Alvarium SDK Performances Report

BATISTA Maxime
May 27, 2024

Abstract

This report compares some benchmark results of the current Java and Rust SDK versions.
The Java is first much slower than its Rust counterpart, and the profiling analysis will show that
this is due to 1) the annotations are being signed individually, which causes both Rust and Java
performances to be impacted by the amount of annotations. 2) some issues are specific to the
Java SDK, such as bad use of the JSON serialization library, the signing process, and unique
identifier generation. In the third part we raise several optimisation ideas, and we’ll see that
they all have a significant performance improvement. The SDK version with all optimisations
being applied even beats the Rust version very quickly.

Contents

1 Introduction
2 Definitions

3 Current state
3.1 Benchmarkresults
3.1.1 Impact of annotationscount L o Lo
3.1.2 Impact of annotated datasize
3.2 Firstobservations e e e
3.3 Profiling results e e e e

4 What can be optimized
4.1 Non-breaking changes e e e
4.1.1 Annotation serialization L L
4.1.2 Hash data once per annotation.
4.1.3 Cache ULID Generator v v i v it ittt it e et e e
4.2 Annotation generation e e
4.3 Signing PrOCESS . . « ¢ ¢ v v v v it e
4.3.1 Signing proposal : Identity Strings
4.3.2 Results e
4.4 Overall comparison e e e e e e e e e e e e e

5 Conclusion

1 Introduction

This report will do some benchmark tests and profiling of the Java Software Development Kit from

commit version 7e53f04.

We will analyze the Profiling results of the current implementation of the Java SDK, and will

provide some optimisation ideas to help drastically reduce the Alvarium’s overhead.

https://github.com/project-alvarium/alvarium-sdk-java/commit/7e53f04e3eb8002bc66e47760900397156af2f5e

2 Definitions

SDK call: The expression SDK call is used to designate the different kind of data annotation
operations we can do using Alvarium. SDK call designates either the create, mutate, transit
or publish actions

3 Current state

3.1 Benchmark results

The benchmark is done on an intel i5-6500.

The produced annotations always comes from the same annotator being replicated : the
Source annotator.

This annotator has been selected for its insignificant CPU consumption (just checks if the
computer has a hostname), which is useful to only measure the Alvarium’s overhead, regardless
of the annotators CPU consumption.

3.1.1 Impact of annotations count

Measure the impact of the amount of annotators when annotating 20000 bytes, 5000 times

Java
annotations count min avg max
0 0.33s 0.511s 1.022 s
1 3.08 s 3.38s 4.681 s
3 6.997 s 7.287 s 8.581 s
5 10.682s | 11.217s | 13.691 s
7 15.028 s | 15.325 s 158s
10 19.9s 20.99s | 22.868 s
Rust
annotations count min avg max
0 1.8751 ms | 2.1038 ms | 2.5666 ms
1 414.12 ms | 416.47 ms | 419.13 ms
3 1.2216s 1.2345s 1.2503 s
5 2.0533 s 2.0740 s 2.0950 s
7 2.8562 s 2.8649 s 2.8734 s
10 4.0410s 4.0642 s 4.0907 s

Benchmark results of Java compared to Rust, lower is better

T T
—— Java
20 Rust
@ 15}
<]
o
&
@ 101
(]
£
= 51
0 [
| |
0 2

4

6 8

Number of annotations

3.1.2 Impact of annotated data size

Measure the impact of the size of the data annotated by 5 annotators, 5000 times.

data size (bytes)

0
1000
5000

10000
20000
80000

data size (bytes)
0
1000
5000
10000
20000
80000

Java
min
8.544 s
8.447 s
8.88 s
9.426 s
10.592 s
18.508 s

Rust
min

720.28 ms
824.60 ms
1.3717 s
2.0358 s
3.2777 s
10.853 s

avg
8.837 s
8.67 s
9.193 s
9.693 s
11.16s
19.455 s

avg
760.02 ms
825.44 ms
1.3884 s
2.0414 s
3.3196 s
11.071 s

10

max
9.705 s
8.93 s
9.409 s
9.993 s
11.559s
21.489 s

max
811.40 ms
826.25 ms
1.4110s
2.0463 s
3.3600 s
11.372 s

Benchmark results of Java compared to Rust, lower is better

T T T
20 —— Java *
—=— Rust
~ 15 s
%2}
°
o
(]
o s
g 10| SEE
(] ///
£ _—
[_' 5 [///// 1
///Z///
O B | | | | | i
0 2 4 6 8
Annotated data size 104

3.2 First observations

Without any surprise, the Java SDK is much slower than its Rust counterpart, but the number of
annotations per sdk call seems to affect more the java sdk’s performances, as suggested by the
curve steepness of the first java plot.

3.3 Profiling results

Figure 1: Overall look of the CPU consumption
() e 99 59 - 31,844 ms ucc.alvarium.benchmark$package$.runBencns$anontuns1$%anontunsl (= line: 18)
99.8% - 31,844 ms com.alvarium.Defaultsdk.create (~ line: 79)

(= 73.5% - 23,464 ms com.alvarium.DefaultSdk.createAnnotations (~ line: 56)
(O 73 5% - 23,459 ms com.alvarium.annotators.SourceAnnotator.execute (= line: 141)

@mm26.2% - 8,374 ms com.alvarium.DefaultSdk.publishAnnotations (= line: 57)
N NS -5 1328 neiava lann Intener valienf (s line: 140 1

We can see that a SDK call is composed of two main operations : Create the annotations, and
publish the annotations. Taking 73.5% and 26.2% of the whole CPU time, respectively.

Figure 2: Focus on annotation creation
() = 9Y_84% - 31,844 Ms scala.runtime.javas.|Functionl$mcVIissp.apply (% line: 190)
() e 99.8% - 31,844 ms ucc.alvarium.benchmark$package$.runBench$$anonfun$l$$anonfunsl (~ line: 18)
99.8% - 31,844 ms com.alvarium.DefaultSdk.create (= line: 79)

() 73 5% - 23,464 ms com.alvarium.DefaultSdk.createAnnotations (= line: 56)
(O = 73.5% - 23,459 ms com.alvarium.annotators.SourceAnnotator.execute (= line: 141)
(@ mm 42 .2% - 13,473 ms com.alvarium.annotators.AbstractAnnotator.signAnnotation (= line: 68)
@m24.9% - 7,954 ms com.alvarium.annotators.AbstractAnnotator.deriveHash (~ line: 50)
@16.2% - 1,985 ms com.alvarium.contracts.Annotation.<init> (~ line: 66)
@ 0.1% - 31,530 ps java.time.Instant.now (~ line: 66)
(@mm26.2% - 8,374 ms com.alvarium.DefaultSdk.publishAnnotations (~ line: 57)
(@mm 26.2% - 8,369 ms com.alvarium.streams.MgttStreamProvider.publish (~ line: 165)
@mm 24 .4% - 7,796 ms com.alvarium.PublishWrapper.to)son (~ line: 70)
@ 1.8% - 572 ms org.eclipse.paho.client.mgttv3.MqttClient.publish (= line: 73)

M N Noa -8 138 nc isua lana Intanar ualoianf (e lina: Tan .

The main overhead of annotation creation seems to be due to the cost of signing the annota-
tions, and the hashing of the data.

We can see that the data is hashed for every annotators (the hashing process occurs inside the
SourceAnnotator.execute function), which is not necessary as all the annotators will handle the
same data.

Figure 3: Focus on annotation signature

63.8% - 8,590 ms com.alvarium.sign.Ed25519Provider.sign (= line: 83)
(Dwm32.2% - 4,342 ms com.google.crypto.tink.subtle.Ed255195ign.sign (~ line: 48)
(Dwm30.1% - 4,047 ms com.google.crypto.tink.subtle.Ed25519Sign.<init> (~ line: 38)
@ 1.4% - 189 ms com.alvarium.utils.Encoder.bytesToHex (= line: 49)

@ 0.0% - 5,290 ps java.util.Arrays.copyOfRange (= line: 33)
(Dmm 25.2% - 3,392 ms com.alvarium.contracts.Annotation.toJson (~ line: 83)
@¥10.9% - 1,474 ms java.nio.file.Files.readString (~ line: 81)
(@ 0.0% - 5,295 s java.nio.file.Paths.get (= line: 81)
@ 0.0% - 5,202 s java.lang.String.getBytes (= line: 83)

NOTE: percentages here are relative to the AbstractAnnotator.signAnnotation method and
not the whole benchmark test as it was previously.

The signing is the most consuming operation, taking 42.2% of the whole benchmarking test.
However, we can see that inside of the signing operation, the main costs are divided in four
operations:

* 10.9% Goes to retrieving the private key from the file system.

* 25.2% Goes to converting the annotation to JSON, as the signature is done on the produced
JSON. The produced JSON is then lost and not used to be written to the annotations stream.

* 30.1% Goes to initializing the signer to the freshly retrieved key.

e 32.2% Goes to actually signing the annotation data.

Figure 4: Focus on annotation creation

@I 6.2% - 1,985 ms com.alvarium.contracts.Annotation.<init= (~ line: 66)
@15.7% - 1,819 ms de.huxhorn.sulky.ulid.ULID.<init= (~ line: 51)
{@15.7% - 1,819 ms java.security.SecureRandom.<init> (= line: 101)

B m 57% -1,809 ms java.security.SecureRandom.getDefaultPRNG (= line: 225)
@ 0.0% - 10,472 us java.security.SecureRandom.getThreadSafe (= line: 226)
@ 0.5% - 146 ms de.huxhorn.sulky.ulid. ULID.nextULID (~ line; 52)

Even creating annotations seems to have a significant cpu cost.
This cost is due to the instantiation of a ULID, which initializes a SecureRandom.
Initializing a SecureRandom is quite CPU consuming as we can see.

Figure 5: Focus on publishing annotations
(D 26.2% - 8,374 ms com.alvarium.DefaultSdk. publishAnnotations (= line: 57)
(D) 26.2% - 8,369 ms com.alvarium.streams.MgttStreamProvider.publish (= line: 165)
()m 24.4% - 7,796 ms com.alvarium.PublishWrapper.toJson (= line: 70)
()m 18.8% - 5,999 ms com.google.gson.Gson.tojsonTree (~ line: 64)
(@14.6% - 1,461 ms com.google.gson.Gson.to)son (~ line: 80)
@ 0.7% - 212 ms com.google.gson.JsonElement.toString (= line: 74)
(@ 0.2% - 68,288 pus com.google.gson.GsonBuilder.create (= line: 61)
(@ 0.1% - 31,573 ps java.util.Base64$Encoder.encodeTostring (~ line: 74)
(@ 0.0% - 5,172 ps com.google.gson.GsonBuilder.registerTypeAdapter (= line: 59)
(@ 1.8% - 572 ms org.eclipse.paho.client.mgttv3.MgttClient.publish (~ line: 73) i
Publishing annotations is really expensive in Alvarium : 24.4% of the whole CPU is used just
to serialize the data.
The entire overhead seems to be due to the Gson library.

4 What can be optimized

4.1 Non-breaking changes
4.1.1 Annotation serialization

As seen by profiling results, the JSON serialization seems to be quite expensive, and the annota-
tions gets converted to JSON to be signed, so there is two JSON serialization operations done per
annotation.

Also, the annotations JSON that is sent to the Alvarium stream, is first converted to base64
string and then be put inside another json object. Why not inline the two JSON Objects ?

The second reason of the serialization being so expensive, is that the library used (GSON) isn’t
efficient at all when it encounters unknown structures, because it has to use the reflection library,
which is very inefficient. Defining GSON’s TypeAdapters for all the serializable Alvarium objects
did reduce the JSON serializing process to being nearly unsignificant.

Here are the results of the original Java SDK with optimized JSON serialization.

Java

annotations count min avg max
0 0.177 s 0.301 s 0.755s
1 2.098 s 2.196 s 2.43s
3 5.256's 5.311s 5.43s
5 8.229 s 8.309 s 8.369 s
7 11.165s | 11.244s | 11.388 s
10 15.53s | 15.919s | 17.781 s

Benchmark results of Java (event set) compared to Rust (not modified), lower is better

I I I I I I
5 —a— Java
OFl java (optimized JSON) il
Rust
@ 15} 2
g
o
8
&» 10 f
(]
£
B o5l |
0 [! .
| | | | | |
0 2 4 6 8 10
Number of annotations
Java
data size (bytes) min avg max
0 5.689 s 5.735s | 5.755s
1000 5.752's 5.857s | 5.922s
5000 6.312 s 6.379s | 6.425s
10000 6.935 s 7.005s | 7.135s
20000 8.257 s 8.356s | 8.479s
80000 16.082s | 16.249s | 16.645

Benchmark results of Java (event) compared to Rust (not modified), lower is better

T T T T T
20 1| —— Java n
Java (optimized JSON) /
Rust
~ 15| 1
n
ks
=
o
(@]
g 10} |
(5}
£
Bl |
0 L | | | | | |
0 2 4 6 8
Annotated data size 10%

4.1.2 Hash data once per annotation

Hashing functions are pure, meaning that for the same data input, you’ll always get the same
output. The profiling results shows that the function AbstractAnnotator.deriveHash have a
significant cost, hashing can be quite expensive, this is why we want to avoid redundant hashing
processes, and hash the data only once per SDK call.

Currently, the data is hashed inside the annotators (which is useless), you can see below
the performances improvements Alvarium can benefit from hashing the data only once for all
annotations.

Java

annotations count | min avg max
0 09s 1.15s 1.8s
1 2.7s 29s 3.9s
3 54s 55s 5.6s
5 7.77 s 7.8s 7.9s
7 10.2s | 10.32s | 10.76 s
10 13.7s | 13.74s | 13.794 s

Benchmark results of Java (event set) compared to Rust (not modified), lower is better

T T T T T T
—a— Java
20 —— Java (lazy hash) |
Rust
g 15+ -
o
o
3
@ 101 N
[«h]
£
Eosl i
0 - .
| | | | | |

0 2 4 6 8 10
Number of annotations

Java

data size (bytes) min avg max
0 7.3s 7.3s 74s
1000 7.32s | 7.37s | 7.44 s
5000 7.45s | 748s | 7.52 s
10000 7.59s | 7.6s 7.6s
20000 7.8s | 7.86s | 7.94 s
80000 93s 94s 9.42

Benchmark results of Java (event) compared to Rust (not modified), lower is better

T T T T T
20| o Java |

—o— Java (lazy hash)
Rust

—_
at
T

Time (seconds)
—
(@]
T

s
"
5 I]
0 - ‘ ‘ | | ‘ |
0 9 1 . .
Annotated data size 104

4.1.3 Cache ULID Generator

Profiling results have shown that the instantiation of a ULID class takes 5.7% of total CPU Time.
This is due to the fact that the ULID class does initializes a SecureRandom class from java.security.
We only instantiate this class to generate one ULID, let’s just instantiate one generator, put it

in a static field of com.alvarium.contracts.Annotatation and then call the method ‘nextULID’
as we currently do :

Java

annotations count min avg max
0 0.2s 04s 1.16 s
1 2.7s 29s 4.1s
3 6.4 s 6.4 s 6.5s
5 9.7s 9.8s 10.11 s
7 13.11s | 13.21s | 13.67 s
10 18.07s | 18.14s | 18.33 s

Benchmark results of Java (event set) compared to Rust (not modified), lower is better

—A

DO
(a]

| | ——Java (lazy ULID)

Java

Rust

—_
ot
T

Time (seconds)
—
(@]
T

data size (bytes)

0
1000
5000

10000
20000
80000

2 4 6
Number of annotations

Java
min
7.2s
7.3s
7.86 s
8.48 s
9.7s
17.18 s

8

avg
7.2s
7.37 s
7.9s
8.52s
9.77 s
17.26 s

10

max
7.2's
7.42's
7.98 s
8.56 s
9.85s
17.35

Benchmark results of Java (event) compared to Rust (not modified), lower is better

I I I
20 1| —— Java
—— Java (lazy hash)
Rust
~ 15|
(%2}
ke
o
o
@]
g 10|
[«h]
£
= 51
0 -
| | |

2 4

6
Annotated data size

104

4.2 Annotation generation

Alvarium currently produces the following JSON output:

Java SDK JSON Action, pretty-printed

"action": "create",
"messageType": "com.alvarium.contracts.AnnotationList",
"content": {

"items": [

{

"id": "OI1HXY45Q6DPTI9XZQOXCV7YSVVZ",

"key": "E2E8736387CB5F774BD8A2849C7EC131338671CFEO57B7A7DFBOC2AE2F6CCF64

"hash": "sha256",

"host": "2aad2bf8b134",

"tag": "",

"layer": "app",

"kind": "src",

"signature": "OB554EFC1DBAAC5BDB391DD4C0OF1892BD912D0C89C7BB3049A6AF76C98
8233F84AA70776FF9A10F83B3FA1IEEOES5403CFAA7D6A398238394293FOFCBSBAGS6F
09",

"isSatisfied": true,

"timestamp": "2024-05-15T12:38:27.789668031Z"

"id": "OI1HXY45Q6EQ3Y25N88B8QWV629",

"key": "E2E8736387CB5F774BD8A2849C7EC131338671CFEO57B7A7DFBOC2AE2F6CCF64

"hash": "sha256",

"host": "2aad2bf8b134",

"tag": "",

"layer": "app",

"kKind": "src",

"signature": "C91FED38FC453114D91C42A1D5268FB5B4829A403A65771DA1EB770D50
36FA4F5997A100A79626FOCA116BD6284BB3EA6732B9980323369F7A46DBA4266038
02",

"isSatisfied": true,

"timestamp": "2024-05-15T12:38:27.790431705Z"

This JSON is the result of a SDK call with 2 annotations.

We can see that there is a lot of data redundancy, but some work on previous papers has
already be done to reduce the size of annotations, so let’s not try to discuss how we can reduce
the size of the produced JSONs.

What we can consider though, is that the annotations are always set into an object that repre-
sents the kind of SDK call that produced the annotations.

The profiling of annotations generation shows us that signing an annotation is very expensive,
Alvarium’s main drawback is that annotations are signed individually. As the annotations are all
set inside an object that represent one SDK call, we should just sign the end object.

Also, as found in the profiling results, the data gets hashed for each annotations, so the hash
should just be made once, ahead of time, and then given to the annotators.

10

Here is the benchmark results with the annotations being all signed at once, and the data
being hashed only once per SDK call, compared to the previous benchmark results

Java
annotations count min avg max
0 2.639s | 2.901s | 4.551 s
1 2.558s | 2.774s | 3.004 s
3 2.675s | 2.98s | 3.493s
5 2.646s | 2.774s | 2.942 s
7 2.674s | 2.828s | 3.022 s
10 2.76s | 2.866s | 3.026 s

Benchmark results of Java (optimized signature/hash) compared to original Java/Rust, lower is better

I I I I I I
—— Java
20 —e—Java (Batch sign) b
Rust
@ 15} .
a
o
3
@ 10 N
]
£
E 5 | |
0 - |
| | | | | |
0 2 4 6 8 10
Number of annotations
Java
data size (bytes) min avg max
0 1.925s | 2.223s | 2.585 s
1000 2.06s | 2.236s | 2.728 s
5000 2.174s | 2.441s | 3.336 s
10000 2.282s | 2.49s | 2.698s
20000 2.626s | 2.739s | 2.917 s
80000 4.277s | 4.342s | 4.535 s

11

Benchmark results of Java (optimized signature) compared to original Java/Rust, lower is better

20| —— Java N
—e— Java (Batch sign)
Rust
15+ 1

Time (seconds)
—
o
T
|

t
T
|

0 2 4 6 8
Annotated data size 104

We can see that with this simple trick, the amount of annotation does no longer affect the
alvarium’s overhead, and the data size seems to be less important.

12

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

4.3 Signing process

We just gain some performance boost by not signing each annotations individually, but we can
also optimize the signing process.

Remember from the profiling results, we saw that only 32% of the signing process was to
actually sign the data. The remaining CPU time is used to retrieve the private key from the file
system then initialize the signer, and by converting the annotation to JSON (as the signature is
based on the annotation’s JSON).

What we could do is to cache the signer so the private key does not have to be retrieved and
initialized, and we could get rid of the JSON serialization process by only signing the annotation’s
content, this will also reduce the length of the data to be signed.

Currently, the annotations are signed by using their JSON representation.

First, the current implementation has a serious drawback as the signature is directly stored
inside the signed JSON, so to verify the signature JSON, you have to recreate a JSON with the
signature set to null :

protected String signAnnotation(KeyInfo keyInfo, Annotation annotation)
throws AnnotatorException {
SignProviderFactory signFactory = new SignProviderFactory();

try {
SignProvider provider = signFactory.getProvider(keyInfo.getType());
Path keyPath = Paths.get(keyInfo.getPath());
String key = Files.readString(keyPath, StandardCharsets.US_ASCII);

String json = annotation.toJson().getBytes();

return provider.sign(Encoder.hexToBytes(key), json);
} catch (SignException e) {

throw new AnnotatorException("cannot sign annotation.", e);
} catch (IOException e) {

throw new AnnotatorException("cannot read key.", e);
}

}

Then, after signing the JSON with no signature set, the signature is put into the same annota-
tion :

String annotationSignature = super.signAnnotation(
this.signature.getPrivateKey(),
annotation

);

annotation.setSignature(annotationSignature);
return annotation;

Which means that the annotations are in a way already tempered ! And to verify the signature,
you have to know that you have to verify it on a JSON with the "signature" value set to null.

13

—_

© 0 N o U s Ww

11
12
13
14

1

What can be done is to move the annotation’s signature outside of its JSON representation,
like so :

{
"signature": "OB554EFC1DBAAC5BDB391DD4C0OF1892BD912D0C89C7BB3049A6AF76C988233F8
4AA70776FF9A10F83B3FALEEOES403CFAA7D6A398238394293F0FCB8BAG56F09",
"content": {
"id": "O1HXY45Q6DPT9XZQOXCV7YSVVZ",
"key": "E2E8736387CB5F774BD8A2849C7EC131338671CFEO57B7A7DFBOC2AE2F6CCF64",
"hash": "sha256",
"host": "2aad2bf8b134",
"tag": "",
"layer": "app",
"kind": "src",
"isSatisfied": true,
"timestamp": "2024-05-15T12:38:27.789668031Z"
}
}

This way, the JSON content can be reused, and it does not have to be modified to be verified.

4.3.1 Signing proposal : Identity Strings

There still an important technical drawback to signing a JSON object : At some point you have to
retrieve the JSON in order to verify the signature.

If you already store the annotations in JSON with no transformation then signing the stored
JSON is straightforward. But if the annotations need to be stored in binary, to be compressed,
or in SQL table, roughly speaking, in any other format than the one produced by Alvarium, you’ll
have to serialize it back to the same JSON produced by Alvarium.

There are two performances issues of this: First, this will cost you the serializing to JSON, and
second, JSON is not a very compact format, so if you have thousands of annotations to handle,
you’ll lose performances over also signing and verifying the JSON’s embellishments (field names
and other JSON syntax characters).

To gain performances over those two issues, we could simply create a string containing all the
annotation fields’ values appended in a defined order :

Compacted JSON (258 characters)

{"content":{"id":"O1HXY45Q6DPTI9XZQOXCV7YSVVZ", "key" : "E2E8736387CB5F774BD8A2849C7EC
131338671CFEO57B7A7DFBIC2AE2F6CCF64", "hash" : "sha256", "host": "2aad2bf8b134","
tag":"","layer":"app","kind":"src","isSatisfied":true,"timestamp":"2024-05-15T
12:38:27.789668031Z2"}}

A string containing only the annotation’s values in a specified order (148 characters, 74%
shorter than using compact JSON)

01HXY45Q6DPT9XZQOXCV7YSVVZE2E8736387CB5F774BD8A2849C7EC131338671CFEO57B7A7DFBIC2AE
2F6CCF64sha2562aad2bf8b134appsrctrue2024-05-15T12:38:27.789668031Z

// the order can be defined like so
<id><key><hash><host><tag><layer><kind><isSatisfied><timestamp>

14

4.3.2 Results

Benchmark results of Java (optimized signature) compared to original Java/Rust, lower is better

Benchmark results of Java (optimized signature) compared to original Java/Rust, lower is better

annotations count

0

N oW

—_
o

Java
min
0.303 s
2.098 s
4.688 s
6.921 s
9.375 s
12.829 s

avg
0.475s
2.26's
4,735 s
7.078 s
9.443 s
12.93 s

max
1.143 s
3.117 s
4.783 s
7.296 s
9.615s

13.112's

I I I I I I
—a— Java
20 —+—Java (Id Strings + Cached PK) |
Rust
@ 151 8
a
o
3
@ 10 =
]
£
Bl |
0 - |
| | | | | |
0 2 4 6 8 10
Number of annotations
Java
data size (bytes) min avg max
0 4.247 s 4.304 s 4.387 s
1000 4.343 s 4.405s 4.473 s
5000 4.933s 4.997 s 5.127 s
10000 5.569 s 5.675 s 5.862' s
20000 6.92' s 6.985 s 7.027 s
80000 14.818 s | 14.909s | 15.081 s

20

Time (seconds)
L =
o ot

(1

I I I I I
|| —2— Java La |
——Java (Id Strings + Cached PK)
Rust
B | | | | |
0 2 4 6 8
Annotated data size 104

15

4.4 Overall comparison

Here you can see all individual optimisations compared to the original Java/Rust versions, and to
two other versions containing all non breaking changes (cyan), and all changes (green).

data size (bytes) min avg max
0 1.502s | 1.709s | 2.701 s
1 1.527s | 1.623s | 1.75s
Java 3 1.564s | 1.647s | 1.789 s
5 1.629s | 1.719s | 2.088 s
7 1.631s | 1.722s | 2.079 s
10 1.7s 1.776s | 1.884 s

Benchmark results of Java (optimized signature) compared to original Java/Rust, lower is better

I I I I I I I I I I I
220 | Java N
—— Java (Id Strings + Cached PK)
20 | —o— Java (Lazy Hash) N
—— Java (Lazy ULID)
18- Java (Optimized JSON) B
—o— Java (Batch sign)
161 —e— Java (Non-Breaking Optimizations) |
Java (All Optimizations)
Rust
14 |- =
0
T 12| B
5)
(&}
[«b]
Z 10+ =
)
g
F' 8- -
6 - |
4 - |
2 - |
O - |
_2 | ! | | | | | | | | | =
-1 0 1 2 3 4 5 6 7 8 9 10 11

Number of annotations

data size (bytes) min avg max
0 0.916s | 0.983s | 1.087 s
1000 0.96s | 1.069s | 1.481s
Java 5000 1.098s | 1.154s | 1.199s
10000 1.264s | 1.336s | 1.408 s
20000 1.595s | 1.639s | 1.686 s
80000 3.43s | 3.466s | 3.502s

16

All benchmarks compared

2011 |—=— Java i
—— Java (Id Strings + Cached PK)
—— Java (Lazy Hash)
185 | Java (Lazy ULID) 1
Java (Optimized JSON)
161 | —* Java (Batch sign) |
—e—Java (Non-Breaking Optimizations)
Java (All Optimizations)
14 Rust 7

@ 12f .
=]
o
(&)
& 10} 8
Py >
£
= 8l s
- ®
6 -]

0 1 2 3 4 5 6 7 8
Annotated data size 104

You can see that starting at a certain data size and annotation count the version with all
optimisations applied competes with the current Rust version and even gets quickly faster.

5 Conclusion

Current version of Alvarium has some serious performances issues.

There are some issues specific to the Java Versions such as the JSON serialization, the signing
process and the annotations unique identifier generation.

Fixing those issues greatly decreased the Alvarium’s overhead, but the main drawback, that
is on all the SDK languages because it is a conceptual issue (regarding performances), is that all
annotations gets signed individually. This is useless as the annotations are all sent in a single
collection per SDK call event (e.g. create, mutate etc), and signing the event set once rather than
each individual annotation entry brings the complexity of Alvarium from being linear to constant
(it is no more affected by the number of annotators).

A good performance improvement would be to sign the annotation using Identity Strings as
discussed in Signing proposal : Identity Strings. This is not a breaking change as such, and offer
much more flexibility as well as performances when creating / signing the annotation, and when
verifying them.

17

	Introduction
	Definitions
	Current state
	Benchmark results
	Impact of annotations count
	Impact of annotated data size

	First observations
	Profiling results

	What can be optimized
	Non-breaking changes
	Annotation serialization
	Hash data once per annotation
	Cache ULID Generator

	Annotation generation
	Signing process
	Signing proposal : Identity Strings
	Results

	Overall comparison

	Conclusion

