-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathplot.py
979 lines (834 loc) · 32.6 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
"""
Use this module directly:
import xarray.plot as xplt
Or use the methods on a DataArray or Dataset:
DataArray.plot._____
Dataset.plot._____
"""
import functools
import numpy as np
import pandas as pd
from .facetgrid import _easy_facetgrid
from .utils import (
_add_colorbar,
_assert_valid_xy,
_ensure_plottable,
_infer_interval_breaks,
_infer_xy_labels,
_process_cmap_cbar_kwargs,
_rescale_imshow_rgb,
_resolve_intervals_1dplot,
_resolve_intervals_2dplot,
_update_axes,
get_axis,
import_matplotlib_pyplot,
label_from_attrs,
)
def _infer_line_data(darray, x, y, hue):
ndims = len(darray.dims)
if x is not None and y is not None:
raise ValueError("Cannot specify both x and y kwargs for line plots.")
if x is not None:
_assert_valid_xy(darray, x, "x")
if y is not None:
_assert_valid_xy(darray, y, "y")
if ndims == 1:
huename = None
hueplt = None
huelabel = ""
if x is not None:
xplt = darray[x]
yplt = darray
elif y is not None:
xplt = darray
yplt = darray[y]
else: # Both x & y are None
dim = darray.dims[0]
xplt = darray[dim]
yplt = darray
else:
if x is None and y is None and hue is None:
raise ValueError("For 2D inputs, please specify either hue, x or y.")
if y is None:
xname, huename = _infer_xy_labels(darray=darray, x=x, y=hue)
xplt = darray[xname]
if xplt.ndim > 1:
if huename in darray.dims:
otherindex = 1 if darray.dims.index(huename) == 0 else 0
otherdim = darray.dims[otherindex]
yplt = darray.transpose(otherdim, huename, transpose_coords=False)
xplt = xplt.transpose(otherdim, huename, transpose_coords=False)
else:
raise ValueError(
"For 2D inputs, hue must be a dimension"
" i.e. one of " + repr(darray.dims)
)
else:
(xdim,) = darray[xname].dims
(huedim,) = darray[huename].dims
yplt = darray.transpose(xdim, huedim)
else:
yname, huename = _infer_xy_labels(darray=darray, x=y, y=hue)
yplt = darray[yname]
if yplt.ndim > 1:
if huename in darray.dims:
otherindex = 1 if darray.dims.index(huename) == 0 else 0
otherdim = darray.dims[otherindex]
xplt = darray.transpose(otherdim, huename, transpose_coords=False)
yplt = yplt.transpose(otherdim, huename, transpose_coords=False)
else:
raise ValueError(
"For 2D inputs, hue must be a dimension"
" i.e. one of " + repr(darray.dims)
)
else:
(ydim,) = darray[yname].dims
(huedim,) = darray[huename].dims
xplt = darray.transpose(ydim, huedim)
huelabel = label_from_attrs(darray[huename])
hueplt = darray[huename]
xlabel = label_from_attrs(xplt)
ylabel = label_from_attrs(yplt)
return xplt, yplt, hueplt, xlabel, ylabel, huelabel
def plot(
darray,
row=None,
col=None,
col_wrap=None,
ax=None,
hue=None,
rtol=0.01,
subplot_kws=None,
**kwargs,
):
"""
Default plot of DataArray using matplotlib.pyplot.
Calls xarray plotting function based on the dimensions of
darray.squeeze()
=============== ===========================
Dimensions Plotting function
--------------- ---------------------------
1 :py:func:`xarray.plot.line`
2 :py:func:`xarray.plot.pcolormesh`
Anything else :py:func:`xarray.plot.hist`
=============== ===========================
Parameters
----------
darray : DataArray
row : string, optional
If passed, make row faceted plots on this dimension name
col : string, optional
If passed, make column faceted plots on this dimension name
hue : string, optional
If passed, make faceted line plots with hue on this dimension name
col_wrap : integer, optional
Use together with ``col`` to wrap faceted plots
ax : matplotlib axes, optional
If None, uses the current axis. Not applicable when using facets.
rtol : number, optional
Relative tolerance used to determine if the indexes
are uniformly spaced. Usually a small positive number.
subplot_kws : dict, optional
Dictionary of keyword arguments for matplotlib subplots.
**kwargs : optional
Additional keyword arguments to matplotlib
"""
darray = darray.squeeze().compute()
plot_dims = set(darray.dims)
plot_dims.discard(row)
plot_dims.discard(col)
plot_dims.discard(hue)
ndims = len(plot_dims)
error_msg = (
"Only 1d and 2d plots are supported for facets in xarray. "
"See the package `Seaborn` for more options."
)
if ndims in [1, 2]:
if row or col:
kwargs["subplot_kws"] = subplot_kws
kwargs["row"] = row
kwargs["col"] = col
kwargs["col_wrap"] = col_wrap
if ndims == 1:
plotfunc = line
kwargs["hue"] = hue
elif ndims == 2:
if hue:
plotfunc = line
kwargs["hue"] = hue
else:
plotfunc = pcolormesh
kwargs["subplot_kws"] = subplot_kws
else:
if row or col or hue:
raise ValueError(error_msg)
plotfunc = hist
kwargs["ax"] = ax
return plotfunc(darray, **kwargs)
# This function signature should not change so that it can use
# matplotlib format strings
def line(
darray,
*args,
row=None,
col=None,
figsize=None,
aspect=None,
size=None,
ax=None,
hue=None,
x=None,
y=None,
xincrease=None,
yincrease=None,
xscale=None,
yscale=None,
xticks=None,
yticks=None,
xlim=None,
ylim=None,
add_legend=True,
_labels=True,
**kwargs,
):
"""
Line plot of DataArray index against values
Wraps :func:`matplotlib:matplotlib.pyplot.plot`
Parameters
----------
darray : DataArray
Must be 1 dimensional
figsize : tuple, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
aspect : scalar, optional
Aspect ratio of plot, so that ``aspect * size`` gives the width in
inches. Only used if a ``size`` is provided.
size : scalar, optional
If provided, create a new figure for the plot with the given size.
Height (in inches) of each plot. See also: ``aspect``.
ax : matplotlib axes object, optional
Axis on which to plot this figure. By default, use the current axis.
Mutually exclusive with ``size`` and ``figsize``.
hue : string, optional
Dimension or coordinate for which you want multiple lines plotted.
If plotting against a 2D coordinate, ``hue`` must be a dimension.
x, y : string, optional
Dimension, coordinate or MultiIndex level for x, y axis.
Only one of these may be specified.
The other coordinate plots values from the DataArray on which this
plot method is called.
xscale, yscale : 'linear', 'symlog', 'log', 'logit', optional
Specifies scaling for the x- and y-axes respectively
xticks, yticks : Specify tick locations for x- and y-axes
xlim, ylim : Specify x- and y-axes limits
xincrease : None, True, or False, optional
Should the values on the x axes be increasing from left to right?
if None, use the default for the matplotlib function.
yincrease : None, True, or False, optional
Should the values on the y axes be increasing from top to bottom?
if None, use the default for the matplotlib function.
add_legend : boolean, optional
Add legend with y axis coordinates (2D inputs only).
``*args``, ``**kwargs`` : optional
Additional arguments to matplotlib.pyplot.plot
"""
# Handle facetgrids first
if row or col:
allargs = locals().copy()
allargs.update(allargs.pop("kwargs"))
allargs.pop("darray")
return _easy_facetgrid(darray, line, kind="line", **allargs)
ndims = len(darray.dims)
if ndims > 2:
raise ValueError(
"Line plots are for 1- or 2-dimensional DataArrays. "
"Passed DataArray has {ndims} "
"dimensions".format(ndims=ndims)
)
# The allargs dict passed to _easy_facetgrid above contains args
if args == ():
args = kwargs.pop("args", ())
else:
assert "args" not in kwargs
ax = get_axis(figsize, size, aspect, ax)
xplt, yplt, hueplt, xlabel, ylabel, hue_label = _infer_line_data(darray, x, y, hue)
# Remove pd.Intervals if contained in xplt.values and/or yplt.values.
xplt_val, yplt_val, xlabel, ylabel, kwargs = _resolve_intervals_1dplot(
xplt.values, yplt.values, xlabel, ylabel, kwargs
)
_ensure_plottable(xplt_val, yplt_val)
primitive = ax.plot(xplt_val, yplt_val, *args, **kwargs)
if _labels:
if xlabel is not None:
ax.set_xlabel(xlabel)
if ylabel is not None:
ax.set_ylabel(ylabel)
ax.set_title(darray._title_for_slice())
if darray.ndim == 2 and add_legend:
ax.legend(handles=primitive, labels=list(hueplt.values), title=hue_label)
# Rotate dates on xlabels
# Do this without calling autofmt_xdate so that x-axes ticks
# on other subplots (if any) are not deleted.
# https://stackoverflow.com/questions/17430105/autofmt-xdate-deletes-x-axis-labels-of-all-subplots
if np.issubdtype(xplt.dtype, np.datetime64):
for xlabels in ax.get_xticklabels():
xlabels.set_rotation(30)
xlabels.set_ha("right")
_update_axes(ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim)
return primitive
def step(darray, *args, where="pre", drawstyle=None, ds=None, **kwargs):
"""
Step plot of DataArray index against values
Similar to :func:`matplotlib:matplotlib.pyplot.step`
Parameters
----------
where : {'pre', 'post', 'mid'}, optional, default 'pre'
Define where the steps should be placed:
- 'pre': The y value is continued constantly to the left from
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
value ``y[i]``.
- 'post': The y value is continued constantly to the right from
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
value ``y[i]``.
- 'mid': Steps occur half-way between the *x* positions.
Note that this parameter is ignored if one coordinate consists of
:py:func:`pandas.Interval` values, e.g. as a result of
:py:func:`xarray.Dataset.groupby_bins`. In this case, the actual
boundaries of the interval are used.
``*args``, ``**kwargs`` : optional
Additional arguments following :py:func:`xarray.plot.line`
"""
if where not in {"pre", "post", "mid"}:
raise ValueError("'where' argument to step must be " "'pre', 'post' or 'mid'")
if ds is not None:
if drawstyle is None:
drawstyle = ds
else:
raise TypeError("ds and drawstyle are mutually exclusive")
if drawstyle is None:
drawstyle = ""
drawstyle = "steps-" + where + drawstyle
return line(darray, *args, drawstyle=drawstyle, **kwargs)
def hist(
darray,
figsize=None,
size=None,
aspect=None,
ax=None,
xincrease=None,
yincrease=None,
xscale=None,
yscale=None,
xticks=None,
yticks=None,
xlim=None,
ylim=None,
**kwargs,
):
"""
Histogram of DataArray
Wraps :func:`matplotlib:matplotlib.pyplot.hist`
Plots N dimensional arrays by first flattening the array.
Parameters
----------
darray : DataArray
Can be any dimension
figsize : tuple, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
aspect : scalar, optional
Aspect ratio of plot, so that ``aspect * size`` gives the width in
inches. Only used if a ``size`` is provided.
size : scalar, optional
If provided, create a new figure for the plot with the given size.
Height (in inches) of each plot. See also: ``aspect``.
ax : matplotlib axes object, optional
Axis on which to plot this figure. By default, use the current axis.
Mutually exclusive with ``size`` and ``figsize``.
**kwargs : optional
Additional keyword arguments to matplotlib.pyplot.hist
"""
ax = get_axis(figsize, size, aspect, ax)
no_nan = np.ravel(darray.values)
no_nan = no_nan[pd.notnull(no_nan)]
primitive = ax.hist(no_nan, **kwargs)
ax.set_title("Histogram")
ax.set_xlabel(label_from_attrs(darray))
_update_axes(ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim)
return primitive
# MUST run before any 2d plotting functions are defined since
# _plot2d decorator adds them as methods here.
class _PlotMethods:
"""
Enables use of xarray.plot functions as attributes on a DataArray.
For example, DataArray.plot.imshow
"""
__slots__ = ("_da",)
def __init__(self, darray):
self._da = darray
def __call__(self, **kwargs):
return plot(self._da, **kwargs)
# we can't use functools.wraps here since that also modifies the name / qualname
__doc__ = __call__.__doc__ = plot.__doc__
__call__.__wrapped__ = plot # type: ignore
__call__.__annotations__ = plot.__annotations__
@functools.wraps(hist)
def hist(self, ax=None, **kwargs):
return hist(self._da, ax=ax, **kwargs)
@functools.wraps(line)
def line(self, *args, **kwargs):
return line(self._da, *args, **kwargs)
@functools.wraps(step)
def step(self, *args, **kwargs):
return step(self._da, *args, **kwargs)
def _plot2d(plotfunc):
"""
Decorator for common 2d plotting logic
Also adds the 2d plot method to class _PlotMethods
"""
commondoc = """
Parameters
----------
darray : DataArray
Must be 2 dimensional, unless creating faceted plots
x : string, optional
Coordinate for x axis. If None use darray.dims[1]
y : string, optional
Coordinate for y axis. If None use darray.dims[0]
figsize : tuple, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
aspect : scalar, optional
Aspect ratio of plot, so that ``aspect * size`` gives the width in
inches. Only used if a ``size`` is provided.
size : scalar, optional
If provided, create a new figure for the plot with the given size.
Height (in inches) of each plot. See also: ``aspect``.
ax : matplotlib axes object, optional
Axis on which to plot this figure. By default, use the current axis.
Mutually exclusive with ``size`` and ``figsize``.
row : string, optional
If passed, make row faceted plots on this dimension name
col : string, optional
If passed, make column faceted plots on this dimension name
col_wrap : integer, optional
Use together with ``col`` to wrap faceted plots
xscale, yscale : 'linear', 'symlog', 'log', 'logit', optional
Specifies scaling for the x- and y-axes respectively
xticks, yticks : Specify tick locations for x- and y-axes
xlim, ylim : Specify x- and y-axes limits
xincrease : None, True, or False, optional
Should the values on the x axes be increasing from left to right?
if None, use the default for the matplotlib function.
yincrease : None, True, or False, optional
Should the values on the y axes be increasing from top to bottom?
if None, use the default for the matplotlib function.
add_colorbar : Boolean, optional
Adds colorbar to axis
add_labels : Boolean, optional
Use xarray metadata to label axes
norm : ``matplotlib.colors.Normalize`` instance, optional
If the ``norm`` has vmin or vmax specified, the corresponding kwarg
must be None.
vmin, vmax : floats, optional
Values to anchor the colormap, otherwise they are inferred from the
data and other keyword arguments. When a diverging dataset is inferred,
setting one of these values will fix the other by symmetry around
``center``. Setting both values prevents use of a diverging colormap.
If discrete levels are provided as an explicit list, both of these
values are ignored.
cmap : matplotlib colormap name or object, optional
The mapping from data values to color space. If not provided, this
will be either be ``viridis`` (if the function infers a sequential
dataset) or ``RdBu_r`` (if the function infers a diverging dataset).
When `Seaborn` is installed, ``cmap`` may also be a `seaborn`
color palette. If ``cmap`` is seaborn color palette and the plot type
is not ``contour`` or ``contourf``, ``levels`` must also be specified.
colors : discrete colors to plot, optional
A single color or a list of colors. If the plot type is not ``contour``
or ``contourf``, the ``levels`` argument is required.
center : float, optional
The value at which to center the colormap. Passing this value implies
use of a diverging colormap. Setting it to ``False`` prevents use of a
diverging colormap.
robust : bool, optional
If True and ``vmin`` or ``vmax`` are absent, the colormap range is
computed with 2nd and 98th percentiles instead of the extreme values.
extend : {'neither', 'both', 'min', 'max'}, optional
How to draw arrows extending the colorbar beyond its limits. If not
provided, extend is inferred from vmin, vmax and the data limits.
levels : int or list-like object, optional
Split the colormap (cmap) into discrete color intervals. If an integer
is provided, "nice" levels are chosen based on the data range: this can
imply that the final number of levels is not exactly the expected one.
Setting ``vmin`` and/or ``vmax`` with ``levels=N`` is equivalent to
setting ``levels=np.linspace(vmin, vmax, N)``.
infer_intervals : bool, optional
Only applies to pcolormesh. If True, the coordinate intervals are
passed to pcolormesh. If False, the original coordinates are used
(this can be useful for certain map projections). The default is to
always infer intervals, unless the mesh is irregular and plotted on
a map projection.
subplot_kws : dict, optional
Dictionary of keyword arguments for matplotlib subplots. Only used
for 2D and FacetGrid plots.
cbar_ax : matplotlib Axes, optional
Axes in which to draw the colorbar.
cbar_kwargs : dict, optional
Dictionary of keyword arguments to pass to the colorbar.
**kwargs : optional
Additional arguments to wrapped matplotlib function
Returns
-------
artist :
The same type of primitive artist that the wrapped matplotlib
function returns
"""
# Build on the original docstring
plotfunc.__doc__ = f"{plotfunc.__doc__}\n{commondoc}"
@functools.wraps(plotfunc)
def newplotfunc(
darray,
x=None,
y=None,
figsize=None,
size=None,
aspect=None,
ax=None,
row=None,
col=None,
col_wrap=None,
xincrease=True,
yincrease=True,
add_colorbar=None,
add_labels=True,
vmin=None,
vmax=None,
cmap=None,
center=None,
robust=False,
extend=None,
levels=None,
infer_intervals=None,
colors=None,
subplot_kws=None,
cbar_ax=None,
cbar_kwargs=None,
xscale=None,
yscale=None,
xticks=None,
yticks=None,
xlim=None,
ylim=None,
norm=None,
**kwargs,
):
# All 2d plots in xarray share this function signature.
# Method signature below should be consistent.
# Decide on a default for the colorbar before facetgrids
if add_colorbar is None:
add_colorbar = plotfunc.__name__ != "contour"
imshow_rgb = plotfunc.__name__ == "imshow" and darray.ndim == (
3 + (row is not None) + (col is not None)
)
if imshow_rgb:
# Don't add a colorbar when showing an image with explicit colors
add_colorbar = False
# Matplotlib does not support normalising RGB data, so do it here.
# See eg. https://github.com/matplotlib/matplotlib/pull/10220
if robust or vmax is not None or vmin is not None:
darray = _rescale_imshow_rgb(darray, vmin, vmax, robust)
vmin, vmax, robust = None, None, False
# Handle facetgrids first
if row or col:
allargs = locals().copy()
del allargs["darray"]
del allargs["imshow_rgb"]
allargs.update(allargs.pop("kwargs"))
# Need the decorated plotting function
allargs["plotfunc"] = globals()[plotfunc.__name__]
return _easy_facetgrid(darray, kind="dataarray", **allargs)
plt = import_matplotlib_pyplot()
rgb = kwargs.pop("rgb", None)
if rgb is not None and plotfunc.__name__ != "imshow":
raise ValueError('The "rgb" keyword is only valid for imshow()')
elif rgb is not None and not imshow_rgb:
raise ValueError(
'The "rgb" keyword is only valid for imshow()'
"with a three-dimensional array (per facet)"
)
xlab, ylab = _infer_xy_labels(
darray=darray, x=x, y=y, imshow=imshow_rgb, rgb=rgb
)
# better to pass the ndarrays directly to plotting functions
xval = darray[xlab].values
yval = darray[ylab].values
# check if we need to broadcast one dimension
if xval.ndim < yval.ndim:
dims = darray[ylab].dims
if xval.shape[0] == yval.shape[0]:
xval = np.broadcast_to(xval[:, np.newaxis], yval.shape)
else:
xval = np.broadcast_to(xval[np.newaxis, :], yval.shape)
elif yval.ndim < xval.ndim:
dims = darray[xlab].dims
if yval.shape[0] == xval.shape[0]:
yval = np.broadcast_to(yval[:, np.newaxis], xval.shape)
else:
yval = np.broadcast_to(yval[np.newaxis, :], xval.shape)
elif xval.ndim == 2:
dims = darray[xlab].dims
else:
dims = (darray[ylab].dims[0], darray[xlab].dims[0])
# May need to transpose for correct x, y labels
# xlab may be the name of a coord, we have to check for dim names
if imshow_rgb:
# For RGB[A] images, matplotlib requires the color dimension
# to be last. In Xarray the order should be unimportant, so
# we transpose to (y, x, color) to make this work.
yx_dims = (ylab, xlab)
dims = yx_dims + tuple(d for d in darray.dims if d not in yx_dims)
if dims != darray.dims:
darray = darray.transpose(*dims, transpose_coords=True)
# Pass the data as a masked ndarray too
zval = darray.to_masked_array(copy=False)
# Replace pd.Intervals if contained in xval or yval.
xplt, xlab_extra = _resolve_intervals_2dplot(xval, plotfunc.__name__)
yplt, ylab_extra = _resolve_intervals_2dplot(yval, plotfunc.__name__)
_ensure_plottable(xplt, yplt, zval)
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
plotfunc,
zval.data,
**locals(),
_is_facetgrid=kwargs.pop("_is_facetgrid", False),
)
if "contour" in plotfunc.__name__:
# extend is a keyword argument only for contour and contourf, but
# passing it to the colorbar is sufficient for imshow and
# pcolormesh
kwargs["extend"] = cmap_params["extend"]
kwargs["levels"] = cmap_params["levels"]
# if colors == a single color, matplotlib draws dashed negative
# contours. we lose this feature if we pass cmap and not colors
if isinstance(colors, str):
cmap_params["cmap"] = None
kwargs["colors"] = colors
if "pcolormesh" == plotfunc.__name__:
kwargs["infer_intervals"] = infer_intervals
if "imshow" == plotfunc.__name__ and isinstance(aspect, str):
# forbid usage of mpl strings
raise ValueError(
"plt.imshow's `aspect` kwarg is not available " "in xarray"
)
if subplot_kws is None:
subplot_kws = dict()
ax = get_axis(figsize, size, aspect, ax, **subplot_kws)
primitive = plotfunc(
xplt,
yplt,
zval,
ax=ax,
cmap=cmap_params["cmap"],
vmin=cmap_params["vmin"],
vmax=cmap_params["vmax"],
norm=cmap_params["norm"],
**kwargs,
)
# Label the plot with metadata
if add_labels:
ax.set_xlabel(label_from_attrs(darray[xlab], xlab_extra))
ax.set_ylabel(label_from_attrs(darray[ylab], ylab_extra))
ax.set_title(darray._title_for_slice())
if add_colorbar:
if add_labels and "label" not in cbar_kwargs:
cbar_kwargs["label"] = label_from_attrs(darray)
cbar = _add_colorbar(primitive, ax, cbar_ax, cbar_kwargs, cmap_params)
elif cbar_ax is not None or cbar_kwargs:
# inform the user about keywords which aren't used
raise ValueError(
"cbar_ax and cbar_kwargs can't be used with " "add_colorbar=False."
)
# origin kwarg overrides yincrease
if "origin" in kwargs:
yincrease = None
_update_axes(
ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim
)
# Rotate dates on xlabels
# Do this without calling autofmt_xdate so that x-axes ticks
# on other subplots (if any) are not deleted.
# https://stackoverflow.com/questions/17430105/autofmt-xdate-deletes-x-axis-labels-of-all-subplots
if np.issubdtype(xplt.dtype, np.datetime64):
for xlabels in ax.get_xticklabels():
xlabels.set_rotation(30)
xlabels.set_ha("right")
return primitive
# For use as DataArray.plot.plotmethod
@functools.wraps(newplotfunc)
def plotmethod(
_PlotMethods_obj,
x=None,
y=None,
figsize=None,
size=None,
aspect=None,
ax=None,
row=None,
col=None,
col_wrap=None,
xincrease=True,
yincrease=True,
add_colorbar=None,
add_labels=True,
vmin=None,
vmax=None,
cmap=None,
colors=None,
center=None,
robust=False,
extend=None,
levels=None,
infer_intervals=None,
subplot_kws=None,
cbar_ax=None,
cbar_kwargs=None,
xscale=None,
yscale=None,
xticks=None,
yticks=None,
xlim=None,
ylim=None,
norm=None,
**kwargs,
):
"""
The method should have the same signature as the function.
This just makes the method work on Plotmethods objects,
and passes all the other arguments straight through.
"""
allargs = locals()
allargs["darray"] = _PlotMethods_obj._da
allargs.update(kwargs)
for arg in ["_PlotMethods_obj", "newplotfunc", "kwargs"]:
del allargs[arg]
return newplotfunc(**allargs)
# Add to class _PlotMethods
setattr(_PlotMethods, plotmethod.__name__, plotmethod)
return newplotfunc
@_plot2d
def imshow(x, y, z, ax, **kwargs):
"""
Image plot of 2d DataArray using matplotlib.pyplot
Wraps :func:`matplotlib:matplotlib.pyplot.imshow`
While other plot methods require the DataArray to be strictly
two-dimensional, ``imshow`` also accepts a 3D array where some
dimension can be interpreted as RGB or RGBA color channels and
allows this dimension to be specified via the kwarg ``rgb=``.
Unlike matplotlib, Xarray can apply ``vmin`` and ``vmax`` to RGB or RGBA
data, by applying a single scaling factor and offset to all bands.
Passing ``robust=True`` infers ``vmin`` and ``vmax``
:ref:`in the usual way <robust-plotting>`.
.. note::
This function needs uniformly spaced coordinates to
properly label the axes. Call DataArray.plot() to check.
The pixels are centered on the coordinates values. Ie, if the coordinate
value is 3.2 then the pixels for those coordinates will be centered on 3.2.
"""
if x.ndim != 1 or y.ndim != 1:
raise ValueError(
"imshow requires 1D coordinates, try using " "pcolormesh or contour(f)"
)
# Centering the pixels- Assumes uniform spacing
try:
xstep = (x[1] - x[0]) / 2.0
except IndexError:
# Arbitrary default value, similar to matplotlib behaviour
xstep = 0.1
try:
ystep = (y[1] - y[0]) / 2.0
except IndexError:
ystep = 0.1
left, right = x[0] - xstep, x[-1] + xstep
bottom, top = y[-1] + ystep, y[0] - ystep
defaults = {"origin": "upper", "interpolation": "nearest"}
if not hasattr(ax, "projection"):
# not for cartopy geoaxes
defaults["aspect"] = "auto"
# Allow user to override these defaults
defaults.update(kwargs)
if defaults["origin"] == "upper":
defaults["extent"] = [left, right, bottom, top]
else:
defaults["extent"] = [left, right, top, bottom]
if z.ndim == 3:
# matplotlib imshow uses black for missing data, but Xarray makes
# missing data transparent. We therefore add an alpha channel if
# there isn't one, and set it to transparent where data is masked.
if z.shape[-1] == 3:
alpha = np.ma.ones(z.shape[:2] + (1,), dtype=z.dtype)
if np.issubdtype(z.dtype, np.integer):
alpha *= 255
z = np.ma.concatenate((z, alpha), axis=2)
else:
z = z.copy()
z[np.any(z.mask, axis=-1), -1] = 0
primitive = ax.imshow(z, **defaults)
return primitive
@_plot2d
def contour(x, y, z, ax, **kwargs):
"""
Contour plot of 2d DataArray
Wraps :func:`matplotlib:matplotlib.pyplot.contour`
"""
primitive = ax.contour(x, y, z, **kwargs)
return primitive
@_plot2d
def contourf(x, y, z, ax, **kwargs):
"""
Filled contour plot of 2d DataArray
Wraps :func:`matplotlib:matplotlib.pyplot.contourf`
"""
primitive = ax.contourf(x, y, z, **kwargs)
return primitive
@_plot2d
def pcolormesh(x, y, z, ax, infer_intervals=None, **kwargs):
"""
Pseudocolor plot of 2d DataArray
Wraps :func:`matplotlib:matplotlib.pyplot.pcolormesh`
"""
# decide on a default for infer_intervals (GH781)
x = np.asarray(x)
if infer_intervals is None:
if hasattr(ax, "projection"):
if len(x.shape) == 1:
infer_intervals = True
else:
infer_intervals = False
else:
infer_intervals = True
if infer_intervals and (
(np.shape(x)[0] == np.shape(z)[1])
or ((x.ndim > 1) and (np.shape(x)[1] == np.shape(z)[1]))
):
if len(x.shape) == 1:
x = _infer_interval_breaks(x, check_monotonic=True)
else:
# we have to infer the intervals on both axes
x = _infer_interval_breaks(x, axis=1)
x = _infer_interval_breaks(x, axis=0)
if infer_intervals and (np.shape(y)[0] == np.shape(z)[0]):
if len(y.shape) == 1:
y = _infer_interval_breaks(y, check_monotonic=True)
else:
# we have to infer the intervals on both axes
y = _infer_interval_breaks(y, axis=1)
y = _infer_interval_breaks(y, axis=0)
primitive = ax.pcolormesh(x, y, z, **kwargs)
# by default, pcolormesh picks "round" values for bounds
# this results in ugly looking plots with lots of surrounding whitespace
if not hasattr(ax, "projection") and x.ndim == 1 and y.ndim == 1:
# not a cartopy geoaxis
ax.set_xlim(x[0], x[-1])
ax.set_ylim(y[0], y[-1])
return primitive