-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvariable.js
236 lines (191 loc) · 7.3 KB
/
variable.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// https://github.com/subprotocol/genetic-js/blob/master/examples/string-solver.html
const Genetic = require('genetic-js');
const genetic = Genetic.create();
genetic.optimize = Genetic.Optimize.Maximize;
genetic.select1 = Genetic.Select1.Tournament2;
genetic.select2 = Genetic.Select2.Tournament2;
const utilityManager = {
operators: '+-*/',
values: '0123456789x',
isOperator: function(val) {
return this.operators.includes(val);
},
plus: function(a, b, variables = {}) { return (variables[a] || a) + (variables[b] || b); },
minus: function(a, b, variables = {}) { return (variables[a] || a) - (variables[b] || b); },
multiply: function(a, b, variables = {}) { return (variables[a] || a) * (variables[b] || b); },
divide: function(a, b, variables = {}) { return (variables[a] || a) / (variables[b] || b); },
compute: function(a, op, b, variables = {}) {
return op ? op(a, b, variables) : null;
},
symbolToOperator: function(symbol) {
switch (symbol) {
case '+': return this.plus;
case '-': return this.minus;
case '*': return this.multiply;
case '/': return this.divide;
}
},
subtreePrefix: function(expr, index) {
const parts = expr.split('');
let val = parts[index];
const opStack = []; // Start with the node at the index.
const valStack = [];
let valCount = 0;
let i = index + 1;
if (this.isOperator(val)) {
opStack.push(val);
}
else {
valStack.push(val);
}
while (opStack.length && i < parts.length) {
val = parts[i];
if (!this.isOperator(val) && valCount) {
val = parseInt(val); // Swap variables with the value 1 for subtree extraction, since the actual value doesn't matter.
val = val || 1;
valStack.push(this.compute(valStack.pop(), this.symbolToOperator(opStack.pop()), val));
}
else if (this.isOperator(val)) {
opStack.push(val);
valCount = 0;
}
else {
val = parseInt(val); // Swap variables with the value 1 for subtree extraction, since the actual value doesn't matter.
val = val || 1;
valStack.push(val);
valCount++;
}
i++;
}
if (Math.abs(index - i) % 2 === 0) {
i--;
}
return { expression: expr.substring(index, i), start: index, end: i - 1 };
},
evaluatePrefix: function(expr, variables = {}) {
const parts = expr.split('');
const stack = [];
for (let j=expr.length - 1; j >= 0; j--) {
const val = variables[expr[j]] || expr[j];
// Push operated to stack.
if (!this.isOperator(val)) {
stack.push(parseInt(val));
}
else {
// Operator found. Pop two elements from the stack.
const a = stack.pop();
const b = stack.pop();
stack.push(this.compute(a, this.symbolToOperator(val), b));
}
}
return stack[0];
},
replaceAt: function(str, index, replacement) {
return str.substr(0, index) + replacement + str.substr(index + replacement.length);
},
replaceAtIndex: function(input, index, search, replace) {
return input.slice(0, index) + input.slice(index).replace(search, replace)
}
}
genetic.seed = function() {
const getNode = (isValue) => {
let isFunction = isValue ? 0 : Math.floor(Math.random() * 2);
return isFunction ? this.userData.manager.operators[Math.floor(Math.random() * this.userData.manager.operators.length)] : this.userData.manager.values[Math.floor(Math.random() * this.userData.manager.values.length)];
};
const tree = (maxDepth, depth = 0) => {
let result = [];
const node = getNode(depth > maxDepth);
result.push(node);
if (this.userData.manager.isOperator(node)) {
// This node is a function, so generate two child nodes.
const left = tree(maxDepth, depth + 1);
const right = tree(maxDepth, depth + 1);
result = result.concat(left).concat(right);
}
return result;
};
return tree(this.userData.maxTreeDepth).join('');
}
genetic.mutate = function(entity) {
let result = entity;
let index = Math.floor(Math.random() * entity.length);
if (this.userData.manager.isOperator(entity[index])) {
// Replace with an operator.
let r = Math.floor(Math.random() * this.userData.manager.operators.length);
result = this.userData.manager.replaceAt(entity, index, this.userData.manager.operators[r]);
}
else {
// Replace with a value.
let r = Math.floor(Math.random() * this.userData.manager.values.length);
result = this.userData.manager.replaceAt(entity, index, this.userData.manager.values[r]);
}
return result;
}
genetic.crossover = function(parent1, parent2) {
const index1 = Math.floor(Math.random() * parent1.length);
const index2 = Math.floor(Math.random() * parent2.length);
const subtree1 = this.userData.manager.subtreePrefix(parent1, index1).expression;
const subtree2 = this.userData.manager.subtreePrefix(parent2, index2).expression;
// Copy subtree2 to parent1 at index1.
let child1 = this.userData.manager.replaceAtIndex(parent1, index1, subtree1, subtree2);
// Copy subtree1 to parent2 at index2.
let child2 = this.userData.manager.replaceAtIndex(parent2, index2, subtree2, subtree1);
if (child1.length > this.userData.maxLength) {
child1 = parent1;
}
if (child2.length > this.userData.maxLength) {
child2 = parent2;
}
return [child1, child2];
}
genetic.fitness = function(entity) {
let fitness = 0;
let solution = this.userData.solution;
if (this.userData.testCases) {
// For each test case, subtract a penalty from a total of 100 for any deviation in the evaluation from the target value.
return this.userData.testCases.map(testCase => {
const target = this.userData.manager.evaluatePrefix(this.userData.solution, testCase);
const actual = this.userData.manager.evaluatePrefix(entity, testCase);
// Give 100 points for each test case, minus any deviation in the evaluated value.
return (100 - Math.abs(target - actual));
}).reduce((total, x) => { return total + x; });
}
else {
fitness = this.userData.manager.evaluatePrefix(entity);
return solution - Math.abs(solution - fitness);
}
}
genetic.generation = function(pop, generation, stats) {
// If using test cases, give 100 points for each test case. Otherwise, just use the value of the evaluation.
let solution = (this.userData.testCases && this.userData.testCases.length * 100) || this.userData.solution;
return pop[0].fitness !== solution;
}
genetic.notification = function(pop, generation, stats, isDone) {
const value = pop[0].entity;
console.log(`Generation ${generation}, Best Fitness ${stats.maximum}, Best genome: ${value}`);
if (isDone) {
if (this.userData.testCases) {
this.userData.testCases.forEach(testCase => {
const result = this.userData.manager.evaluatePrefix(value, testCase);
console.log(testCase);
console.log(`Result: ${result}`);
});
}
else {
console.log(`Result: ${this.userData.manager.evaluatePrefix(value)}`);
}
}
}
genetic.evolve({
iterations: 100000,
size: 100,
crossover: 0.3,
mutation: 0.3,
skip: 50 /* frequency for notifications */
}, {
solution: '**xxx', // The function for the GA to learn.
testCases: [ {x: 1 }, {x: 3}, {x: 5}, {x: 9}, {x: 10} ], // Test cases to learn from.
maxTreeDepth: 25,
maxLength: 100,
manager: utilityManager
})