diff --git a/examples/notebooks/rate-capability.ipynb b/examples/notebooks/rate-capability.ipynb new file mode 100644 index 0000000000..6d67f11d49 --- /dev/null +++ b/examples/notebooks/rate-capability.ipynb @@ -0,0 +1,144 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "language_info": { + "name": "python", + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "version": "3.6.8-final" + }, + "orig_nbformat": 2, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "npconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3, + "kernelspec": { + "name": "python36864bitenvvenva5300f5f257d43b39d1aed29eb140199", + "display_name": "Python 3.6.8 64-bit ('env': venv)" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Generate rate capability plots" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook we use PyBaMM to generate rate capability plots and Ragone plots. Rate capability plots show discharge capacity at different C-rates. Similarly, multiplying the discharge current and capacity by the average discharge voltage we can obtain Ragon plots (that is energy vs power).\n", + "\n", + "First we need to import pybamm and the other necessary packages." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pybamm\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we use the SPMe model with the default settings, but we could change it to other models, parameters, geometries... For example, you generate rate capability plots using the DFN model in [this script](https://github.com/pybamm-team/PyBaMM/blob/master/examples/scripts/rate_capability.py). " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = pybamm.lithium_ion.SPMe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now cycle a loop of different C-rates and run full discharge simulations for each C-rate. For each simulation we register the final discharge capacity, the applied current and the average discharge voltage. We can then generate the rate capability and the Ragone plots." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAYUElEQVR4nO3dfZBd9X3f8ffHEgSNbSwSLRQkhDSt5NYBD8Q38oPihLoGFNsBjBssnAdsN9BOioc4NS20nYbAJLj2tIkTayYDDk5wTRRsY3VrEhQlyCGmEOvKgKlEEUKAWdlFMkg2BFqePv3jnA2X5ezdK+2evQ/n85rZ0Z6nu98zDPvZ83s4P9kmIiJiqtf0u4CIiBhMCYiIiKiUgIiIiEoJiIiIqJSAiIiISgv7XcBcWbJkiVesWNHvMiIihsr27du/b3us6tjIBMSKFStot9v9LiMiYqhIenS6Y2liioiISgmIiIiolICIiIhKCYiIiKiUgIiIiEoJiIiIqJSAiIiISgmIiIiolICIiIhKCYiIiKiUgIiIiEoJiIiIqJSAiIiISgmIiIiolICIiIhKCYiIiKiUgIiIiEoJiIiIqJSAiIiISgmIiIiolICIiIhKtQaEpHWSHpC0W9LlFcd/R9I95dcuSQc7jl0o6cHy68I664yIiFdbWNcHS1oAbADOACaAbZLGbe+cPMf2xzvO/xhwWvn9jwK/AbQAA9vLaw/UVW9ERLxSnU8Qa4DdtvfYfg7YCJzT5fwLgD8pvz8L2GL7yTIUtgDraqw1IiKmqDMglgKPdWxPlPteRdJJwErgtkO5VtLFktqS2vv375+ToiMiojAondTrgS/bfvFQLrJ9re2W7dbY2FhNpUVENFOdAbEXOLFje1m5r8p6Xm5eOtRrIyKiBnUGxDZglaSVko6kCIHxqSdJ+sfAMcCdHbs3A2dKOkbSMcCZ5b6IiJgntY1isv2CpEsofrEvAK63vUPSVUDb9mRYrAc22nbHtU9KupoiZACusv1kHXVuunsvn978AN89+CwnLF7EZWe9kXNPq+wqiYhoFHX8Xh5qrVbL7Xb7kK7ZdPderrj5Pp59/uWuj0VHLOCa805JSEREI0jabrtVdWxQOqn74tObH3hFOAA8+/yLfHrzA32qKCJicDQ6IL578NlD2h8R0SSNDogTFi86pP0REU3S6IC47Kw3suiIBa/Yt+iIBVx21hv7VFFExOCobRTTMJjsiM4opoiIV2t0QEAREgmEiIhXa3QTU0RETC8BERERlRrfxDRbmYkdEaMqATELU2di7z34LFfcfB9AQiIihl6amGYhM7EjYpQlIGYhM7EjYpQlIGYhM7EjYpQlIGYhM7EjYpSlk3oWMhM7IkZZAmKWMhM7IkZVmpgiIqJSniD6LBPtImJQJSD6KBPtImKQpYmpjzLRLiIGWQKijzLRLiIGWQKijzLRLiIGWQKijzLRLiIGWTqp+ygT7SJikNUaEJLWAZ8BFgCfs/3JinPOB64EDNxr+0Pl/k8B76V4ytkCXGrbddbbD5loFxGDqraAkLQA2ACcAUwA2ySN297Zcc4q4Apgre0Dko4t978DWAu8uTz1G8DPAF+vq96IiHilOvsg1gC7be+x/RywEThnyjkXARtsHwCwva/cb+Ao4EjgR4AjgMdrrDUiIqaos4lpKfBYx/YE8NYp56wGkHQHRTPUlbZvtX2npK3A9wABn7V9f421Dq3MxI6IuvS7k3ohsAo4HVgG3C7pFGAJ8E/KfQBbJL3T9t90XizpYuBigOXLl89XzQMjM7Ejok51NjHtBU7s2F5W7us0AYzbft72w8AuisB4P3CX7adtPw38OfD2qT/A9rW2W7ZbY2NjtdzEIMtM7IioU50BsQ1YJWmlpCOB9cD4lHM2UTw9IGkJRZPTHuA7wM9IWijpCIoO6jQxTZGZ2BFRp9oCwvYLwCXAZopf7jfZ3iHpKklnl6dtBp6QtBPYClxm+wngy8BDwH3AvRTDX/9HXbUOq8zEjog6aVSmFrRaLbfb7X6XMa+m9kFAMRP7mvNOSR9ERPRE0nbbrapj/e6kjlmYi5nYGQUVEdNJQAy52czEziioiOgmL+trsIyCiohuEhANllFQEdFNAqLBMgoqIrpJQDRY1qOIiG7SSd1gGQUVEd0kIBouo6AiYjppYorDllFQEaMtARGHLaOgIkZbAiIOW0ZBRYy2BEQctoyCihht6aSOwzYXo6AiYnBNGxCSfjjDtQK+Z3v13JYUw2Q2o6AiYrB1e4J4yPZp3S6WdPcc1xMREQOiWx/EB3q4vpdzIiJiCE37BGF7z0wX93JORDeZiR0xuGYcxSTpPEkPSvqBpB9KeqqH/omIGU3OxN578FnMyzOxN929t9+lRQS9DXP9FHC27TfYPtr2620fXXdhMfoyEztisPUSEI/bvr/2SqJxMhM7YrB1G+Z6XvltW9KfApuA/zd53PbNNdcWI+6ExYvYWxEGmYkdMRi6PUH8XPl1NPAMcGbHvvfVX1qMuszEjhhs3UYxfWS6Y5J+sp5yokmyHkXEYOv5VRuS3gRcUH4dBFp1FRXNkfUoIgZX14CQtIKXQ+F54CSgZfuRuguLmEm3UVAJiIjZm7YPQtKdwC0UIfIB228BnjqUcJC0TtIDknZLunyac86XtFPSDkk3duxfLukvJN1fHl/R68+NZsgoqIh6dXuCeBxYChwHjAEPAu71gyUtADYAZwATwDZJ47Z3dpyzCrgCWGv7gKRjOz7iBuC3bG+R9DrgpV5/djRDRkFF1GvaJwjb5wKnANuBKyU9DBwjaU2Pn70G2G17j+3ngI3AOVPOuQjYYPtA+TP3wd/3dyy0vaXc/7TtZw7hvqIBMgoqol5d+yBs/wD4PPD58q/784HfkbTc9okzfPZS4LGO7QngrVPOWQ0g6Q5gAXCl7VvL/Qcl3QysBP4SuNz2KxqcJV0MXAywfPnyGcqJUZNRUBH16nkUU/nX/WeBz0o6aQ5//irgdGAZcLukU8r97wROA74D/CnwYeAPp9R0LXAtQKvV6rn5K0ZHRkFF1KdbJ/WV0x2z/ehM5wB7gc6njGXlvk4TwLjt520/DOyiCIwJ4J6yeeoFilncP9HlZ0UcsrwLKqK7bk8QvzLDW1sFrAeunOb4NmCVpJUUwbAe+NCUczZRDKH9vKQlFE1LeyjmWSyWNGZ7P/AuoD3DvUQckoyCiuiuW0BcB7x+huuvm+6A7RckXQJspuhfuN72DklXAW3b4+WxMyXtBF4ELrP9BICkTwB/JUkUHeXT/qyIw5FRUBHdyR6NpvtWq+V2Ow8Z0bupfRBQjIK65rxT0gcRjSFpu+3KN2P03EkdMWrmYhRUxChLQESjzWYUVMSo62XJ0R+bj0IiImKw9LKi3F2SviTpPWWHcURENEAvTUyrgXcDHwV+T9JNwB/Z3lVrZRFDIDOxY5TN+AThwhbbF1C8O+lC4JuS/lrS22uvMGJATY6C2nvwWczLM7E33T11PmjEcOqpD0LSpZLawCeAjwFLgH8D3Nj14ogRlpnYMep6aWK6E/gCcK7tiY79bUl/UE9ZEYMvM7Fj1PXSSf0fbV/dGQ6Sfh7A9n+urbKIATfdjOvMxI5R0UtAVK0Ed8VcFxIxbLIeRYy6aZuYJP0s8B5gqaTf6zh0NPBC3YVFDLqsRxGjrlsfxHcp3qB6NsXL8iY9BXy8zqIihkXWo4hRNm1A2L4XuFfSF8s1GSJiDnUbBZWAiEHQrYnpJtvnA3dLetUrX22/udbKIkZcRkHFoOvWxHRp+e/75qOQiKbJehQx6KYdxWT7ex3nPG770XKp0X0Uq8lFxCxkFFQMul6GuX4JeKlj+8VyX0TMwrmnLeWa805h6eJFCFi6eFEWK4qB0stM6oW2n5vcsP2cpCNrrCmiMWa7HkWGyUadenmC2C/p7MkNSecA36+vpIjoRV4WGHXrJSD+FfDvJX1H0mPAvwP+Zb1lRcRM8rLAqNuMTUy2HwLeJul15fbTtVcVETPKMNmoW09rUkt6L/DjwFGTi8rZvqrGuiJiBhkmG3XrZT2IPwA+SLEOhICfB06qua6ImEGGyUbdeumDeIftXwYO2P5N4O0Uy5BGRB9lmGzUrZcmpsln2GcknQA8ARzfy4dLWgd8BlgAfM72JyvOOR+4EjBwr+0PdRw7GtgJbLJ9SS8/M6JJZjtMNqKbXgLia5IWA58GvkXxi/y6mS6StADYAJwBTADbJI3b3tlxziqKtSXW2j4g6dgpH3M1cHtPdxIREXOql1FMV5fffkXS14CjbP+gh89eA+y2vQdA0kbgHIongkkXARtsHyh/1r7JA5LeAhwH3Aq0evh5EXGIMtEuuumlk/ooSb8u6WbgRuCjko7q4bOXAo91bE+U+zqtBlZLukPSXWWTFJJeA/wX4BMz1HaxpLak9v79+3soKSImZaJdzKSXTuobKIa4/j7wWeBNwBfm6OcvBFYBpwMXANeVzVm/CvxZ5zrYVWxfa7tluzU2NjZHJUU0QybaxUx66YM42fabOra3Sto57dkv2wuc2LG9rNzXaQL4W9vPAw9L2kURGG8H3inpV4HXAUdKetp21frYEXEYMtEuZtLLE8S3JL1tckPSWymWIp3JNmCVpJXly/3WA+NTztlE8fSApCUUTU57bP+C7eW2V1A0M92QcIiYW9NNqMtEu5jUS0C8Bfifkh6R9AhwJ/CTku6T9O3pLiqXKb0E2AzcD9xke4ekqzpe/rcZeKJ8ItkKXGb7iVncT0T0KBPtYiayX7Wa6CtPkLrOmi4XEeq7VqvldruXB5uImDTbUUwZBTX8JG23XTlStJdhro+WH3IscFTH/u/MWYUR0RezmWg3OQpqsqN7chTU5OfG8OtlmOvZkh4EHgb+GngE+POa64qIAZdRUKOvlz6Iq4G3AbtsrwT+GXBXrVVFxMDLKKjR10tAPF92HL9G0mtsbyUzmyMaL6OgRl8vAXGwXCzoduCLkj4D/F29ZUXEoMsoqNHXS0CcAzwDfJzivUgPAT9XZ1ERMfjyuvHRN+0oJkn/CDjO9h3lrpeAP5b0U8Biitd+R0SD5XXjo63bE8TvAj+s2P+D8lhERIywbgFxnO37pu4s962oraKIiBgI3SbKLe5yLMMUImLWMhN7sHV7gmhLumjqTkm/Amyvr6SIaIKsRzH4uj1B/BrwVUm/wMuB0AKOBN5fd2ERMdq6zcTOU8RgmDYgbD8OvEPSPwVOLnffYvu2eaksIkZaZmIPvl5e1reV4lXcERFz5oTFi9hbEQaZiT04epkoFxEx5zITe/D1suRoRMScm+xnyHoUgysBERF9k/UoBluamCJiKGU9ivolICJiKGUUVP0SEBExlLIeRf0SEBExlDIKqn7ppI6IoTQXo6CiuwRERAytrEdRrzQxRUREpQRERERUqjUgJK2T9ICk3ZIun+ac8yXtlLRD0o3lvlMl3Vnu+7akD9ZZZ0Q006a797L2k7ex8vJbWPvJ2/Kq8Slq64OQtADYAJwBTADbJI3b3tlxzirgCmCt7QOSji0PPQP8su0HJZ0AbJe02fbBuuqNiGbJTOyZ1fkEsQbYbXuP7eeAjcA5U865CNhg+wCA7X3lv7tsP1h+/11gHzBWY60R0TCZiT2zOgNiKfBYx/ZEua/TamC1pDsk3SVp3dQPkbSGYpGihyqOXSypLam9f//+OSw9IkZdZmLPrN+d1AuBVcDpwAXAdZL+fi1sSccDXwA+YvulqRfbvtZ2y3ZrbCwPGBHRu8zEnlmdAbEXOLFje1m5r9MEMG77edsPA7soAgNJRwO3AP/B9l011hkRDZSZ2DOrMyC2AaskrZR0JLAeGJ9yziaKpwckLaFoctpTnv9V4AbbX66xxohoqHNPW8o1553C0sWLELB08SKuOe+UdFB3qG0Uk+0XJF0CbAYWANfb3iHpKqBte7w8dqakncCLwGW2n5D0i8BPAz8m6cPlR37Y9j111RsRzZOZ2N3Jdr9rmBOtVsvtdrvfZUREDBVJ2223qo7lXUwREYdp1Jc8TUBERByGJky06/cw14iIodSEiXYJiIiIw9CEiXYJiIiIw9CEiXYJiIiIw9CEiXbppI6IOAxzseTpoI+CSkBERBym2Uy0G4ZRUGliiojog2EYBZWAiIjog2EYBZWAiIjog2EYBZWAiIjog2EYBZVO6oiIPpiLUVB1S0BERPTJoL9uPE1MERFRKQERERGV0sQUETGE5mMWdgIiImLIzNcs7DQxRUQMmfmahZ2AiIgYMvM1CzsBERExZOZrFnYCIiJiyMzXLOx0UkdEDJn5moWdgIiIGELzMQu71iYmSeskPSBpt6TLpznnfEk7Je2QdGPH/gslPVh+XVhnnRER8Wq1PUFIWgBsAM4AJoBtksZt7+w4ZxVwBbDW9gFJx5b7fxT4DaAFGNheXnugrnojIuKV6nyCWAPstr3H9nPARuCcKedcBGyY/MVve1+5/yxgi+0ny2NbgHU11hoREVPUGRBLgcc6tifKfZ1WA6sl3SHpLknrDuFaJF0sqS2pvX///jksPSIi+j3MdSGwCjgduAC4TtLiXi+2fa3tlu3W2NhYTSVGRDRTnQGxFzixY3tZua/TBDBu+3nbDwO7KAKjl2sjIqJGdQbENmCVpJWSjgTWA+NTztlE8fSApCUUTU57gM3AmZKOkXQMcGa5LyIi5klto5hsvyDpEopf7AuA623vkHQV0LY9zstBsBN4EbjM9hMAkq6mCBmAq2w/WVetERHxarLd7xrmRKvVcrvd7ncZERFDRdJ2262qY/3upI6IiAGVgIiIiEoJiIiIqJSAiIiISgmIiIiolICIiIhKCYiIiKiUgIiIiEoJiIiIqJSAiIiISgmIiIiolICIiIhKCYiIiKiUgIiIiEoJiIiIqJSAiIiISgmIiIiolICIiIhKCYiIiKg0MmtSS9oPPHqIly0Bvl9DOYOsifcMzbzv3HMzzPaeT7I9VnVgZALicEhqT7dY96hq4j1DM+8799wMdd5zmpgiIqJSAiIiIio1PSCu7XcBfdDEe4Zm3nfuuRlqu+dG90FERMT0mv4EERER00hAREREpcYGhKR1kh6QtFvS5f2up26Srpe0T9L/6nct80XSiZK2StopaYekS/td03yQdJSkb0q6t7zv3+x3TfNF0gJJd0v6Wr9rmQ+SHpF0n6R7JLXn/POb2AchaQGwCzgDmAC2ARfY3tnXwmok6aeBp4EbbJ/c73rmg6TjgeNtf0vS64HtwLmj/N8ZQJKA19p+WtIRwDeAS23f1efSaifp14EWcLTt9/W7nrpJegRo2a5lcmBTnyDWALtt77H9HLAROKfPNdXK9u3Ak/2uYz7Z/p7tb5XfPwXcDyztb1X1c+HpcvOI8mvk/xKUtAx4L/C5ftcyKpoaEEuBxzq2J2jAL44mk7QCOA342/5WMj/KppZ7gH3AFttNuO/fBf4t8FK/C5lHBv5C0nZJF8/1hzc1IKJBJL0O+Arwa7Z/2O965oPtF22fCiwD1kga6WZFSe8D9tne3u9a5tlP2f4J4GeBf102Jc+ZpgbEXuDEju1l5b4YMWUb/FeAL9q+ud/1zDfbB4GtwLp+11KztcDZZZv8RuBdkv5bf0uqn+295b/7gK9SNJ/PmaYGxDZglaSVko4E1gPjfa4p5ljZWfuHwP22/2u/65kvksYkLS6/X0QxGON/97eqetm+wvYy2yso/n++zfYv9rmsWkl6bTn4AkmvBc4E5nSUYiMDwvYLwCXAZoqOy5ts7+hvVfWS9CfAncAbJU1I+hf9rmkerAV+ieKvyXvKr/f0u6h5cDywVdK3Kf4Y2mK7EcM+G+Y44BuS7gW+Cdxi+9a5/AGNHOYaEREza+QTREREzCwBERERlRIQERFRKQERERGVEhAREVEpARFxCCT9A0kbJT1Uvt7gzyStPszPOrUhw25jSCUgInpUTrz7KvB12//Q9luAKyjGo093zcIuH3kqkICIgZV5EBE9kvQu4ErbXd93I+mPgP9L8XLAOyhe/fAZ4CjgWeAjwMPAbmARxWtergG+Bvw+cDLFG1ivtP3f67iXiF50++smIl7pZIo1JXqxDHiH7RclHQ280/YLkt4N/LbtD0j6TxTv8r8EQNJvU7wi4qPlqzK+Kekvbf9dHTcTMZMEREQ9vmT7xfL7NwB/LGkVxeuZj5jmmjMpXjj3iXL7KGA5xetgIuZdAiKidzuAfz51p6TfoliohvIV2wCdf/VfDWy1/f5yXYqvT/P5Aj5g+4E5qjdiVtJJHdG724Af6VyYRdKbgVttn9oRDlO9gZdfJ//hjv1PAa/v2N4MfKzsDEfSaXNVeMThSEBE9MjFiI73A+8uh7nuoOhc/j8zXPop4BpJd/PKp/atwJvKt8x+kOJJ4wjg2+VnXz3nNxFxCDKKKSIiKuUJIiIiKiUgIiKiUgIiIiIqJSAiIqJSAiIiIiolICIiolICIiIiKv1/iboQSWWSz94AAAAASUVORK5CYII=\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "text/plain": "
" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAXGElEQVR4nO3dfbRddX3n8fenIdZI0NgmUgmJF1vBMlII3vpAsEXrFHwEcbrGqhQfKsupI2SKUcFOV5d9QAsLH8ZqVhZUtM3SVgjQYdVitDiARNqbkCGQO0o7WApGCDiQQFNN4DN/7B25Odxz7r73nn2e9ue11l3su89vn/Pdi6zzufvh+9uyTURENNdP9buAiIjorwRBRETDJQgiIhouQRAR0XAJgoiIhjuk3wXM1tKlSz02NtbvMiIihsqWLVsetL1suteGLgjGxsaYmJjodxkREUNF0r+0ey2nhiIiGi5BEBHRcAmCiIiGSxBERDRcbUEgaYWkGyTtkHSnpPPajDtF0rZyzP+qq56IiJhenXcN7QfOt71V0mHAFkmbbO84MEDSEuCzwGm275H0nBrriYiIadR2RGB7p+2t5fIeYBJY3jLsrcBG2/eU4x6oq56IiJheT64RSBoDVgG3trx0NPBsSd+UtEXSb7XZ/hxJE5Imdu3aVW+xERENU3sQSFoMXAWssb275eVDgBcDrwNOBf67pKNb38P2etvjtseXLZu2MS4iIuao1s5iSQspQmCD7Y3TDLkXeMj2Y8Bjkm4Ejge+W2ddERHxpNqCQJKAy4FJ25e2GXYt8BlJhwBPA14KfKKOeq657T4uvv47fP/hvRyxZBFrTz2GM1a1XrKIiGieOo8IVgNnAdslbSvXXQisBLC9zvakpL8DbgeeAC6zfUe3C7nmtvu4YON29u57HID7Ht7LBRu3AyQMIqLxagsC2zcDqjDuYuDiuuoAuPj67/wkBA7Yu+9xLr7+OwmCiGi8RnQWf//hvbNaHxHRJI0IgiOWLJrV+oiIJmlEEKw99RgWLVxw0LpFCxew9tRj+lRRRMTgGLoH08zFgesAuWsoIuKpGhEEUIRBvvgjIp6qEaeGIiKivQRBRETDJQgiIhouQRAR0XAJgoiIhksQREQ0XIIgIqLhEgQREQ3XmIaybsgzDSJiFCUIKsozDSJiVOXUUEWdnmkQETHMEgQV5ZkGETGqEgQV5ZkGETGqEgQV5ZkGETGqcrG4ojzTICJGVYJgFvJMg4gYRTk1FBHRcAmCiIiGSxBERDRcgiAiouESBBERDZcgiIhouARBRETD1dZHIGkF8EXgcMDAetufahlzCnAtcHe5aqPtj9ZV0yDIVNYRMWjqbCjbD5xve6ukw4AtkjbZ3tEy7ibbr6+xjoGRqawjYhDVdmrI9k7bW8vlPcAk0Ohvu0xlHRGDqCfXCCSNAauAW6d5+eWS/rekr0r6D222P0fShKSJXbt21VhpvTKVdUQMotqDQNJi4Cpgje3dLS9vBZ5n+3jgfwDXTPcettfbHrc9vmzZsnoLrlGmso6IQVRrEEhaSBECG2xvbH3d9m7bj5bLfwsslLS0zpr6KVNZR8QgqvOuIQGXA5O2L20z5ueA+21b0ksogumhumrqt0xlHRGDqM67hlYDZwHbJW0r110IrASwvQ74T8B/kbQf2Au8xbZrrKnvMpV1RAya2oLA9s2AZhjzGeAzddUQEREzS2dxRETDJQgiIhouQRAR0XAJgoiIhsvD64dMJq2LiG5LEAyRTFoXEXXIqaEhkknrIqIOCYIhkknrIqIOCYIhkknrIqIOCYIhkknrIqIOuVg8RDJpXUTUIUEwZDJpXUR0W04NRUQ0XIIgIqLhcmqogdKdHBFTJQgaJt3JEdEqp4YaJt3JEdEqQdAw6U6OiFYJgoZJd3JEtEoQNEy6kyOiVS4WN0y6kyOiVYKggdKdHBFT5dRQRETD5YggZi0NaRGjJUEQs5KGtIjRk1NDMStpSIsYPQmCmJU0pEWMngRBzEoa0iJGT9trBJI+XWH73bZ/r832K4AvAocDBtbb/lSbsb8MbAbeYvvKCp8bfbL21GMOukYAaUiLGHadLhafDvz+DNt/GJg2CID9wPm2t0o6DNgiaZPtHVMHSVoAfBz4WsWao4/SkBYxejoFwSdsf6HTxpKe3e412zuBneXyHkmTwHJgR8vQ9wNXAb9cqeLouzSkRYyWttcIbH9ypo2rjAGQNAasAm5tWb8ceBPwuRm2P0fShKSJXbt2VfnIiIioaMY+AknLgPcAY1PH235XlQ+QtJjiL/41tne3vPxJ4EO2n5DU9j1srwfWA4yPj7vK50ZERDVVGsquBW4Cvg48PsPYg0haSBECG2xvnGbIOPDlMgSWAq+VtN/2NbP5nIiImLsqQfAM2x+a7Rur+Ha/HJi0fel0Y2wfNWX8FcB1CYFmyDQVEYOjShBcJ+m1tv92lu+9GjgL2C5pW7nuQmAlgO11s3y/GBGZpiJisHTqI9hDcf+/gAsl/QjYV/5u28/s9Ma2by7HVmL7HVXHxnDrNE1FgiCi99oGge3DellINEemqYgYLG1vH5V0jaQPSlot6Wm9LCpGW6apiBgsneYaugxYAvwxcL+kWyRdIulNkg7vTXkxivLc5IjB0unU0HXAdfCTaSBWAacAFwNHAQvabRvRSaapiBgsHe8akrQUOKn8eRnwdIp+gs31lxajLNNURAyOTncN3QU8QtEQdj3wR7Yf7VVhERHRG52OCP6c4ijgzcBxwIskbQZusz2rDuOIbktDWkT3dLpGcNGBZUlHU5weeg9wsqQHbf9qD+qLeIo0pEV014xPKJP0fOAlwEspjhCeA+ypua6ItvLc5Iju6nSN4GqKL//dwC3lz6dtT/aotohppSEtors6XSP4PPAe2w/2qpiIKo5Ysoj7pvnST0NaxNx0OjV070whIOnELtcTMaM0pEV0V8cjAkmn0HniuMspGs0ieiYNaRHd1SkIngVsoXMQ5LmR0RdpSIvonk63j471sI6InkofQsSTqjyYJmKkpA8h4mAz9hFEjJr0IUQcLEEQjZM+hIiDVeks3ijpdZISGjES8mCciINV+XL/LPBW4C5JH5OUm7VjqKUPIeJgMwaB7a/bfhtwIvA94Ovl08reKWlh3QVGdNsZq5Zz0ZnHsXzJIgQsX7KIi848LheKo7Eq3TUk6WeBtwNnAbcBG4CTgbMpnloWMVTShxDxpBmDoJx87hjgL4A32N5ZvvRXkibqLC4iIupX5Yjg07ZvmO4F2+NdriciInqsShA8W9KZLeseAbbbfqCGmiIGXjqTY5RUCYJ3Ay8HDhwVnEIxB9FRkj5q+y9qqi1iIKUzOUZNldtHFwK/aPvNtt8MHAuY4qE1H6qzuIhBlM7kGDVVguBI2/dP+f0BYIXtHwL76ikrYnClMzlGTZUg+Kak6ySdLels4Npy3aHAw+02krRC0g2Sdki6U9J504w5XdLtkrZJmpB08tx3JaI30pkco6ZKELyP4rGVJ5Q/XwTeZ/sx26/ssN1+4Hzbx1I89P59ko5tGfMN4HjbJwDvAi6b7Q5E9Fo6k2PUdLxYLGkB8PXyC/+q2bxx2W+ws1zeI2kSWA7smDLm0SmbHEpx7SFioOUJaTFqOgaB7cclPSHpWbYfmeuHSBqjeKTlrdO89ibgIuA5wOvabH8OcA7AypUr51pGRNekMzlGSZXbRx8FtkvaBDx2YKXtc6t8gKTFFEcTa2zvbn3d9tXA1ZJ+BfhD4NXTjFkPrAcYHx/PUUMMvfQhxCCpEgQby59ZKyeluwrYYLvje9i+UdLzJS21/eBcPi9iGKQPIQbNjEFg+wuSFgErbVe+UVqSgMuBSduXthnzC8A/27akE4GfBh6q+hkRw6hTH0KCIPqhyqRzbwAuAZ5G0U18AvBR22+cYdPVFLOVbpe0rVx3IbASwPY64M3Ab0naB+wF/rPtnPqJkZY+hBg0VU4N/QHwEuCbALa3SXr+TBvZvhnQDGM+Dny8Qg0RI+OIJYu4b5ov/fQhRL9U6SPYN80dQ0/UUUxEE6QPIQZNlSOCOyW9FVgg6QXAucAt9ZYVMbrShxCDpkoQvB/4CPAj4EvA9RS3eUbEHKUPIQZJlbuG/o0iCD5SfzkRUUX6EKKbqtw1dDTwAWBs6njbr6qvrIhoJ30I0W1VTg19BVhHMSHc4zOMjYiapQ8huq1KEOy3/bnaK4mIStKHEN1W5fbR/ynpdyQ9V9LPHPipvbKImFaehxDdViUIzgbWUtwyuqX8maizqIhoL30I0W1V7ho6qheFREQ16UOIbmsbBJI+aPtPy+XfsP2VKa/9ie0Le1FgRDxV+hCimzqdGnrLlOULWl47rYZaIiKiDzoFgdosT/d7REQMqU7XCNxmebrfI2KIpDM5puoUBMdL2k3x1/+icpny96fXXllE1CKdydGq7akh2wtsP9P2YbYPKZcP/L6wl0VGRPd06kyOZqrSRxARIySdydEqQRDRMOlMjlYJgoiGSWdytKoy6VxEjJB0JkerBEFEA6UzOaZKEETErKQHYfQkCCKisvQgjKZcLI6IytKDMJoSBBFRWXoQRlOCICIqSw/CaEoQRERl6UEYTbUFgaQVkm6QtEPSnZLOm2bM2yTdLmm7pFskHV9XPRExf2esWs5FZx7H8iWLELB8ySIuOvO4XCgecnXeNbQfON/2VkmHAVskbbK9Y8qYu4Fftf3/JL0GWA+8tMaaImKe0oMwemoLAts7gZ3l8h5Jk8ByYMeUMbdM2eTbwJF11RMREdPrSR+BpDFgFXBrh2HvBr7ai3oion/SkDZ4ag8CSYuBq4A1tne3GfNKiiA4uc3r5wDnAKxcubKmSiOibmlIG0y13jUkaSFFCGywvbHNmF8CLgNOt/3QdGNsr7c9bnt82bJl9RUcEbVKQ9pgqvOuIQGXA5O2L20zZiWwETjL9nfrqiUiBkMa0gZTnaeGVgNnAdslbSvXXQisBLC9Dvh94GeBzxa5wX7b4zXWFBF9dMSSRdw3zZd+GtL6q867hm6meNB9pzG/Dfx2XTVExGBZe+oxB10jgDSkDYLMPhoRPZOH4gymBEFE9FQa0gZPgiAihkr6ELovQRARQyN9CPXI7KMRMTTSh1CPBEFEDI30IdQjQRARQyMPxqlHgiAihkYejFOPXCyOiKGRPoR6JAgiYqikD6H7cmooIqLhckQQEY2RZrTpJQgiohHSjNZeTg1FRCOkGa29BEFENEKa0dpLEEREI6QZrb0EQUQ0QprR2svF4ohohDSjtZcgiIjGSDPa9HJqKCKi4RIEERENl1NDEREVjHJXcoIgImIGo96VnFNDEREzGPWu5ARBRMQMRr0rOUEQETGDUe9KThBERMxg1LuSc7E4ImIGo96VXFsQSFoBfBE4HDCw3vanWsa8EPg8cCLwEduX1FVPRMR8zKcredBvPa3ziGA/cL7trZIOA7ZI2mR7x5QxPwTOBc6osY6IiL4ZhltPa7tGYHun7a3l8h5gEljeMuYB2/8I7KurjoiIfhqGW097crFY0hiwCrh1jtufI2lC0sSuXbu6WVpERK2G4dbT2oNA0mLgKmCN7d1zeQ/b622P2x5ftmxZdwuMiKjRMNx6WmsQSFpIEQIbbG+s87MiIgbRMNx6WuddQwIuByZtX1rX50REDLJhuPVUtut5Y+lk4CZgO/BEufpCYCWA7XWSfg6YAJ5ZjnkUOLbTKaTx8XFPTEzUUnNExKiStMX2+HSv1XZEYPtmQDOM+QFwZF01RETEzDLFREREw2WKiYiIAVd3Z3KCICJigPWiMzmnhiIiBlgvOpMTBBERA6wXnckJgoiIAdaLzuQEQUTEAOtFZ3IuFkdEDLBedCYnCCIiBtx8HopTRU4NRUQ0XIIgIqLhEgQREQ2XIIiIaLgEQUREwyUIIiIaLkEQEdFwCYKIiIZLEERENFyCICKi4Wp7eH1dJO0C/mUWmywFHqypnH7JPg2+UdsfyD4Ng0778zzby6Z7YeiCYLYkTdge73cd3ZR9Gnyjtj+QfRoGc92fnBqKiGi4BEFERMM1IQjW97uAGmSfBt+o7Q9kn4bBnPZn5K8RREREZ004IoiIiA4SBBERDTfSQSDpNEnfkfRPkj7c73rmS9IKSTdI2iHpTknn9bumbpC0QNJtkq7rdy3dIGmJpCsl/R9Jk5Je3u+a5kPSfyv/vd0h6UuSnt7vmmZL0p9LekDSHVPW/YykTZLuKv/77H7WOFtt9uni8t/d7ZKulrSkynuNbBBIWgD8GfAa4FjgNyUd29+q5m0/cL7tY4GXAe8bgX0COA+Y7HcRXfQp4O9svxA4niHeN0nLgXOBcdsvAhYAb+lvVXNyBXBay7oPA9+w/QLgG+Xvw+QKnrpPm4AX2f4l4LvABVXeaGSDAHgJ8E+2/6/tHwNfBk7vc03zYnun7a3l8h6KL5j6nmjdA5KOBF4HXNbvWrpB0rOAXwEuB7D9Y9sP97eqeTsEWCTpEOAZwPf7XM+s2b4R+GHL6tOBL5TLXwDO6GlR8zTdPtn+mu395a/fBo6s8l6jHATLgX+d8vu9DPmX5lSSxoBVwK39rWTePgl8EHii34V0yVHALuDz5emuyyQd2u+i5sr2fcAlwD3ATuAR21/rb1Vdc7jtneXyD4DD+1lMDd4FfLXKwFEOgpElaTFwFbDG9u5+1zNXkl4PPGB7S79r6aJDgBOBz9leBTzG8J1y+InyvPnpFAF3BHCopLf3t6ruc3Ef/cjcSy/pIxSnkjdUGT/KQXAfsGLK70eW64aapIUUIbDB9sZ+1zNPq4E3Svoexam7V0n6y/6WNG/3AvfaPnCkdiVFMAyrVwN3295lex+wETipzzV1y/2SngtQ/veBPtfTFZLeAbweeJsrNoqNchD8I/ACSUdJehrFBa6/6XNN8yJJFOeeJ21f2u965sv2BbaPtD1G8f/n720P9V+btn8A/KukY8pVvwbs6GNJ83UP8DJJzyj//f0aQ3zxu8XfAGeXy2cD1/axlq6QdBrFqdY32v63qtuNbBCUF0z+K3A9xT/cv7Z9Z3+rmrfVwFkUfzlvK39e2++i4ineD2yQdDtwAvAnfa5nzsojmyuBrcB2iu+MoZuWQdKXgM3AMZLulfRu4GPAf5R0F8WRz8f6WeNstdmnzwCHAZvK74d1ld4rU0xERDTbyB4RRERENQmCiIiGSxBERDRcgiAiouESBBERDZcgiIhouARBNIakx8t7q++Q9BVJz+hDDVdIulvSe8vpqh8qG7WQ9HJJLifiQ9KzJP1Q0k+V0wv/QNIHel1zjL4EQTTJXtsnlNMp/xh4b90fWE6H3mqt7XXlrKQ7gV8s158E3MaTUzi8DPgH20/YXgtUag6KmK0EQTTVTcAvAEj63fIo4Q5Ja8p1ayWdWy5/QtLfl8uvkrShXP51SZslbS2PMBaX678n6eOStgK/MUMdt/DkF/9JwCdafv9W1/Y4oo0EQTROOa/+a4Dtkl4MvBN4KcVf4O+RtIoiKF5RbjIOLC4n/HsFcKOkpcDvAa+2fSIwAfzulI95yPaJtr88Qznf4skv/ucDXyk/j3L9LXPf04hqEgTRJIskbaP40r6HYgK/k4GrbT9m+1GK2TVfAWwBXizpmcCPKOZ0GS9fu4kiNI4FvlW+59nA86Z81l9VrOkW4CRJRwHfs/3vFPMLLgZezPA/byKGwCH9LiCih/baPmHqivI67VPY3ifpbuAdFF/WtwOvpDidNAn8PLDJ9m+2+azHqhRk+67yubJvoAgbKELonRTB8GiV94mYjxwRRNPdBJxRTrN8KPCmct2B1z4A3Fguvxe4rZzj/dvAakkHrjMcKunoOdbwbYrnNh8Igs3AGnJ9IHokQRCNVj4D+grgHyhOw1xm+7by5ZuA5wKbbd8P/Hu5Dtu7KI4WvlRON70ZeOEcy/gWxUOUJsrfN1NcL8j1geiJTEMd0UOSrgCus33lHLb9A+BR25d0u65othwRRPTWI8AfSppVD4Oki4G3U/HaQ8Rs5IggIqLhckQQEdFwCYKIiIZLEERENFyCICKi4f4/oZCBjV0g6sMAAAAASUVORK5CYII=\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "text/plain": "
" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "C_rates = np.linspace(0.05, 5, 20)\n", + "capacities = np.zeros_like(C_rates)\n", + "currents = np.zeros_like(C_rates)\n", + "voltage_av = np.zeros_like(C_rates)\n", + "\n", + "for i, C_rate in enumerate(C_rates):\n", + " experiment = pybamm.Experiment(\n", + " [\"Discharge at {:.4f}C until 3.2V\".format(C_rate)],\n", + " period=\"{:.4f} seconds\".format(10 / C_rate)\n", + " )\n", + " sim = pybamm.Simulation(\n", + " model,\n", + " experiment=experiment,\n", + " solver=pybamm.CasadiSolver()\n", + " )\n", + " sim.solve()\n", + "\n", + " capacity = sim.solution[\"Discharge capacity [A.h]\"]\n", + " current = sim.solution[\"Current [A]\"]\n", + " voltage = sim.solution[\"Terminal voltage [V]\"]\n", + "\n", + " capacities[i] = capacity(sim.solution.t[-1])\n", + " currents[i] = current(sim.solution.t[-1])\n", + " voltage_av[i] = np.mean(voltage(sim.solution.t))\n", + "\n", + "plt.figure(1)\n", + "plt.scatter(C_rates, capacities)\n", + "plt.xlabel('C-rate')\n", + "plt.ylabel('Capacity [Ah]')\n", + "\n", + "plt.figure(2)\n", + "plt.scatter(currents * voltage_av, capacities * voltage_av)\n", + "plt.xlabel('Power [W]')\n", + "plt.ylabel('Energy [Wh]')\n", + "\n", + "plt.show()" + ] + } + ] +} \ No newline at end of file diff --git a/examples/scripts/rate_capability.py b/examples/scripts/rate_capability.py index 80814522b9..abfa578445 100644 --- a/examples/scripts/rate_capability.py +++ b/examples/scripts/rate_capability.py @@ -5,8 +5,6 @@ pybamm.set_logging_level("INFO") # load model -options = {"thermal": "isothermal"} - model = pybamm.lithium_ion.DFN() # solve model