-
-
Notifications
You must be signed in to change notification settings - Fork 589
/
Copy pathsimulation.py
967 lines (861 loc) · 39.7 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
#
# Simulation class
#
import pickle
import pybamm
import numpy as np
import copy
import warnings
import sys
def is_notebook():
try:
shell = get_ipython().__class__.__name__
if shell == "ZMQInteractiveShell": # pragma: no cover
# Jupyter notebook or qtconsole
cfg = get_ipython().config
nb = len(cfg["InteractiveShell"].keys()) == 0
return nb
elif shell == "TerminalInteractiveShell": # pragma: no cover
return False # Terminal running IPython
elif shell == "Shell": # pragma: no cover
return True # Google Colab notebook
else:
return False # Other type (?)
except NameError:
return False # Probably standard Python interpreter
def constant_current_constant_voltage_constant_power(variables):
I = variables["Current [A]"]
V = variables["Terminal voltage [V]"]
s_I = pybamm.InputParameter("Current switch")
s_V = pybamm.InputParameter("Voltage switch")
s_P = pybamm.InputParameter("Power switch")
n_cells = pybamm.Parameter("Number of cells connected in series to make a battery")
return (
s_I * (I - pybamm.InputParameter("Current input [A]"))
+ s_V * (V - pybamm.InputParameter("Voltage input [V]") / n_cells)
+ s_P * (V * I - pybamm.InputParameter("Power input [W]") / n_cells)
)
def constant_voltage(variables, V_applied):
V = variables["Terminal voltage [V]"]
n_cells = pybamm.Parameter("Number of cells connected in series to make a battery")
return V - V_applied / n_cells
def constant_power(variables, P_applied):
I = variables["Current [A]"]
V = variables["Terminal voltage [V]"]
n_cells = pybamm.Parameter("Number of cells connected in series to make a battery")
return V * I - P_applied / n_cells
class Simulation:
"""A Simulation class for easy building and running of PyBaMM simulations.
Parameters
----------
model : :class:`pybamm.BaseModel`
The model to be simulated
experiment : :class:`pybamm.Experiment` (optional)
The experimental conditions under which to solve the model
geometry: :class:`pybamm.Geometry` (optional)
The geometry upon which to solve the model
parameter_values: :class:`pybamm.ParameterValues` (optional)
Parameters and their corresponding numerical values.
submesh_types: dict (optional)
A dictionary of the types of submesh to use on each subdomain
var_pts: dict (optional)
A dictionary of the number of points used by each spatial variable
spatial_methods: dict (optional)
A dictionary of the types of spatial method to use on each
domain (e.g. pybamm.FiniteVolume)
solver: :class:`pybamm.BaseSolver` (optional)
The solver to use to solve the model.
output_variables: list (optional)
A list of variables to plot automatically
C_rate: float (optional)
The C-rate at which you would like to run a constant current (dis)charge.
"""
def __init__(
self,
model,
experiment=None,
geometry=None,
parameter_values=None,
submesh_types=None,
var_pts=None,
spatial_methods=None,
solver=None,
output_variables=None,
C_rate=None,
):
self.parameter_values = parameter_values or model.default_parameter_values
if isinstance(model, pybamm.lithium_ion.BasicDFNHalfCell):
raise NotImplementedError(
"BasicDFNHalfCell is not compatible with Simulations yet."
)
if experiment is None:
# Check to see if the current is provided as data (i.e. drive cycle)
current = self._parameter_values.get("Current function [A]")
if isinstance(current, pybamm.Interpolant):
self.operating_mode = "drive cycle"
elif isinstance(current, tuple):
raise NotImplementedError(
"Drive cycle from data has been deprecated. "
+ "Define an Interpolant instead."
)
else:
self.operating_mode = "without experiment"
if C_rate:
self.C_rate = C_rate
self._parameter_values.update(
{
"Current function [A]": self.C_rate
* self._parameter_values["Nominal cell capacity [A.h]"]
}
)
self._unprocessed_model = model
self.model = model
else:
self.set_up_experiment(model, experiment)
self.geometry = geometry or self.model.default_geometry
self.submesh_types = submesh_types or self.model.default_submesh_types
self.var_pts = var_pts or self.model.default_var_pts
self.spatial_methods = spatial_methods or self.model.default_spatial_methods
self.solver = solver or self.model.default_solver
self.output_variables = output_variables
# Initialize empty built states
self._model_with_set_params = None
self._built_model = None
self._mesh = None
self._disc = None
self._solution = None
# ignore runtime warnings in notebooks
if is_notebook(): # pragma: no cover
import warnings
warnings.filterwarnings("ignore")
def set_up_experiment(self, model, experiment):
"""
Set up a simulation to run with an experiment. This creates a dictionary of
inputs (current/voltage/power, running time, stopping condition) for each
operating condition in the experiment. The model will then be solved by
integrating the model successively with each group of inputs, one group at a
time.
"""
self.operating_mode = "with experiment"
if not isinstance(experiment, pybamm.Experiment):
raise TypeError("experiment must be a pybamm `Experiment` instance")
# Save the experiment
self.experiment = experiment
# Update parameter values with experiment parameters
self._parameter_values.update(experiment.parameters)
# Create a new submodel for each set of operating conditions and update
# parameters and events accordingly
self._experiment_inputs = []
self._experiment_times = []
for op, events in zip(experiment.operating_conditions, experiment.events):
if op[1] in ["A", "C"]:
# Update inputs for constant current
capacity = self._parameter_values["Nominal cell capacity [A.h]"]
if op[1] == "A":
I = op[0]
Crate = I / capacity
else:
# Scale C-rate with capacity to obtain current
Crate = op[0]
I = Crate * capacity
operating_inputs = {
"Current switch": 1,
"Voltage switch": 0,
"Power switch": 0,
"Current input [A]": I,
"Voltage input [V]": 0, # doesn't matter
"Power input [W]": 0, # doesn't matter
}
elif op[1] == "V":
# Update inputs for constant voltage
V = op[0]
operating_inputs = {
"Current switch": 0,
"Voltage switch": 1,
"Power switch": 0,
"Current input [A]": 0, # doesn't matter
"Voltage input [V]": V,
"Power input [W]": 0, # doesn't matter
}
elif op[1] == "W":
# Update inputs for constant power
P = op[0]
operating_inputs = {
"Current switch": 0,
"Voltage switch": 0,
"Power switch": 1,
"Current input [A]": 0, # doesn't matter
"Voltage input [V]": 0, # doesn't matter
"Power input [W]": P,
}
# Update period
operating_inputs["period"] = op[3]
# Update events
if events is None:
# make current and voltage values that won't be hit
operating_inputs.update(
{"Current cut-off [A]": -1e10, "Voltage cut-off [V]": -1e10}
)
elif events[1] in ["A", "C"]:
# update current cut-off, make voltage a value that won't be hit
if events[1] == "A":
I = events[0]
else:
# Scale C-rate with capacity to obtain current
capacity = self._parameter_values["Nominal cell capacity [A.h]"]
I = events[0] * capacity
operating_inputs.update(
{"Current cut-off [A]": I, "Voltage cut-off [V]": -1e10}
)
elif events[1] == "V":
# update voltage cut-off, make current a value that won't be hit
V = events[0]
operating_inputs.update(
{"Current cut-off [A]": -1e10, "Voltage cut-off [V]": V}
)
self._experiment_inputs.append(operating_inputs)
# Add time to the experiment times
dt = op[2]
if dt is None:
if op[1] in ["A", "C"]:
# Current control: max simulation time: 3 * max simulation time
# based on C-rate
dt = 3 / abs(Crate) * 3600 # seconds
else:
# max simulation time: 1 day
dt = 24 * 3600 # seconds
self._experiment_times.append(dt)
# Set up model for experiment
if experiment.use_simulation_setup_type == "old":
self.set_up_model_for_experiment_old(model)
elif experiment.use_simulation_setup_type == "new":
self.set_up_model_for_experiment_new(model)
def set_up_model_for_experiment_old(self, model):
"""
Set up self.model to be able to run the experiment (old version).
In this version, a single model is created which can then be called with
different inputs for current-control, voltage-control, or power-control.
This reduces set-up time since only one model needs to be processed, but
increases simulation time since the model formulation is inefficient
"""
# Create a new model where the current density is now a variable
# To do so, we replace all instances of the current density in the
# model with a current density variable, which is obtained from the
# FunctionControl submodel
# create the FunctionControl submodel and extract variables
external_circuit_variables = pybamm.external_circuit.FunctionControl(
model.param, None
).get_fundamental_variables()
# Perform the replacement
symbol_replacement_map = {
model.variables[name]: variable
for name, variable in external_circuit_variables.items()
}
replacer = pybamm.SymbolReplacer(symbol_replacement_map)
new_model = replacer.process_model(model, inplace=False)
# Update the algebraic equation and initial conditions for FunctionControl
# This creates an algebraic equation for the current to allow current, voltage,
# or power control, together with the appropriate guess for the
# initial condition.
# External circuit submodels are always equations on the current
# The external circuit function should fix either the current, or the voltage,
# or a combination (e.g. I*V for power control)
i_cell = new_model.variables["Total current density"]
new_model.initial_conditions[i_cell] = new_model.param.current_with_time
new_model.algebraic[i_cell] = constant_current_constant_voltage_constant_power(
new_model.variables
)
# Remove upper and lower voltage cut-offs that are *not* part of the experiment
new_model.events = [
event
for event in model.events
if event.name not in ["Minimum voltage", "Maximum voltage"]
]
# add current and voltage events to the model
# current events both negative and positive to catch specification
new_model.events.extend(
[
pybamm.Event(
"Current cut-off (positive) [A] [experiment]",
new_model.variables["Current [A]"]
- abs(pybamm.InputParameter("Current cut-off [A]")),
),
pybamm.Event(
"Current cut-off (negative) [A] [experiment]",
new_model.variables["Current [A]"]
+ abs(pybamm.InputParameter("Current cut-off [A]")),
),
pybamm.Event(
"Voltage cut-off [V] [experiment]",
new_model.variables["Terminal voltage [V]"]
- pybamm.InputParameter("Voltage cut-off [V]")
/ model.param.n_cells,
),
]
)
self.model = new_model
self.op_conds_to_model_and_param = {
op_cond[:2]: (new_model, self.parameter_values)
for op_cond in set(self.experiment.operating_conditions)
}
self.op_conds_to_built_models = None
def set_up_model_for_experiment_new(self, model):
"""
Set up self.model to be able to run the experiment (new version).
In this version, a new model is created for each step.
This increases set-up time since several models to be processed, but
reduces simulation time since the model formulation is efficient.
"""
self.op_conds_to_model_and_param = {}
self.op_conds_to_built_models = None
for op_cond, op_inputs in zip(
self.experiment.operating_conditions, self._experiment_inputs
):
# Create model for this operating condition if it has not already been seen
# before
if op_cond[:2] not in self.op_conds_to_model_and_param:
if op_inputs["Current switch"] == 1:
# Current control
# Make a new copy of the model (we will update events later))
new_model = model.new_copy()
else:
# Voltage or power control
# Create a new model where the current density is now a variable
# To do so, we replace all instances of the current density in the
# model with a current density variable, which is obtained from the
# FunctionControl submodel
# create the FunctionControl submodel and extract variables
external_circuit_variables = (
pybamm.external_circuit.FunctionControl(
model.param, None
).get_fundamental_variables()
)
# Perform the replacement
symbol_replacement_map = {
model.variables[name]: variable
for name, variable in external_circuit_variables.items()
}
replacer = pybamm.SymbolReplacer(symbol_replacement_map)
new_model = replacer.process_model(model, inplace=False)
# Update the algebraic equation and initial conditions for
# FunctionControl
# This creates an algebraic equation for the current to allow
# current, voltage, or power control, together with the appropriate
# guess for the initial condition.
# External circuit submodels are always equations on the current
# The external circuit function should fix either the current, or
# the voltage, or a combination (e.g. I*V for power control)
i_cell = new_model.variables["Total current density"]
new_model.initial_conditions[
i_cell
] = new_model.param.current_with_time
# add current events to the model
# current events both negative and positive to catch specification
new_model.events.extend(
[
pybamm.Event(
"Current cut-off (positive) [A] [experiment]",
new_model.variables["Current [A]"]
- abs(pybamm.InputParameter("Current cut-off [A]")),
),
pybamm.Event(
"Current cut-off (negative) [A] [experiment]",
new_model.variables["Current [A]"]
+ abs(pybamm.InputParameter("Current cut-off [A]")),
),
]
)
if op_inputs["Voltage switch"] == 1:
new_model.algebraic[i_cell] = constant_voltage(
new_model.variables,
pybamm.Parameter("Voltage function [V]"),
)
elif op_inputs["Power switch"] == 1:
new_model.algebraic[i_cell] = constant_power(
new_model.variables,
pybamm.Parameter("Power function [W]"),
)
# add voltage events to the model
if op_inputs["Power switch"] == 1 or op_inputs["Current switch"] == 1:
new_model.events.append(
pybamm.Event(
"Voltage cut-off [V] [experiment]",
new_model.variables["Terminal voltage [V]"]
- op_inputs["Voltage cut-off [V]"] / model.param.n_cells,
)
)
# Keep the min and max voltages as safeguards but add some tolerances
# so that they are not triggered before the voltage limits in the
# experiment
for event in new_model.events:
if event.name == "Minimum voltage":
event._expression += 1
elif event.name == "Maximum voltage":
event._expression -= 1
# Update parameter values
new_parameter_values = self.parameter_values.copy()
if op_inputs["Current switch"] == 1:
new_parameter_values.update(
{"Current function [A]": op_inputs["Current input [A]"]}
)
elif op_inputs["Voltage switch"] == 1:
new_parameter_values.update(
{"Voltage function [V]": op_inputs["Voltage input [V]"]},
check_already_exists=False,
)
elif op_inputs["Power switch"] == 1:
new_parameter_values.update(
{"Power function [W]": op_inputs["Power input [W]"]},
check_already_exists=False,
)
self.op_conds_to_model_and_param[op_cond[:2]] = (
new_model,
new_parameter_values,
)
self.model = model
def set_parameters(self):
"""
A method to set the parameters in the model and the associated geometry.
"""
if self.model_with_set_params:
return None
if self._parameter_values._dict_items == {}:
# Don't process if parameter values is empty
self._model_with_set_params = self._unprocessed_model
else:
self._model_with_set_params = self._parameter_values.process_model(
self._unprocessed_model, inplace=False
)
self._parameter_values.process_geometry(self._geometry)
self.model = self._model_with_set_params
def build(self, check_model=True):
"""
A method to build the model into a system of matrices and vectors suitable for
performing numerical computations. If the model has already been built or
solved then this function will have no effect.
This method will automatically set the parameters
if they have not already been set.
Parameters
----------
check_model : bool, optional
If True, model checks are performed after discretisation (see
:meth:`pybamm.Discretisation.process_model`). Default is True.
"""
if self.built_model:
return None
elif self.model.is_discretised:
self._model_with_set_params = self.model
self._built_model = self.model
else:
self.set_parameters()
self._mesh = pybamm.Mesh(self._geometry, self._submesh_types, self._var_pts)
self._disc = pybamm.Discretisation(self._mesh, self._spatial_methods)
self._built_model = self._disc.process_model(
self._model_with_set_params, inplace=False, check_model=check_model
)
def build_for_experiment(self, check_model=True):
"""
Similar to :meth:`Simulation.build`, but for the case of simulating an
experiment, where there may be several models to build
"""
if self.op_conds_to_built_models:
return None
else:
# Can process geometry with default parameter values (only electrical
# parameters change between parameter values)
self._parameter_values.process_geometry(self._geometry)
# Only needs to set up mesh and discretisation once
self._mesh = pybamm.Mesh(self._geometry, self._submesh_types, self._var_pts)
self._disc = pybamm.Discretisation(self._mesh, self._spatial_methods)
# Process all the different models
self.op_conds_to_built_models = {}
processed_models = {}
for op_cond, (
unbuilt_model,
parameter_values,
) in self.op_conds_to_model_and_param.items():
if unbuilt_model in processed_models:
built_model = processed_models[unbuilt_model]
else:
# It's ok to modify the models in-place as they are not accessible
# from outside the simulation
model_with_set_params = parameter_values.process_model(
unbuilt_model, inplace=True
)
built_model = self._disc.process_model(
model_with_set_params, inplace=True, check_model=check_model
)
processed_models[unbuilt_model] = built_model
self.op_conds_to_built_models[op_cond] = built_model
def solve(
self,
t_eval=None,
solver=None,
check_model=True,
save_at_cycles=None,
starting_solution=None,
**kwargs,
):
"""
A method to solve the model. This method will automatically build
and set the model parameters if not already done so.
Parameters
----------
t_eval : numeric type, optional
The times (in seconds) at which to compute the solution. Can be
provided as an array of times at which to return the solution, or as a
list `[t0, tf]` where `t0` is the initial time and `tf` is the final time.
If provided as a list the solution is returned at 100 points within the
interval `[t0, tf]`.
If not using an experiment or running a drive cycle simulation (current
provided as data) `t_eval` *must* be provided.
If running an experiment the values in `t_eval` are ignored, and the
solution times are specified by the experiment.
If None and the parameter "Current function [A]" is read from data
(i.e. drive cycle simulation) the model will be solved at the times
provided in the data.
solver : :class:`pybamm.BaseSolver`, optional
The solver to use to solve the model. If None, Simulation.solver is used
check_model : bool, optional
If True, model checks are performed after discretisation (see
:meth:`pybamm.Discretisation.process_model`). Default is True.
save_at_cycles : int or list of ints, optional
Which cycles to save the full sub-solutions for. If None, all cycles are
saved. If int, every multiple of save_at_cycles is saved. If list, every
cycle in the list is saved.
starting_solution : :class:`pybamm.Solution`
The solution to start stepping from. If None (default), then self._solution
is used. Must be None if not using an experiment.
**kwargs
Additional key-word arguments passed to `solver.solve`.
See :meth:`pybamm.BaseSolver.solve`.
"""
# Setup
if solver is None:
solver = self.solver
if self.operating_mode in ["without experiment", "drive cycle"]:
self.build(check_model=check_model)
if save_at_cycles is not None:
raise ValueError(
"'save_at_cycles' option can only be used if simulating an "
"Experiment "
)
if starting_solution is not None:
raise ValueError(
"starting_solution can only be provided if simulating an Experiment"
)
if self.operating_mode == "without experiment":
if t_eval is None:
raise pybamm.SolverError(
"'t_eval' must be provided if not using an experiment or "
"simulating a drive cycle. 't_eval' can be provided as an "
"array of times at which to return the solution, or as a "
"list [t0, tf] where t0 is the initial time and tf is the "
"final time. "
"For a constant current (dis)charge the suggested 't_eval' "
"is [0, 3700/C] where C is the C-rate. "
"For example, run\n\n"
"\tsim.solve([0, 3700])\n\n"
"for a 1C discharge."
)
elif self.operating_mode == "drive cycle":
# For drive cycles (current provided as data) we perform additional
# tests on t_eval (if provided) to ensure the returned solution
# captures the input.
time_data = self._parameter_values["Current function [A]"].x[0]
# If no t_eval is provided, we use the times provided in the data.
if t_eval is None:
pybamm.logger.info("Setting t_eval as specified by the data")
t_eval = time_data
# If t_eval is provided we first check if it contains all of the
# times in the data to within 10-12. If it doesn't, we then check
# that the largest gap in t_eval is smaller than the smallest gap in
# the time data (to ensure the resolution of t_eval is fine enough).
# We only raise a warning here as users may genuinely only want
# the solution returned at some specified points.
elif (
set(np.round(time_data, 12)).issubset(set(np.round(t_eval, 12)))
) is False:
warnings.warn(
"""
t_eval does not contain all of the time points in the data
set. Note: passing t_eval = None automatically sets t_eval
to be the points in the data.
""",
pybamm.SolverWarning,
)
dt_data_min = np.min(np.diff(time_data))
dt_eval_max = np.max(np.diff(t_eval))
if dt_eval_max > dt_data_min + sys.float_info.epsilon:
warnings.warn(
"""
The largest timestep in t_eval ({}) is larger than
the smallest timestep in the data ({}). The returned
solution may not have the correct resolution to accurately
capture the input. Try refining t_eval. Alternatively,
passing t_eval = None automatically sets t_eval to be the
points in the data.
""".format(
dt_eval_max, dt_data_min
),
pybamm.SolverWarning,
)
self._solution = solver.solve(self.built_model, t_eval, **kwargs)
elif self.operating_mode == "with experiment":
self.build_for_experiment(check_model=check_model)
if t_eval is not None:
pybamm.logger.warning(
"Ignoring t_eval as solution times are specified by the experiment"
)
# Re-initialize solution, e.g. for solving multiple times with different
# inputs without having to build the simulation again
self._solution = starting_solution
# Step through all experimental conditions
inputs = kwargs.get("inputs", {})
pybamm.logger.info("Start running experiment")
timer = pybamm.Timer()
if starting_solution is None:
starting_solution_cycles = []
else:
starting_solution_cycles = starting_solution.cycles.copy()
cycle_offset = len(starting_solution_cycles)
all_cycle_solutions = starting_solution_cycles
current_solution = starting_solution
idx = 0
num_cycles = len(self.experiment.cycle_lengths)
feasible = True # simulation will stop if experiment is infeasible
for cycle_num, cycle_length in enumerate(
self.experiment.cycle_lengths, start=1
):
pybamm.logger.notice(
f"Cycle {cycle_num+cycle_offset}/{num_cycles+cycle_offset} "
f"({timer.time()} elapsed) " + "-" * 20
)
steps = []
cycle_solution = None
for step_num in range(1, cycle_length + 1):
exp_inputs = self._experiment_inputs[idx]
dt = self._experiment_times[idx]
op_conds_str = self.experiment.operating_conditions_strings[idx]
op_conds_elec = self.experiment.operating_conditions[idx][:2]
model = self.op_conds_to_built_models[op_conds_elec]
# Use 1-indexing for printing cycle number as it is more
# human-intuitive
pybamm.logger.notice(
f"Cycle {cycle_num+cycle_offset}/{num_cycles+cycle_offset}, "
f"step {step_num}/{cycle_length}: {op_conds_str}"
)
inputs.update(exp_inputs)
kwargs["inputs"] = inputs
# Make sure we take at least 2 timesteps
npts = max(int(round(dt / exp_inputs["period"])) + 1, 2)
step_solution = solver.step(
current_solution,
model,
dt,
npts=npts,
save=False,
**kwargs,
)
steps.append(step_solution)
current_solution = step_solution
cycle_solution = cycle_solution + step_solution
# Only allow events specified by experiment
if not (
cycle_solution is None
or cycle_solution.termination == "final time"
or "[experiment]" in cycle_solution.termination
):
feasible = False
break
# Increment index for next iteration
idx += 1
# Break if the experiment is infeasible
if feasible is False:
pybamm.logger.warning(
"\n\n\tExperiment is infeasible: '{}' ".format(
cycle_solution.termination
)
+ "was triggered during '{}'. ".format(
self.experiment.operating_conditions_strings[idx]
)
+ "The returned solution only contains the first "
"{} cycles. ".format(cycle_num - 1 + cycle_offset)
+ "Try reducing the current, shortening the time interval, "
"or reducing the period.\n\n"
)
break
# At the final step of the inner loop we save the cycle
self._solution = self.solution + cycle_solution
cycle_solution.steps = steps
all_cycle_solutions.append(cycle_solution)
if self.solution is not None:
self.solution.cycles = all_cycle_solutions
pybamm.logger.notice(
"Finish experiment simulation, took {}".format(timer.time())
)
return self.solution
def step(
self, dt, solver=None, npts=2, save=True, starting_solution=None, **kwargs
):
"""
A method to step the model forward one timestep. This method will
automatically build and set the model parameters if not already done so.
Parameters
----------
dt : numeric type
The timestep over which to step the solution
solver : :class:`pybamm.BaseSolver`
The solver to use to solve the model.
npts : int, optional
The number of points at which the solution will be returned during
the step dt. Default is 2 (returns the solution at t0 and t0 + dt).
save : bool
Turn on to store the solution of all previous timesteps
starting_solution : :class:`pybamm.Solution`
The solution to start stepping from. If None (default), then self._solution
is used
**kwargs
Additional key-word arguments passed to `solver.solve`.
See :meth:`pybamm.BaseSolver.step`.
"""
if self.operating_mode in ["without experiment", "drive cycle"]:
self.build()
if solver is None:
solver = self.solver
if starting_solution is None:
starting_solution = self._solution
self._solution = solver.step(
starting_solution, self.built_model, dt, npts=npts, save=save, **kwargs
)
return self.solution
def plot(self, output_variables=None, quick_plot_vars=None, **kwargs):
"""
A method to quickly plot the outputs of the simulation. Creates a
:class:`pybamm.QuickPlot` object (with keyword arguments 'kwargs') and
then calls :meth:`pybamm.QuickPlot.dynamic_plot`.
Parameters
----------
output_variables: list, optional
A list of the variables to plot.
quick_plot_vars: list, optional
A list of the variables to plot. Deprecated, use output_variables instead.
**kwargs
Additional keyword arguments passed to
:meth:`pybamm.QuickPlot.dynamic_plot`.
For a list of all possible keyword arguments see :class:`pybamm.QuickPlot`.
"""
if quick_plot_vars is not None:
raise NotImplementedError(
"'quick_plot_vars' has been deprecated. Use 'output_variables' instead."
)
if self._solution is None:
raise ValueError(
"Model has not been solved, please solve the model before plotting."
)
if output_variables is None:
output_variables = self.output_variables
self.quick_plot = pybamm.dynamic_plot(
self._solution, output_variables=output_variables, **kwargs
)
return self.quick_plot
@property
def model(self):
return self._model
@model.setter
def model(self, model):
self._model = copy.copy(model)
self._model_class = model.__class__
@property
def model_with_set_params(self):
return self._model_with_set_params
@property
def built_model(self):
return self._built_model
@property
def geometry(self):
return self._geometry
@geometry.setter
def geometry(self, geometry):
self._geometry = geometry.copy()
@property
def parameter_values(self):
return self._parameter_values
@parameter_values.setter
def parameter_values(self, parameter_values):
self._parameter_values = parameter_values.copy()
@property
def submesh_types(self):
return self._submesh_types
@submesh_types.setter
def submesh_types(self, submesh_types):
self._submesh_types = submesh_types.copy()
@property
def mesh(self):
return self._mesh
@property
def var_pts(self):
return self._var_pts
@var_pts.setter
def var_pts(self, var_pts):
self._var_pts = var_pts.copy()
@property
def spatial_methods(self):
return self._spatial_methods
@spatial_methods.setter
def spatial_methods(self, spatial_methods):
self._spatial_methods = spatial_methods.copy()
@property
def solver(self):
return self._solver
@solver.setter
def solver(self, solver):
self._solver = solver.copy()
@property
def output_variables(self):
return self._output_variables
@output_variables.setter
def output_variables(self, output_variables):
self._output_variables = copy.copy(output_variables)
@property
def solution(self):
return self._solution
def specs(
self,
geometry=None,
parameter_values=None,
submesh_types=None,
var_pts=None,
spatial_methods=None,
solver=None,
output_variables=None,
C_rate=None,
):
"Deprecated method for setting specs"
raise NotImplementedError(
"The 'specs' method has been deprecated. "
"Create a new simulation for each different case instead."
)
def save(self, filename):
"""Save simulation using pickle"""
if self.model.convert_to_format == "python":
# We currently cannot save models in the 'python' format
raise NotImplementedError(
"""
Cannot save simulation if model format is python.
Set model.convert_to_format = 'casadi' instead.
"""
)
# Clear solver problem (not pickle-able, will automatically be recomputed)
if (
isinstance(self._solver, pybamm.CasadiSolver)
and self._solver.integrator_specs != {}
):
self._solver.integrator_specs = {}
if self.solution is not None:
self.solution.clear_casadi_attributes()
with open(filename, "wb") as f:
pickle.dump(self, f, pickle.HIGHEST_PROTOCOL)
def load_sim(filename):
"""Load a saved simulation"""
return pybamm.load(filename)