-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
77 lines (67 loc) · 2.21 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import argparse
import os
import torch
import torch.utils.checkpoint
from datasets import Dataset
from diffusers import StableDiffusionPipeline
from PIL import Image
from diffusers.pipelines.stable_diffusion import safety_checker
def sc(self, clip_input, images) : return images, [False for i in images]
safety_checker.StableDiffusionSafetyChecker.forward = sc
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None
)
parser.add_argument(
"--num_validation_images",
type=int,
default=3
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-model-finetuned-lora",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--inference", type=int, default=100)
parser.add_argument(
"--data_dir",
type=str,
default=None,
)
parser.add_argument(
"--save_dir",
type=str,
default=None,
)
args = parser.parse_args()
return args
def main():
args = parse_args()
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, revision=None, torch_dtype=torch.float16,safety_checker = None,
requires_safety_checker = False
)
pipeline.unet.load_attn_procs(args.output_dir)
pipeline.to("cuda")
dataset = Dataset.from_dict(torch.load(args.data_dir))
for i in range(len(dataset["text"])):
for j in range(args.num_validation_images):
image = pipeline(dataset["text"][i], num_inference_steps=args.inference,guidance_scale=7.5).images[0]
filename = f"image_{i+1:02}_{j+1:02}.jpg"
save_path = os.path.join(args.save_dir, filename)
image.save(save_path)
if __name__ == "__main__":
main()