diff --git a/xarray/core/dataset.py b/xarray/core/dataset.py index 74f90ce9eea..36cc76cbf8d 100644 --- a/xarray/core/dataset.py +++ b/xarray/core/dataset.py @@ -9141,7 +9141,7 @@ def polyfit( lhs = np.vander(x, order) if rcond is None: - rcond = x.shape[0] * np.finfo(x.dtype).eps # type: ignore[assignment] + rcond = x.shape[0] * np.finfo(x.dtype).eps # Weights: if w is not None: diff --git a/xarray/core/dtypes.py b/xarray/core/dtypes.py index 362cd78c689..96f660039b5 100644 --- a/xarray/core/dtypes.py +++ b/xarray/core/dtypes.py @@ -62,7 +62,7 @@ def maybe_promote(dtype: np.dtype) -> tuple[np.dtype, Any]: # N.B. these casting rules should match pandas dtype_: np.typing.DTypeLike fill_value: Any - if HAS_STRING_DTYPE and np.issubdtype(dtype, np.dtypes.StringDType()): # type: ignore[attr-defined] + if HAS_STRING_DTYPE and np.issubdtype(dtype, np.dtypes.StringDType()): # for now, we always promote string dtypes to object for consistency with existing behavior # TODO: refactor this once we have a better way to handle numpy vlen-string dtypes dtype_ = object