUucLwhtqWLdbt26N1uvatWts2LAhIiLq6uoK7r8lY+SzZs2aFrdh+xQVFWV/m/nBBx80elwOpMJ+prOxp+kMtryvs58b531vfh11fexnOhP7mc7Efqajau2/Rmv3D5QsKyuLvffeO/bee++orKyMM888M84777x49913IyLimWeeiVtuuSUmTZq0TdsePXrklFsSbjd86rthX1tf3xJuN2zTnIbzaWqMfNx82kcmk7H2dBr2M52NPU2qGtu39vPfWYf8Ulgf+5nOxH6mM7Gf6cw63LEkhx56aEybNi3nCJA777wzVq9evU3dhmHxunXrCh6nYd184fYWGzZsiPr6+lYfAwAAAACAlulw4XZExKBBg+KUU07JlmtqauLJJ5/cpl55eXlOubq6uuAxtjwZvkVTH1659RibNm2K9957r9XHAAAAAACgZTpkuB0Rcfzxx+eUtz6ne4uBAwfmlN95552C+28YhA8YMKDRejsyRsNwu2FfAAAAAABsnw4bbvft2zen/OGHH25Tp2FYvHjx4oL7X7RoUU65qXC74fWWjNGwblNjAAAAAADQMh023G4YZvfq1WubOoMGDcq5/uKLLxbc/4IFC7Jfl5SUxLBhwxqtd8wxxzTZLp+ampp45ZVXsuUhQ4ZEz549C54fAAAAAABN67DhdsOnnvfZZ59t6pSWlsanP/3pbPndd9+Nl156qdm+ly9fnlPv6KOPjj333LPRuocffnjOuduzZ8+OjRs3NjvGrFmzoq6uLlseOXJks20AAAAAAChMhwy3a2pq4re//W3OtYZncG9x8skn55TvueeeZvu/7777YvPmzdnyqFGjmqxbVFQUJ510Ura8du3aePjhhwsaY2tb9wEAAAAAwI5p03C7trY252iOQtTX18dVV12V88GNRx55ZJPnVY8cOTIGDx6cLT/00EMxd+7cJvtfunRp3H777dlyv379YuzYsXnndNZZZ0VZWVm2PGXKlFi9enWT9R988MGcOYwcOTIOPfTQvGMAAAAAAFC4Ng23a2pqYsyYMfGNb3wjnnjiiaitrc1b/6WXXoozzjgjHnzwwb9PsLg4vvvd7zbZpqioKCZNmpQtZzKZuOCCC+LZZ5/dpu7ixYtj/PjxOceKXHjhhdGtW7e88+rfv3989atfzZbff//9OOOMM+Ktt97apu6MGTPiiiuuyJa7dOkSF198cd7+AQAAAABomdK2HiCTycQjjzwSjzzySHTv3j0OPfTQ+NjHPha9e/eO7t27x7p166K6ujpefvnlePPNN3PaFhUVxeTJk+PII4/MO8aJJ54YZ599dkybNi0iPjo6ZPz48TFs2LCoqKiI4uLiqKqqijlz5kQmk8m2Gz16dIwbN66g1zFx4sRYuHBhzJs3LyIilixZEqNGjYrKysoYMGBArF+/PubOnRtVVVU57a666qoYMmRIQWMAAAAAAFCYNg+3t7Zhw4ZYsGBBLFiwoNm65eXlcfXVV8eJJ55YUN+TJk2KmpqamD59evba/PnzY/78+Y3WP+WUU2Ly5MmFTTwiysrK4uabb46LL744nn/++YiIqKuri1mzZjVav7S0NCZOnNjskScAAAAAALRcm4bbu+22W1x//fXxxz/+MebOnRvLly9vts3QoUPjtNNOi89//vOx++67FzxWcXFxXHHFFfGP//iPceutt8aLL77YaL3BgwfHhAkT4nOf+1zBfW+x5557xp133hl33XVX3H333ds8ab5lHscdd1xMnDgxKioqWjwGAAAAAADNa9Nwu6SkJMaMGRNjxoyJiIgVK1bEq6++Gm+99VZ88MEHsXHjxujRo0fsvvvusf/++8fHP/7x6NWr1w6NWVlZGZWVlfHGG2/EokWLYsWKFbF58+YoLy+PQYMG7fARIcXFxTF+/Pg488wz4+WXX46lS5fGihUrolu3blFeXh5HHnlklJeX79AYAAAAAADkt1OPJdl7771j77333iljHXTQQXHQQQe1Wf9FRUVRUVHh6WwAAAAAgHZQ3N4TAAAAAACAlhJuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkJzS9p4AAJCGE0bUt/MM3m/n8SOenu25AAAAgI7CT2gAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACSndGcPuGbNmliyZEm88cYbsWbNmshkMtG7d+/Yd99946ijjoqePXu2yjjLli2LxYsXR3V1ddTX10d5eXkMGjQoBg8e3Cr9R0QsXLgwXn/99Vi+fHl07949ysvLo6KiIsrLy1ttDAAAAAAAttXm4XZ9fX3MmzcvHnvssXjuuediyZIlTdYtKiqK4cOHx/jx46OysnK7xnvyySdj6tSpsWDBgka/P2TIkJgwYUKMHj16u/qvr6+P6dOnx/Tp0+PNN9/c5vvFxcUxfPjwuOSSS6KiomK7xgAAAAAAIL82D7dHjRoVb7zxRkF1M5lMzJkzJ+bMmROf/exn45prrondd9+94LbXXntt3HXXXXnrVVVVxTe/+c2YPXt2XHfddVFWVlZQ/xERq1evjksuuSSee+65JuvU19fHM888E88//3xMmjQpvv71rxfcPwAAAAAAhWnzcHvVqlXbXDv44IOjoqIi+vbtG127do3q6up49tlno7q6Olvnd7/7XaxYsSJuv/326Nq1a7PjTJkyZZtge9iwYXHEEUdESUlJVFVVxZw5cyKTyWT7LykpiRtuuKGg11FXVxcXXXRRzJ07N3uttLQ0KisrY+DAgbFu3bqYN29eVFVVZetff/310bNnzxg7dmxBYwAAAAAAUJiddub2fvvtF2PHjo3TTjst+vfvv833N2/eHL/+9a/jhz/8YWzcuDEiIubOnRs/+clP4tvf/nbevp944omYNm1attyrV6+46aabYvjw4Tn1Fi9eHOeff342RJ8xY0Ycc8wxMW7cuGbnf+ONN+YE24MHD46pU6fG/vvvn1NvxowZ8Z3vfCfq6uoiIuLqq6+OioqKGDJkSLNjAAAAAABQmOK2HmDfffeNa6+9Nh577LE4//zzGw22IyJKSkriK1/5Stx8881RXPz3aU2fPj2WL1/eZP+ZTCZuvPHGbLmoqChuvfXWbYLtiIihQ4fGHXfckfMk+C233BI1NTV5X0N1dXXcfffd2fJee+0Vd9111zbBdkTE6NGjY/LkydlyXV1d/PSnP83bPwAAAAAALdPm4fYDDzwQX/jCF6KkpKSg+pWVlfHZz342W66rq4vHH3+8yfqzZs3K+ZDKz33uc3Hsscc2Wf+QQw6Js846K1teuXJl3H///XnndNttt0VtbW22fOmll8Yee+zRZP0xY8bkzOHxxx+PV155Je8YAAAAAAAUrs3D7dLSlp98snW4HRHx8ssvN1l35syZOeXTTz+92f7HjRuXE7Y37GNrmUwmHn300Wy5d+/eceqppzY7xle+8pWc8iOPPNJsGwAAAAAACtPm4fb2OPDAA3PK7733XqP1Nm3aFE899VS2vM8++0RFRUWz/ZeXl8dRRx2VLS9YsKDRD76MiPjzn/+ccyzKiBEjCvqAy5EjR0aXLl2y5XxPnwMAAAAA0DIdMtxet25dTrmpp7+XLFkSa9euzZaPPvrogsfYuu7mzZtj/vz5jdZ74YUXmmyXT7du3eKwww7LlquqqnLmCgAAAADA9uuQ4XZVVVVOuakPoXz11VdzyluHyc0ZOnRoTvm1114raIyG7fJpOJ+mxgAAAAAAoGU6ZLg9Y8aMnPJxxx3XaL2GYfG+++5b8Bj77LNP3r6aut6wXT4N5yPcBgAAAABoHR0u3H7++efj+eefz5Z79uwZJ5xwQqN1tz4LO6LpJ7wb07BudXV1s2OUlpZGv379Wn0MAAAAAABapvHDrNvJhg0b4sorr8y59rWvfS122223RuuvX78+p9xUvcY0rNuwr8aud+/ePYqKilp9jHxaMh47Zuu1tu6kzn6GtuG/J3bElv3jHt04a5FfR10f+5nOxH6mM7Gf2VV0qHD76quvjtdffz1bHjBgQEyYMKHJ+g3D4rKysoLH6tq1a96+GrvesE1zGs5ne8LtPn36tLgNO653797tPQVoNfYzref99p5Au/Pv8o6wfxrbP3+/R1uf/P99WZ8U7j/ec9CZ2M90JvYznVmHCbfvvPPO+M1vfpMtl5WVxQ033JA3UN64cWNOuSXhdsO6NTU1zY7RpUuXgvtvyRgAdAwfP1J4suilvdp7CgAAAFCQDhFuz5w5M6677rqca9dcc00cfvjheds1DL5ra2sLHrNh3W7dujU5xoYNGyIioq6uruD+WzJGPmvWrGlxG7ZPUVFR9reZH3zwQWQymXaeEWw/+5nt5d+d/KwPO2LL/nGPbpz/vvLrqOtjP9OZ2M90JvYzHVVr/zVau4fbzz77bHzzm9+M+vr67LVLL700TjvttGbb9ujRI6fcknC74VPfDfva+vqWcLthm+Y0nE9TY+Tj5tM+MpmMtafTsJ9pCXslP+vDjmhs/7hH/511yC+F9bGf6UzsZzoT+5nOrLg9B1+4cGFccMEFOSHwWWedFeecc05B7RuGxevWrSt47IZ184XbW2zYsCEnhG+tMQAAAAAAaJl2C7eXLFkSZ599ds6HLI4dOza+9a1vFdxHeXl5Trm6urrgtu+++25OuX///s2OsWnTpnjvvfdafQwAAAAAAFqmXcLtZcuWxde//vWcc+NGjRoV11xzTYv6GThwYE75nXfeKbhtwyB8wIABrT5Gw3C7YV8AAAAAAGyfnR5uL1++PMaPHx8rV67MXqusrIz//M//jOLilk2nYVi8ePHigtsuWrQop9xUuN3wekvGaFi3qTEAAAAAAGiZnRpur1q1KsaPHx9vv/129tonPvGJuOmmm6JLly4t7m/QoEHRq1evbPnFF18suO2CBQuyX5eUlMSwYcMarXfMMcc02S6fmpqaeOWVV7LlIUOGRM+ePQueHwAAAAAATdtp4faHH34YEyZMiNdeey17raKiIqZOnRrdunXbrj5LS0vj05/+dLb87rvvxksvvdRsu+XLl+fUO/roo2PPPfdstO7hhx+ec+727NmzY+PGjc2OMWvWrKirq8uWR44c2WwbAAAAAAAKs1PC7ZqamjjvvPNyjgIZPHhw3HbbbbH77rvvUN8nn3xyTvmee+5pts19990XmzdvzpZHjRrVZN2ioqI46aSTsuW1a9fGww8/XNAYW9u6DwAAAAAAdkybh9ubNm2Kiy++OObOnZu9dvDBB8cvf/nL6N279w73P3LkyBg8eHC2/NBDD+WM1dDSpUvj9ttvz5b79esXY8eOzTvGWWedFWVlZdnylClTYvXq1U3Wf/DBB3PmMHLkyDj00EPzjgEAAAAAQOHaNNzOZDJx2WWXxezZs7PX9ttvv7jjjjuib9++rTJGUVFRTJo0KWfMCy64IJ599tlt6i5evDjGjx+fc6zIhRde2OyxKP3794+vfvWr2fL7778fZ5xxRrz11lvb1J0xY0ZcccUV2XKXLl3i4osvbtFrAgAAAAAgv9K27Pydd96J3/72t9tca+n50/vtt1889thjTX7/xBNPjLPPPjumTZsWER8dHTJ+/PgYNmxYVFRURHFxcVRVVcWcOXMik8lk240ePTrGjRtX0BwmTpwYCxcujHnz5kVExJIlS2LUqFFRWVkZAwYMiPXr18fcuXOjqqoqp91VV10VQ4YMadHrBQAAAAAgvzYNt7cOkre+tvV514UopP6kSZOipqYmpk+fnr02f/78mD9/fqP1TznllJg8eXLBcygrK4ubb745Lr744nj++ecjIqKuri5mzZrVaP3S0tKYOHFis0eeAAAAAADQcjvlAyV3huLi4rjiiiviF7/4RRx11FFN1hs8eHD86Ec/ih//+MfRtWvXFo2x5557xp133hmXX355HHDAAU3O4/jjj4977703JkyY0KL+AQAAAAAoTJs+ub3//vtvc0xHW6usrIzKysp44403YtGiRbFixYrYvHlzlJeXx6BBg3b4iJDi4uIYP358nHnmmfHyyy/H0qVLY8WKFdGtW7coLy+PI488MsrLy1vp1QAAAAAA0Jg2Dbfb00EHHRQHHXRQm/VfVFQUFRUVUVFR0WZjAAAAAADQuE5zLAkAAAAAALsO4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJCc0vaeAAAAANvvhBH17TyD99t5/IinZ3tuCwB2Rd4BAAAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQnNL2nkBbWLZsWSxevDiqq6ujvr4+ysvLY9CgQTF48OBWG2PhwoXx+uuvx/Lly6N79+5RXl4eFRUVUV5e3mpjAAAAAADQuJ0Wbq9bty4WL14cCxcujIULF8bLL78cb7/9dvb7++23X/zhD3/YoTGefPLJmDp1aixYsKDR7w8ZMiQmTJgQo0eP3q7+6+vrY/r06TF9+vR48803t/l+cXFxDB8+PC655JKoqKjYrjEAAAAAAGhem4fbv/zlL+OBBx6Iv/71r1FfX98mY2Qymbj22mvjrrvuyluvqqoqvvnNb8bs2bPjuuuui7KysoLHWL16dVxyySXx3HPPNVmnvr4+nnnmmXj++edj0qRJ8fWvf73g/gEAAAAAKFybh9tz586NJUuWtOkYU6ZM2SbYHjZsWBxxxBFRUlISVVVVMWfOnMhkMhER8bvf/S5KSkrihhtuKKj/urq6uOiii2Lu3LnZa6WlpVFZWRkDBw6MdevWxbx586Kqqipb//rrr4+ePXvG2LFjW+lVAgAAAACwRbucud2jR4/4+Mc/HosWLYr169fvUF9PPPFETJs2LVvu1atX3HTTTTF8+PCceosXL47zzz8/qqurIyJixowZccwxx8S4ceOaHePGG2/MCbYHDx4cU6dOjf333z+n3owZM+I73/lO1NXVRUTE1VdfHRUVFTFkyJDtfn0AAAAAAGyruK0H6Nq1a1RUVMTpp58eP/zhD+Phhx+OF154Ie6+++7YY489dqjvTCYTN954Y7ZcVFQUt9566zbBdkTE0KFD44477oiuXbtmr91yyy1RU1OTd4zq6uq4++67s+W99tor7rrrrm2C7YiI0aNHx+TJk7Plurq6+OlPf9qi1wQAAAAAQPPa/MntH//4x23W96xZs3KOPPnc5z4Xxx57bJP1DznkkDjrrLPi1ltvjYiIlStXxv333x//9m//1mSb2267LWpra7PlSy+9NG8oP2bMmPg//+f/ZJ/0fvzxx+OVV16JQw89tODXBQAAAABAfm3+5HZbmjlzZk759NNPb7bNuHHjoqSkpMk+tpbJZOLRRx/Nlnv37h2nnnpqs2N85StfySk/8sgjzbYBAAAAAKBwyYbbmzZtiqeeeipb3meffaKioqLZduXl5XHUUUdlywsWLIhVq1Y1WvfPf/5zLF++PFseMWJEzrEmTRk5cmR06dIlW3788cebbQMAAAAAQOGSDbeXLFkSa9euzZaPPvrogttuXXfz5s0xf/78Ruu98MILTbbLp1u3bnHYYYdly1VVVTlzBQAAAABgxyQbbr/66qs55a3D5OYMHTo0p/zaa68VNEbDdvk0nE9TYwAAAAAA0HLJhtsNw+J999234Lb77LNP3r6aut6wXT4N5yPcBgAAAABoPcmG21ufhR0R0b9//4LbNqxbXV3d7BilpaXRr1+/Vh8DAAAAAICWK23vCWyv9evX55R32223gts2rNuwr8aud+/ePYqKilp9jOa0ZEx2zNZrbd1Jnf3M9rJf8rM+7Igt+8c9unHWIj/rk5/1oTW4P9OZ2M/sKjpNuF1WVlZw265du+btq7HrDds0p+F8tjfc7tOnz3a1Y8f07t27vacArcZ+bon323sC7S7/vzvWx7/LO8L+aWz//P0ebX3cf/KzPvm5P9PavIemM7Gf6cySPZZk48aNOeWWhNsN69bU1DQ7RpcuXVowu8LHAAAAAACg5ZJ9crvhk9S1tbUFt21Yt1u3bk2OsWHDhoiIqKura9H8Ch2jOWvWrNmudrRcUVFR9reZH3zwQWQymXaeEWw/+5nt5d+d/KwPO2LL/nGPbpz/vvKzPvlZH1qD+zOdif1MR9Xaf22VbLjdo0ePnHJLwu2GT3037Gvr61vC7YZtmtNwPk2N0Rw3n/aRyWSsPZ2G/UxL2Cv5WR92RGP7xz3676xDftYnP+tDa3N/pjOxn+nMkj2WpGFYvG7duoLbNqybL9zeYsOGDVFfX9/qYwAAAAAA0HLJhtvl5eU55erq6oLbvvvuuznl/v37NzvGpk2b4r333mv1MQAAAAAAaLlkw+2BAwfmlN95552C2zYMwgcMGNDqYzQMtxv2BQAAAADA9us04fbixYsLbrto0aKcclPhdsPrLRmjYd2mxgAAAAAAoOWSDbcHDRoUvXr1ypZffPHFgtsuWLAg+3VJSUkMGzas0XrHHHNMk+3yqampiVdeeSVbHjJkSPTs2bPg+QEAAAAAkF+y4XZpaWl8+tOfzpbffffdeOmll5ptt3z58px6Rx99dOy5556N1j388MNzzt2ePXt2bNy4sdkxZs2aFXV1ddnyyJEjm20DAAAAAEDhkg23IyJOPvnknPI999zTbJv77rsvNm/enC2PGjWqybpFRUVx0kknZctr166Nhx9+uKAxtrZ1HwAAAAAA7Likw+2RI0fG4MGDs+WHHnoo5s6d22T9pUuXxu23354t9+vXL8aOHZt3jLPOOivKysqy5SlTpsTq1aubrP/ggw/mzGHkyJFx6KGH5h0DAAAAAICWSTrcLioqikmTJmXLmUwmLrjggnj22We3qbt48eIYP358zrEiF154YXTr1i3vGP3794+vfvWr2fL7778fZ5xxRrz11lvb1J0xY0ZcccUV2XKXLl3i4osvbtFrAgAAAACgeaVtPcDbb78dn/nMZxr93tbHg7z99tsxdOjQRuvdcccd8YlPfKLR75144olx9tlnx7Rp0yLio6NDxo8fH8OGDYuKioooLi6OqqqqmDNnTmQymWy70aNHx7hx4wp6DRMnToyFCxfGvHnzIiJiyZIlMWrUqKisrIwBAwbE+vXrY+7cuVFVVZXT7qqrroohQ4YUNAYAAAAAAIVr83A7k8nkhNj5NFVv61C6MZMmTYqampqYPn169tr8+fNj/vz5jdY/5ZRTYvLkyQXNKSKirKwsbr755rj44ovj+eefj4iIurq6mDVrVqP1S0tLY+LEic0eeQIAAAAAwPZJ+liSLYqLi+OKK66IX/ziF3HUUUc1WW/w4MHxox/9KH784x9H165dWzTGnnvuGXfeeWdcfvnlccABBzQ5j+OPPz7uvffemDBhQov6BwAAAACgcG3+5Pb++++/zXEdbaWysjIqKyvjjTfeiEWLFsWKFSti8+bNUV5eHoMGDdrhI0KKi4tj/PjxceaZZ8bLL78cS5cujRUrVkS3bt2ivLw8jjzyyCgvL2+lVwMAAAAAQFPaPNxuDwcddFAcdNBBbdZ/UVFRVFRUREVFRZuNAQAAAABA0zrFsSQAAAAAAOxahNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAckrbewIAAJ3BCSPq23sK7e7p2Z6bAAAAdh4/gQAAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJAc4TYAAAAAAMkRbgMAAAAAkBzhNgAAAAAAyRFuAwAAAACQHOE2AAAAAADJEW4DAAAAAJCc0vaeAAAAAABpOmFEfXtPoV09Pdtzo9Ce/BcIAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHJK23sCAAAA0FZOGFHf3lNod0/P9lwbAJ2Tf+EAAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDklLb3BAAAAID2ccKI+vaeQrt7erbn/gBS5Q4OAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkR7gNAAAAAEByhNsAAAAAACRHuA0AAAAAQHKE2wAAAAAAJEe4DQAAAABAcoTbAAAAAAAkp7S9JwAAAAAAndEJI+rbcfT323Hsjzw923O1tC07DAAAAACA5HhyGwAAAKAR7fvUbcfgyVugI3OHAgAAAAAgOcJtAAAAAACSI9wGAAAAACA5ztwG2IU4M9CZgQAAANBZ+AkfAAAAAIDkCLcBAAAAAEiOcBsAAAAAgOQItwEAAAAASI5wGwAAAACA5Ai3AQAAAABIjnAbAAAAAIDkCLcBAAAAAEhOaXtPIGVr1qyJ+fPnR3V1dXz44Yex9957x/777x9HH310lJSUtPf0AAAAAAA6LeH2dli6dGlMmTIlZs+eHXV1ddt8v1+/fvHlL385zj333CgrK2uHGQIAAAAAdG6OJWmhhx56KD7/+c/HY4891miwHRGxcuXKuOWWW+LLX/5yvPXWWzt5hgAAAAAAnZ8nt1vgySefjMsuuyzq6+uz1w4++OD45Cc/GX369Illy5bFE088ETU1NRERsXjx4jj33HPjv//7v2P33Xdvr2kDAAAAAHQ6wu0CrVixIiZOnJgNtouKiuLb3/52nHnmmVFc/PcH4FetWhUXX3xxPP/88xER8de//jW+973vxY033tgu8wYAAAAA6IwcS1KgqVOnxrp167Lliy66KL72ta/lBNsREXvuuWfcdtttMXDgwOy1//mf/4nFixfvtLkCAAAAAHR2wu0CvPfee3H//fdnywceeGCcc845Tdbv2rVrXHnlldlyJpOJqVOntukcAQAAAAB2JcLtAjz++OM5Hx75pS99Kbp06ZK3zfDhw2PAgAHZ8pNPPhnr169vszkCAAAAAOxKhNsF+MMf/pBTHjVqVEHtTjrppOzXGzdujGeeeaZV5wUAAAAAsKsSbhfghRdeyH7dt2/fOOCAAwpqd/TRR+eU586d26rzAgAAAADYVZW29wQ6uuXLl8ff/va3bPmwww4ruO3QoUNzyq+++mqrzaszO2FEfTuO/n47jv13T8/2e6ft1b77p2OwfwAAAIBdgXC7Ga+99lpOed999y24bd++faNLly7Z87qXLl3aqnNj1yS8Fd4CAAAA4FiSZi1fvjyn3L9//4LbFhUVRXl5eZN9AQAAAACwfTy53Yz169fnlHv06NGi9rvttlv2602bNsXGjRuja9euBbcvKipq0Xh0Dv5/z8/65FdUVJSzRtYrl/XIz/rkZ33ysz75bVkf9+jGWYv8rE9+1ic/65Of+3N+1iI/65Nfc+vzqcrNO2kmHdMzT5a09xSSJ9xuRsNwuyXBdGP1161b16I++vTp06LxOoeOce51e8r//7v1sT75NVyf3r17b1WyPvZPftYnP+uTn/XJr7H1+fs92vrYP/lZn/ysT37WJz/35/yazyV27TWyPvlZn/x2zdyvdQm3m7Fx48accpcuXVrUvqysLG9/bGvRS3u19xQ6NOuTn/XJz/rkZ33ysz75WZ/8rE9+1ic/65Of9cnP+uRnffKzPs2zRvlZn/ysDzvKmdvNaPiU9ZYPhyxUbW1t3v4AAAAAAGg54XYzGp6x3dInrxvW3/oMbgAAAAAAto9wuxkNw+1169a1qP3W9UtLSz25DQAAAADQCoTbzSgvL88pL1++vOC2mUwmp37DvgAAAAAA2D7C7WYMHDgwp/z2228X3Pa9997LOaN7wIABrTYvAAAAAIBdmXC7GXvvvXf07NkzW/7LX/5ScNvFixfnlIXbAAAAAACtQ7hdgGOOOSb79fvvvx/Lli0rqN38+fNzyscee2yrzgsAAAAAYFcl3C7AyJEjc8ozZ84sqN0jjzyS/bpr167xqU99qlXnBQAAAACwqxJuF+Cf/umfokuXLtny/fffn3OWdmOeffbZWLp0abZcWVkZPXr0aLM5AgAAAADsSkrbewIp6Nu3b3zpS1+KX/3qVxERsWzZsvjFL34R//7v/95o/Y0bN8bkyZOz5aKiojj//PN3ylxTtW7duvjzn/8cb7zxRnzwwQeRyWSiZ8+esd9++0VFRUX06dNnh8d47733YuHChfHuu+/Ghx9+GKWlpdGrV68YOHBgDB06NLp167bdfdfU1MT/+3//L1599dVYvXp11NTURK9evaJv375x5JFHRv/+/Xd4/qQj9f3ckW3evDkWLFgQb775ZqxcuTJ233336N+/fwwbNqxV1pVt2c90JjtjP69atSrmzZsXK1eujA8//DD23HPP6N+/f/zDP/xDdO/efcdfRETU1tbGCy+8EG+//XasWrUq+vTpkx2jvR6mcH/e+VLfz94/s7XU93NH5v6889nPsHMJtwt07rnnxoMPPhjr1q2LiIibb745evToEWeeeWYUF//9AfhVq1bFxRdfHH/961+z10455ZQYOnToTp9za1i3bl0sXrw4Fi5cGAsXLoyXX3453n777ez399tvv/jDH/6w3f2//PLLMW3atHj88cdj06ZNjdYpKiqK4cOHx9e//vX4x3/8xxaP8fvf/z7uvPPOWLBgQZN1unbtGieffHKcc845MXDgwIL6ffXVV2PmzJnxzDPPxMKFC/M+zf+xj30svvrVr8YXv/jFnL8CaG0333xz3HLLLdvV9rzzzouJEye28ow6Fvu5aZdddln85je/afF8IiImT54cY8eO3a62haqtrY2f//zn8etf/zpWrly5zfe7dOkSJ554Ylx66aVx8MEHt+lcOgr7uXE7ch/c2ic+8YmYPn36Dvezhftzfp1hPz/77LNx8803x/z58yOTyWzz/R49esRnPvOZmDRp0naHdh9++GH85Cc/iRkzZsQHH3zQ6BgnnXRSXHrppdGvX7/tGqOl3J+3ZT83zfvn9NjPTfP+OT32c+O8fyZ1wu0ClZeXx4033hjnn39+1NfXRyaTieuuuy7uu+++OO6446JPnz7xxhtvxBNPPBE1NTXZdh/72MfimmuuaceZb59f/vKX8cADD8Rf//rXqK+vb5Mxbr755pg6dWps3rw5b71MJhNz5syJOXPmxOc///n4wQ9+EKWlzW/d9evXx6RJk+KJJ55otu7GjRvjwQcfjP/5n/+Jyy67LE4//fS89a+88sr49a9/3Wy/W/z1r3+N73//+/HrX/86pkyZEgMGDCi4LTvOfs6/nzu6N998My666KL4y1/+0mSdurq6ePTRR+Ppp5+Oa665Jv7X//pfO3GGO5f9vHP2s6PEdo7OsJ83bdoU11xzTfz3f/933nrr16+Phx56KJ544om49tpr4zOf+UyLXseiRYvioosuyvkhvLExfvOb38STTz4ZU6ZMieOPP75FY7SU+3Mu+zk/75/TYj+nzf05l/28c3j/THsRbrfAiBEj4oc//GF8//vfjw0bNkRExOuvvx6vv/56o/UPO+ywuOWWW2L33XffibNsHXPnzo0lS5a0Wf833XRT/OxnP8u51qtXrzj++OPjwAMPjJKSkqiuro7nnnsu3n333WydBx54IGpra2PKlCl5+9+8eXOcd9558ac//Snn+n777RfHHXdc7L333rFp06ZYtmxZPPPMM/Hhhx9GxEe/3b7mmmuitLQ0vvzlLzfZ//vvv7/Ntb322iuOOeaYKC8vj169esXq1atj/vz58corr2TrLF68OM4444y455574sADD8z7GlpDSUlJm9RNjf2cfz83piX7oaioqEV9t8Tf/va3OOecc+K1117LXuvevXuceOKJccABB8SaNWvi2WefjWXLlkXER2/mvv3tb0efPn2260mIFNjP+fdzUVHRdt3PGv4g8i//8i8t7qMl3J8/kvp+joiYNGlSzoeIR3z0cMMnPvGJ6NOnT6xatSqee+657PvFtWvXxsSJE2PatGkxfPjwgl7HO++8E+ecc06899572Wu9e/eOE088Mfr37x8rV66Mp556Kvtk3qpVq+Lf//3f4957741DDz20oDFayv15W/Zz/v3s/XNa7OfC7s9b8/6547Kf8+9n759JnXC7hcaMGRMVFRUxZcqUePLJJxv9U7p+/frFl770pTjvvPOirKysHWbZNnr06BEf//jHY9GiRbF+/frt7qeqqip+/vOf51w7/fTT4//7//6/bX7Tt3nz5rjvvvvihz/8YXatH3744Tj55JPjn//5n5sc47777ssJTrp06RJXXXVVfOELX8g5Ribioz/xve666+L+++/PXrvuuutixIgRUV5enve19OzZM0aPHh1jx46Nww47rNE6zz33XFx22WXZf8RWrlwZkyZNivvvv79N39REfPTDAI2zn5u2o3+O15q++93v5rwx/+QnPxk/+clPYs8998xe27x5c9xxxx1xww03RCaTic2bN8fEiRNj5syZ0bdv3/aY9k5nP//dhRdeGBdeeGFhL/j/7/33349Pf/rT2T8f7dGjR4waNapFfbSU+3PTUtrPd955Z84Pmj169Ihrr702Tj755Jx6mUwm/u///b9x9dVXR21tbdTV1cU3vvGN+P3vf9/sfSqTycQ3vvGNnGD71FNPjWuuuSZ222237LUtPxzfcccdEfFRWHHBBRfE73//++jatWveMbaH+3Nh7Odtef+cLvu5ad4/p8d+/jvvn0mdcHs7DBgwIH72s59lnyyorq6OdevWRd++feOAAw6IYcOGJf9boq5du0ZFRUUcccQRcfjhh8cRRxwRAwcOjOLi4vinf/qnHbr533PPPTm/4Tv11FPje9/7XqN1S0pKsn+CvvXxLvfee2/em//dd9+dU77yyiubPNNs9913j8mTJ8fatWuz/2CsX78+HnzwwTj33HMbbbPbbrvF+eefHxMmTGj2yfzjjjsu7rnnnhg7dmz2B9OXX345Zs6cuc0/RrQN+zn/fu6oFi5cmPMm7mMf+1jcdttt2/zSsKSkJM4666zYsGFD3HzzzRHx0RMr//t//+/47ne/u1PnvDPYz62/n3/729/mnIv4L//yLzmhIW0n5f28bt26uPXWW7PloqKiuPXWWxt9OqqoqCi++MUvxm677RaXXHJJRHz0RNWtt97a5Jy2mDlzZrz88svZ8vHHHx//+Z//uU3AV1ZWFpdffnmsXbs2HnjggYiIePvtt+Pee++N8ePH5x2jpdyfG2c/59/P3j+nxX5u/v7cEbk/N85+bv397P0zHUlx81Voyh577BEjR46M008/Pc4555z4/Oc/H8cee2zywXZExI9//OO4//7743vf+158/vOfj0GDBm3zRN32eu6553LKF1xwQbNtxo0bl/PBSH/605+aPCtr+fLlOb+p7tevX0Ef1nHRRRflnefWfvjDH8Yll1xS8JEz++67b/Yfly0a/kkRbcd+zr+fO6qpU6fmlK+88sq8fw1z7rnn5vy58n333RerVq1qs/m1F/u59fdzww+DOu2001q1f5qW8n5++OGHY82aNdnyqaee2uyf/Z588sk5f/L961//OpYvX563zdb3wuLi4vj+97+f98nVyy67LOf9ybRp05r8UKvt5f7cOPs5/372/jkt9nPz9+eOyP25cfZz6+9n75/pSITb7HRb31R79uwZAwcObLZNSUlJHHHEEdlyXV1dzg2+qf4jIioqKgr6h2vQoEE5b7ZXrFjRZN1CPvChoVGjRuXMY+HChS3ug46nM+znjmjdunXx9NNPZ8sDBw6M4447Lm+bLl265ASltbW1HebPQ1OxK+7nV155Jeds1/322y8++clPtlr/tJ+23s/PPPNMTvmLX/xiQfP60pe+lNP/rFmzmqz7+uuvR1VVVbZ8wgknxEEHHZS3/969e8dnP/vZbPm9996LuXPnFjS3Qrg/t4/OsJ+9f2aLzrCfOyL35/axK+5n75/paITb7HRb/0ayW7duBbcr9JN3M5lMTrl79+4Fj7F13dY+z69nz54555w19qE6pGdX3c9t7Y9//GPU1tZmyyeddFJB7Rqe8/b444+36rw6u11xP285vmGLMWPGJPffC41r6/289bmPxcXFceSRRxbU7uijj84pP/bYY03WbXgPK/Re2PDYhta8F7o/t4/OsJ+3h/fPndOuup/bmvtz+9gV97P3z3Q0wm12uv333z/79Zo1a6Kmpqagdm+//Xb26969e8cee+zRbP8REe+8805B/W/YsCFWr16dLbfFp7FvfZbX9jy9QsezK+/ntjRv3ryccsM3Z0058MADY6+99mqyH/Lb1fbzpk2b4uGHH865NmbMmFbpm/bX1vt56z3Zq1evgn9Z069fv5wj7F544YWcszq3tr33woqKipwxWvNe6P7cPjrDft5e3j93Prvyfm5L7s/tY1fbz94/0xEJt9nptj77qa6urqDfIL755ps5H6ZUWVnZ5G8G99prrxg6dGi2vHDhwoIClEceeSTnTMoTTzyx2TYtsWzZspw35/3792/V/mkfu+p+bmtbn8scETlr0JzDDjss+/XatWtj5cqVrTavzm5X289PPfVUzlOA//AP/5DcL4JoWlvv540bN2a/zneeaWO2rl9bWxtvvvlmo/W2vhd269YtBgwYUFD/u+22W85eXrp06TZ/ObG93J/bR2fYz9vD++fOaVfdz23N/bl97Gr72ftnOiLhNjvdGWeckfMnONdff33em+z69evj29/+djbYKCsri/POOy/vGOeee272602bNsVll12W9zeoS5cujR/96EfZ8sEHHxyjR49u9rW0xIwZM3LKzZ1/1homT54cX/jCF+L444+PI488Mv7xH/8xTjvttPj+978fjz76aKt/wNSuqDPu5w8//DC+973vxejRo+OTn/xkHHXUUVFZWRljx46Na6+9Nv74xz+2WkjSlK3fnJeVleU8TdKcfffdt8m++P+1d+9BUZX/H8DfIpdg5WYq4oqZFmiFmYk6mjNJmpcK8lZaNpbQYI3azaGaKcER+1pNmJkaVgZdVLJMyDCHLlhaKKWlYYpGGEKEJKAguBvs7w+H89tz9nZ22ds5+37NfGd4jue2fD99+Jxnz/M81qkxnq3x5EI4zM+u5+p4Dg0NFX5uaWmRfV86nQ5tbW2ibX/88YfJfnq9HmfPnhXa/fv3t2vIr3EubG9vF70h1h3Mz56h9Hh2FOtndVJjPLN+9l1qjGdrWD+TN2LnNrmdVqtFVlaWsDjMuXPnMHv2bOTk5OCPP/6ATqdDR0cHamtrsWPHDiQnJ+Pnn38GcGXhhdWrV9tcpGHatGmYP3++0D548CBmzpyJzz77DHV1dejo6IBOp8OpU6ewYcMGzJ49W/j2MTIyEuvXr0dQUJDTPnNTUxM++OAD0TbpfJiu8MEHH+C3337Dv//+i/b2dtTX1+P48ePYtm0bli5dijvvvBOff/65y+9DzdQYz83NzcjPz8fJkyfR1NSEtrY21NXV4ejRo8jLy0NqaiqSkpJEC9Y4m/GCgfZ26ERFRYnadXV1TrsvtVNjPFvS1NSEb7/9VmgHBwebzDnpSszPrufqeO7Xr5/w86VLl0Qd0dacOnXKZJu5PNXQ0CB6SIuOjpZ1/i6uyoXMz56h9Hh2BOtn9VJjPLN+9l1qjGdLWD+Tt+KkZeQRd911FyIiIpCRkYHq6mo0NzcjOzsb2dnZFo+Ji4vDiy++iISEBFnXyMjIwODBg7F+/Xq0tLSgsrISzz33nNVjJk2ahBUrVph8c91dq1evFq1+PG7cOIwePdqp13BETU0Nli9fjrKyMmRmZopWoyf5fC2eAaCiogKpqalYsmQJlixZ4tRzt7e3i+aDk7vYSpdevXqJ2sbDmck2X4nnL774Anq9XmjfeeedJrHjSczPzuHKeB41ahROnDghtEtKSrBgwQKb92T8UNiltbXVZJs0d9mbCzUajdXzOYL52bOUHM+OYP2sbr4WzwDrZzXzlXhm/Uzeiv9Pk8dMmDABRUVFWLRokWihA3OmT5+OzZs3y+44AYAePXrg4YcfRlFRkc35WQMCArB06VJkZ2c7vSNw586doiGVQUFBWLFihVOvYSwgIACJiYlYuXIlPvnkExw6dAjl5eUoKyvDZ599hvT0dGi1WtEx+fn5WLNmjcvuyReoIZ5DQkIwY8YMrFmzBgUFBSgrK0N5eTlKS0uRn5+PpUuXioY3GgwGrF+/Hnl5ebKvIYe0mLb3LV3pXHQszu2nhni2RbrKuzuGVDI/e4ar4lkau7m5uTYXkWpqasK2bdtMtpvLU9IHUHtzoXR/Z+RC5mfPU2o824v1s29QQzyzfqYuaohnW1g/k7di5zZ5TElJCZKTk7Flyxabq/bu2bMHkydPxksvvSRaUMGazs5ObNmyBUlJSWa/tTSm1+uxfv16JCYmIj8/X/ZnsOXXX39FZmamaNuzzz5rc9i+oyZPnox9+/Zh06ZNmDdvHuLj4xEeHg5/f3+EhYXhhhtuQEpKCvbu3YuHHnpIdGxeXh4OHDjgkvvyBUqP53nz5uH777/H2rVrMXPmTAwbNgxhYWHw9/dHZGQkRo4ciSVLlqC4uNhk6NnLL7/s1Pk1pb+TgIAAu46XFudyVyyn/6f0eLbl9OnT+O2334S2Vqt1+TyuzM+e46p4njhxImJjY4V2dXU1nn/+eYvzPV6+fBnPPPMMGhoazP6blE6nE7W9IRcyP3ueUuPZHqyffYfS45n1MxlTejzbwvqZvBmnJSGP2LhxI9atWye0e/fujYcffhi33347Bg4cCH9/f9TX1+PgwYPIzc3FqVOnoNfrkZeXh19//RVbtmwxGW5rTKfTYenSpSgpKRG2xcbGYuHChRg7diyioqKg1+tRXV2NkpIS5OXl4fz582hsbMSKFStQUVGBF198sVuf8c8//0RaWproD8isWbPw4IMPduu81hivcm1NQEAAXnjhBeh0OlFn0dq1azFhwgRX3Z5qqSGeR44cKeuzajQarF27Fm1tbdi3bx8AoKOjA2+88Ybod9Ad0jdNjIe+ySHtELrqqqu6fU++RA3xbIt0IZzk5GS75qV0BPOzZ7gynnv06IGVK1fioYceEh4wi4qKUFVVhbS0NIwdOxbh4eFobGzEDz/8gE2bNgkdGRqNRvRmtrnh49KOBm/IhczPnqXkeJaL9bPvUEM8s36mLmqIZ1tYP5M345vb5HZFRUWixD98+HAUFhYiLS0NcXFx0Gg0CAoKQkxMDObMmYOdO3fi3nvvFfb/5ZdfbA5LXL16tajj5N5778XOnTsxZ84cxMTEIDAwEBqNBsOGDcPixYtRWFgoSpwffvghPv74Y4c/Y11dHVJSUtDY2ChsmzRpElatWuXwOV0hPT0dkZGRQvvYsWNWV3YmU74Qz1J+fn7IzMwUvRHyzTffmKzG7Shp0WXvGwbS4rw7RZyv8YV47ujoEA11B9y7yrtczM/d5454HjVqFFauXCkafnz8+HE88cQTGDduHIYPH47x48dj+fLlwoNm//79sWzZMtF5QkNDTc4tfci1NxdK93dGLmR+9hylx7McrJ99hy/EsxTrZ/XyhXhm/Uzejp3b5FZ6vR4vvfSS0A4KCsLGjRvRt29fi8cEBgYiKysLcXFxwrbdu3fj2LFjZvc/efKk6Nu6YcOGISsry+rQrL59+2LDhg2ib7yzs7MdGrZz/vx5LFq0CDU1NcK2hIQErFu3Dv7+3jVYolevXiarzv/4448euhvl8YV4tmTAgAEYP3680NbpdDh8+LBTzn3VVVeJCjd7Fz5paWkRtVmcy+Mr8XzgwAHU19cL7dGjR2PQoEEOncuVmJ+7xx3x3GXOnDnYvHkzYmJibN5XQkICtm7davKmU3h4uMm+0txlby6U7u+MXMj87BlqiGdbWD/7Dl+IZ0tYP6uPr8Qz62fyduzcJrfav38/zp07J7TvvvtuWQuEBQQEYNGiRaJtBQUFZvfdtWsXDAaD0H7kkUdkzTmm1Wpx9913C+3GxkZ89913No8z1tLSgtTUVNH8aTfeeCPeeustuxf1cBfpcDrjhwqyTu3xbIs0dmpra5127n79+gk///PPP6LfgS11dXWidv/+/Z12X2rmK/G8a9cuUdsb3zrpwvzsOHfEs7HbbrsNe/bswauvvoq77roLgwYNEt7UGjRoEKZNm4aNGzfi/fffh1arxdmzZ0XHm5tLuE+fPqJOPWlus8VVuZD52f3UEM/WsH72LWqPZ1tYP6uLr8Qz62fydt71NTip3i+//CJqjxkzRvax0n2NFzOwdo2xY8fadY1PP/1UaB87dgxTpkyRdWx7ezsWL16M8vJyYduQIUPwzjvvoFevXrLvwd2MV+8GIBoKStapOZ7lcGXsDB06FH///TeAK2+1NDQ0WH0DwljXccbnItt8IZ4vXryIr776SmgHBwebLPDkTZifHeeOeJYKCAhAUlISkpKSbO5r/HZWQEAAhg0bZvZ8AwcORFVVFYArHQ8Gg0H2/JbGuTA4OBharVbWcbYwP7ufGuLZEtbPvkfN8SwH62d18YV4Zv1MSsA3t8mtzp8/L2rL/WMLXHmDyZilJCW9hvQ4Z1xDSq/XY9myZSgrKxO2abVa5Obmonfv3rKv7wnSlbC99Q0Zb6TWeJZLOkegdPGz7hgyZIioffz4cdnH/v7778LPYWFhdv3OfJkvxHNRUZFoOpMpU6Z4decJ87Pj3BHPjmpraxPltOHDh1vMn8adC+3t7aisrJR1jZaWFpw5c0ZoDx482GmLPjE/u59a4lmK9bNvUms823MNY6yflc0X4pn1MykBO7fJraSJRZp4rJHuGxwcbHY/acK2Z15Wudcw1tnZifT0dGHla+DKH7Xc3FxERUXJvranSBdYkH7TSZapMZ7tIR3m5szYufXWW0XtI0eOyDruzJkz+Pfff4X26NGjnXZPaucL8Sxd5X3WrFl2n8OdmJ8d5454dlRxcbEo9o2n3JGS5kK5c7MePXoUnZ2dQtuZuZD52f3UEs/GWD/7LjXGsz1YP6uLL8Qz62dSAnZuk1tJ38IwnlvPltOnT4valpKUdLsrrmEsIyMDRUVFQjsiIgLvvfeeVy6wYI7xQwVw5RtdkkeN8SyXwWDA999/L9rmzNiZOHGiqCN07969so778ssvRe077rjDafekdmqP56qqKtFD3oABAzBu3Di7zuFuzM+Oc0c8O2rr1q3Cz4GBgUhOTra4rzSHeUMuZH52P7XEszHWz75LjfEsF+tn9VF7PLN+JqVg5za51YgRI0TtPXv2yD529+7dorZ0oQBL1/jiiy9knd9gMJjsa+kaXV555RV8/PHHQjs0NBTvvvsurr/+elnX9LTDhw+LVg8ODAy0a54wX6e2eLbH7t27hXlgASA6OhrXXXed086v0WgwceJEoV1ZWYnS0lKrx+j1enzyySdCOzAwEImJiU67J7VTezxL3zpJTk522jQNrsD83D3uiGdHFBYWih4S586di4iICIv7Dx48WDQ/5oEDB0TTjZjT3Nws6jTs06cPEhISHL9pCeZn91NLPHdh/ezb1BbP9mD9rD5qj2fWz6QU7Nwmt0pISEBYWJjQPn78OD766CObxx05ckRUBAPApEmTzO4r/WO8fft2WYsz5ObmoqKiQmhHRETglltusbh/Tk4O3n33XaEdHByMnJwc3HTTTTavJVdiYiLi4uKE/0mHsRmrqKiwa0Xs2tpaPPXUU6Jt999/v9OHQ6mZWuL55MmTNs9n7Pfff0dmZqZo28KFC20eZ088A8DixYtF7VWrVkGn01ncPycnB3/99ZfQnjdvntfP2elN1BLP5hgMBhQWFoq2dXeVd+Zn7+aOeLbX4cOHkZGRIbT79euHp59+2uZxjz32mPBzZ2cnMjMzrcbTmjVrcPHiRaH96KOPwt/f+hryzM/eTU3xzPqZ1BLPrJ8JUE88m8P6mZSEndvkVkFBQUhJSRFty8rKwoYNG8zOT2UwGPD5558jNTUVer1e2D5p0iSLRfDIkSMxYcIEoX358mUsWrQIX375pdnkeOnSJaxduxYvv/yyaHtaWprFBRfy8/ORnZ0ttAMDA7Fx40aTec7c6fXXX0dSUhK2b99usrCFsf/++w+7du3CrFmzUFdXJ2y/+uqrRQ/QZJta4jk9PR3z5s1DQUEBWlpaLH7e9vZ25OXlYf78+aL9rr32Wjz44IMWj3PUiBEjMHXqVKF9+vRppKammsR3Z2cntmzZgjfffFPYFhoairS0NKffk5qpJZ7NKS0tRW1trdC+9dZbcc0118g+vruYn93PHfEMXMlLjz76KEpKSkTHGWtvb8fmzZvxyCOP4NKlSwAAPz8/rFq1StaCTFOnTkV8fLzQ/uGHH7B8+XK0traK9tPpdPjf//6HnTt3Ctu0Wi3mz59v8xr2Yn52L7XEM+tnAtQTz6yfCVBPPJvD+pmUpIfBnq9CyGfU1NRgypQpZv+to6ND1O7Zs6fZ/XJzc80OAdHpdEhJScGhQ4dE2yMiIjB+/HgMHDgQPXv2RH19PUpLS1FTUyPaLzo6Gvn5+VYXm6mpqcH999+Pc+fOibYPGjQIY8aMQb9+/fDff//hzJkzKC0tRXNzs2i/2267DTk5ORbfdEpMTDS5L0u/B2uKi4uh1Wot/rv0Ol9//TUGDhxodt/HH38cX3/9tXAvQ4cORVxcHPr06QONRoNLly6hpqYGZWVlJn8cQkJCkJeXZzKsSi0Yz9bjOTk5GSdOnAAABAQEIDY2FrGxsYiMjERISAhaW1tRVVWFn376SfQ2IHBluPv27dsRExNj8f672BPPXS5cuID77rsPf/75p7AtODgYiYmJiImJQWNjI3788UfRGyc9e/ZETk6OaFimmjCercezOenp6SgoKBDaWVlZmDt3ruzjzWF+dg6lx3NFRQXuueceAFc6BW6++WYMGTIEYWFhuHDhAs6ePYvS0lLhIRMAevTogYyMDLs6nWtrazFnzhzRgl/h4eFITExEVFQUGhoasG/fPtF/VyEhIdi2bZtoWhNLmJ+dg/FsHetnZWE8W8f6WVkYz/Zj/UxKIv/JkHyKwWAwSfKWWNrP0vcmXW9pPP/88yguLha2NzU1ieaINGf48OF4/fXXba6irtVqkZeXhyeffFI0lP2vv/4S/RE3Z8aMGcjKyrKr4wSw/HuwxlXfLXV0dKCiokL02S2JjY1Fdna2YuY5dATjWX486/V6lJeXo7y83Oa+Y8aMwSuvvILo6GhZ53ZEWFgY3n77bSxZskR4gGhra7M4V3NISAhWrlyp2sIcYDzbm59bW1tFnyU4OBjTp0+XfbyzMT+LKT2ejV28eBH79+/H/v37Le4TERGB1atXY/LkybLPC1xZwGnz5s1YtmyZ8FDY3NxsMhdml8jISLz22muyOrYdxfxsivFsP9bP3ovxLB/rZ+/HeLYP62dSGnZuk0eEhobizTffxFdffYX3338fhw4dslqoXnfddXjggQcwd+5c2UPRhw4dik8//RT5+fnYunUrKisrLe7r5+eHsWPHYuHChU6b68rdZs6ciZ49e+Lnn38Wvdlljp+fH+Lj4/HAAw9gxowZdg3vJ1NKj+cFCxaguLgYR44cwYULF6zu6+/vj4SEBCxYsACJiYnw83P97FYxMTHYsWMHNm3ahB07dpi88QtceWPm9ttvxzPPPINrr73W5fekZkqPZ6m9e/eK3mKZMmWKQ0Mzu4P52XNcHc99+vTBzJkzcfDgQdHQXanevXtj9uzZSElJQWRkpEOf5aabbkJBQQHWrVuHwsJCk1ENwJWHz6lTp2L58uXo27evQ9exB/Oze6kpnr0F87PnKD2eWT+TMaXHsxTrZ1IaTktCXuHixYs4evQozp49iwsXLqCzsxO9evVCVFQU4uPj7fom05K6ujocO3YM9fX1aGlpgZ+fH8LCwhATE4MRI0a4PVm70j///IPKykr8/fffaGxsxOXLlxEUFISwsDAMGDAAI0aMQGhoqKdvU7WUHM/V1dWoqqpCXV0dmpubcfnyZYSEhAjnjo+P9+iiHB0dHTh8+DCqq6vR0NAAjUaD/v37Y9SoUYp/wPZWSo5nb8T87FmujOfq6mqcOHECtbW1aG1thb+/P66++mrExsbixhtvdGpnhk6nw08//YSamhqcP38e4eHhiI6OxujRo6HRaJx2HXswP7ufWuLZWzA/e5aS45n1M0kpOZ69EfMz2cLObSIiIiIiIiIiIiJSHPV9pUNEREREREREREREqsfObSIiIiIiIiIiIiJSHHZuExEREREREREREZHisHObiIiIiIiIiIiIiBSHndtEREREREREREREpDjs3CYiIiIiIiIiIiIixWHnNhEREREREREREREpDju3iYiIiIiIiIiIiEhx2LlNRERERERERERERIrDzm0iIiIiIiIiIiIiUhx2bhMRERERERERERGR4rBzm4iIiIiIiIiIiIgUh53bRERERERERERERKQ47NwmIiIiIiIiIiIiIsVh5zYRERERERERERERKQ47t4mIiIiIiIiIiIhIcdi5TURERERERERERESKw85tIiIiIiIiIiIiIlIcdm4TERERERERERERkeKwc5uIiIiIiIiIiIiIFIed20RERERERERERESkOOzcJiIiIiIiIiIiIiLFYec2ERERERERERERESkOO7eJiIiIiIiIiIiISHHYuU1EREREREREREREisPObSIiIiIiIiIiIiJSnP8DlCf1eYnVnY8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1453,13 +1453,13 @@ "pytensor: 2.18.6\n", "xarray : 2023.11.0\n", "\n", - "matplotlib : 3.8.2\n", - "pymc_experimental: 0.0.15\n", - "pandas : 2.1.4\n", + "pymc : 5.11\n", + "numpy : 1.26.3\n", "pytensor : 2.18.6\n", + "pymc_experimental: 0.0.15\n", "arviz : 0.17.0\n", - "numpy : 1.26.3\n", - "pymc : 5.11\n", + "pandas : 2.1.4\n", + "matplotlib : 3.8.2\n", "\n", "Watermark: 2.4.3\n", "\n" diff --git a/examples/howto/marginalizing-models.myst.md b/examples/howto/marginalizing-models.myst.md index eed7ce409..cbc2fede3 100644 --- a/examples/howto/marginalizing-models.myst.md +++ b/examples/howto/marginalizing-models.myst.md @@ -84,7 +84,7 @@ with pmx.MarginalModel() as explicit_mixture: plt.hist(pm.draw(y, draws=2000, random_seed=rng), bins=30, rwidth=0.9); ``` -The other way is where we use the built-in {class}`NormalMixture ` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with {class}`pmx.MarginalModel ` instead of {class}`pm.Model `. This different class is what will allow us to marginalize out variables later. +The other way is where we use the built-in {class}`NormalMixture ` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with {class}`pmx.MarginalModel ` instead of {class}`pm.Model `. This different class is what will allow us to marginalize out variables later. ```{code-cell} ipython3 with pm.Model() as prebuilt_mixture: @@ -121,7 +121,7 @@ az.summary(idata) As we can see, the `idx` variable is gone now. We also were able to use the NUTS sampler, and the ESS has improved. -But {class}`MarginalModel ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals Date: Sat, 10 Feb 2024 17:08:43 +0100 Subject: [PATCH 4/6] Close bracket --- examples/howto/marginalizing-models.ipynb | 2 +- examples/howto/marginalizing-models.myst.md | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/howto/marginalizing-models.ipynb b/examples/howto/marginalizing-models.ipynb index 00596a99d..eda2d1e92 100644 --- a/examples/howto/marginalizing-models.ipynb +++ b/examples/howto/marginalizing-models.ipynb @@ -626,7 +626,7 @@ "source": [ "As we can see, the `idx` variable is gone now. We also were able to use the NUTS sampler, and the ESS has improved.\n", "\n", - "But {class}`MarginalModel ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals ` method." ] }, { diff --git a/examples/howto/marginalizing-models.myst.md b/examples/howto/marginalizing-models.myst.md index cbc2fede3..460167984 100644 --- a/examples/howto/marginalizing-models.myst.md +++ b/examples/howto/marginalizing-models.myst.md @@ -121,7 +121,7 @@ az.summary(idata) As we can see, the `idx` variable is gone now. We also were able to use the NUTS sampler, and the ESS has improved. -But {class}`MarginalModel ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals ` method. ```{code-cell} ipython3 explicit_mixture.recover_marginals(idata, random_seed=rng); From 3512ccee8f774792d71f665bcf845ab88ccc79a3 Mon Sep 17 00:00:00 2001 From: Rob Zinkov Date: Sun, 11 Feb 2024 00:03:13 +0100 Subject: [PATCH 5/6] Func to meth --- examples/howto/marginalizing-models.ipynb | 2 +- examples/howto/marginalizing-models.myst.md | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/howto/marginalizing-models.ipynb b/examples/howto/marginalizing-models.ipynb index eda2d1e92..630b382ed 100644 --- a/examples/howto/marginalizing-models.ipynb +++ b/examples/howto/marginalizing-models.ipynb @@ -626,7 +626,7 @@ "source": [ "As we can see, the `idx` variable is gone now. We also were able to use the NUTS sampler, and the ESS has improved.\n", "\n", - "But {class}`MarginalModel ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals ` method." + "But {class}`MarginalModel ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {meth}`recover_marginals ` method." ] }, { diff --git a/examples/howto/marginalizing-models.myst.md b/examples/howto/marginalizing-models.myst.md index 460167984..db0af5b88 100644 --- a/examples/howto/marginalizing-models.myst.md +++ b/examples/howto/marginalizing-models.myst.md @@ -121,7 +121,7 @@ az.summary(idata) As we can see, the `idx` variable is gone now. We also were able to use the NUTS sampler, and the ESS has improved. -But {class}`MarginalModel ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {func}`recover_marginals ` method. +But {class}`MarginalModel ` has a distinct advantage. It still knows about the discrete variables that were marginalized out, and we can obtain estimates for the posterior of `idx` given the other variables. We do this using the {meth}`recover_marginals ` method. ```{code-cell} ipython3 explicit_mixture.recover_marginals(idata, random_seed=rng); From 06f8bb34e11bd566730677f7938d8f629d2dab87 Mon Sep 17 00:00:00 2001 From: Rob Zinkov Date: Fri, 16 Feb 2024 01:31:46 +0100 Subject: [PATCH 6/6] Fix typo --- examples/howto/marginalizing-models.ipynb | 2 +- examples/howto/marginalizing-models.myst.md | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/howto/marginalizing-models.ipynb b/examples/howto/marginalizing-models.ipynb index 630b382ed..c32bce84a 100644 --- a/examples/howto/marginalizing-models.ipynb +++ b/examples/howto/marginalizing-models.ipynb @@ -148,7 +148,7 @@ "id": "2e1b1cab-56ce-4ddd-95d3-6454c8d0aae0", "metadata": {}, "source": [ - "The other way is where we use the built-in {class}`NormalMixture ` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with {class}`pmx.MarginalModel ` instead of {class}`pm.Model `. This different class is what will allow us to marginalize out variables later." + "The other way is where we use the built-in {class}`NormalMixture ` distribution. Here the mixture assignment is not an explicit variable in our model. There is nothing unique about the first model other than we initialize it with {class}`pmx.MarginalModel ` instead of {class}`pm.Model `. This different class is what will allow us to marginalize out variables later." ] }, { diff --git a/examples/howto/marginalizing-models.myst.md b/examples/howto/marginalizing-models.myst.md index db0af5b88..1d2af1a7d 100644 --- a/examples/howto/marginalizing-models.myst.md +++ b/examples/howto/marginalizing-models.myst.md @@ -84,7 +84,7 @@ with pmx.MarginalModel() as explicit_mixture: plt.hist(pm.draw(y, draws=2000, random_seed=rng), bins=30, rwidth=0.9); ``` -The other way is where we use the built-in {class}`NormalMixture ` distribution to where that choice is not our model. There is nothing unique about the first model other than we initialize it with {class}`pmx.MarginalModel ` instead of {class}`pm.Model `. This different class is what will allow us to marginalize out variables later. +The other way is where we use the built-in {class}`NormalMixture ` distribution. Here the mixture assignment is not an explicit variable in our model. There is nothing unique about the first model other than we initialize it with {class}`pmx.MarginalModel ` instead of {class}`pm.Model `. This different class is what will allow us to marginalize out variables later. ```{code-cell} ipython3 with pm.Model() as prebuilt_mixture: