-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCNN-3-layers-CIFAR10.py
281 lines (188 loc) · 8.68 KB
/
CNN-3-layers-CIFAR10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# coding: utf-8
# In[1]:
import os
os.environ["CUDA_VISIBLE_DEVICES"]="1"
import tensorflow as tf
import numpy as np
import pickle
import numpy.random as rng
# # Load Training Data
# In[2]:
def load_data(file_no):
path='/home/prashanth/cifar-10-batches-py/data_batch_'+str(file_no)
fo=open(path,'rb')
dict=pickle.load(fo,encoding='bytes')
X=dict[b'data']
Y=dict[b'labels']
fo.close
X=X.reshape((len(X),3,32,32)).transpose(0,2,3,1).astype("uint8")
Y=np.array(Y)
Y_hot=np.eye(no_of_classes)[Y]
return X,Y_hot
# # Load Testing Data
# In[3]:
fo_tst=open('/home/prashanth/cifar-10-batches-py/test_batch','rb')
dict=pickle.load(fo_tst,encoding='bytes')
X_tst=dict[b'data']
Y_tst=dict[b'labels']
fo_tst.close
X_tst=X_tst.reshape((len(X_tst),3,32,32)).transpose(0,2,3,1).astype("uint8")
Y_tst=np.array(Y_tst)
# In[4]:
X_tst.shape
# In[5]:
def forward_conv(height,width,inshape,outshape,input):
weights=tf.Variable(rng.randn(height,width,inshape,outshape), dtype = tf.float32,name='conv_weights') #constant
return(tf.nn.conv2d(input,weights,strides=[1,1,1,1],padding="SAME"))
def forward_max_pooling_layer(inp,window_size):
return(tf.nn.max_pool(value=inp,ksize=[1,window_size,window_size,1],strides=[1,1,1,1],padding="SAME"))
def forward_avg_pooling_layer(inp,window_size):
return(tf.nn.avg_pool(value=inp,ksize=[1,window_size,window_size,1],strides=[1,1,1,1],padding="SAME"))
def flatten_forward(layer):
inp_list=layer.get_shape().as_list()
new_size = inp_list[-1] * inp_list[-2] * inp_list[-3]
return tf.reshape(layer,[-1,new_size]),new_size
def fc_forward(layer,new_size,no_of_classes):
weights=tf.Variable(rng.randn(new_size,no_of_classes),dtype=tf.float32,name='fc_forward_weights') #constant
return tf.matmul(layer,weights)
def fc_fc(rows,columns,layers):
weights=tf.Variable(rng.randn(rows,columns),dtype=tf.float32,name='fc_fc_weights')
return tf.matmul(layers,weights)
def activation(layer):
return tf.nn.relu(layer)
# In[6]:
@tf.RegisterGradient("CustomConv")
def _conv2d(op,grad):
print("in override backprop")
input = op.inputs[0]
filter = op.inputs[1]
in_shape = tf.shape(input)
f_shape = tf.shape(filter)
g_input = tf.nn.conv2d_backprop_input(input_sizes = in_shape, filter = filter, out_backprop = grad, strides = [1,1,1,1], padding = "SAME")
g_filter = tf.nn.conv2d_backprop_filter(input, filter_sizes = f_shape, out_backprop = grad, strides = [1,1,1,1], padding = "SAME")
return g_input, g_filter
# In[7]:
#PARAMETERS
num_epochs=150
batch=1000
iterations=1000
no_of_classes=10
Y_hot_tst=np.eye(no_of_classes)[Y_tst]
images=tf.placeholder(tf.float32,shape=(None,32,32,3),name='images')
true_labels=tf.placeholder(tf.float32,shape=(None,10),name='true_labels')
# # Random FeedBack
# In[8]:
#LAYER1
filter_random1 = tf.Variable(rng.randn(5,5,3,32), dtype = tf.float32,name='random_filter1')
g=tf.get_default_graph()
with g.gradient_override_map({"Conv2D": "CustomConv"}):
net_conv=tf.nn.conv2d(images,filter_random1,strides=[1,1,1,1],padding="SAME")
net_pool= forward_max_pooling_layer(net_conv,3)
net_act=activation(net_pool)
#LAYER 2
filter_random2 = tf.Variable(rng.randn(5,5,32,64), dtype = tf.float32,name='random_filter2')
with g.gradient_override_map({"Conv2D":"CustomConv"}):
net_conv2=tf.nn.conv2d(net_act,filter_random2,strides=[1,1,1,1],padding="SAME")
net_pool2= forward_avg_pooling_layer(net_conv2,3)
net_act2=activation(net_pool2)
#LAYER 3
filter_random3=tf.Variable(rng.randn(5,5,64,64),dtype=tf.float32,name='random_filter3')
with g.gradient_override_map({"Conv2D":"CustomConv"}):
net_conv3=tf.nn.conv2d(net_act2,filter_random3,strides=[1,1,1,1],padding="SAME")
net_pool3=forward_avg_pooling_layer(net_conv3,3)
net_act3=activation(net_pool3)
net_flatten,new_size=flatten_forward(net_act3)
net_fc=fc_forward(net_flatten,new_size,128)
net_act4=activation(net_fc)
output=fc_fc(128,no_of_classes,net_act4)
#compute loss
cross_entropy=tf.nn.softmax_cross_entropy_with_logits(logits=
output,labels=true_labels)
cost = tf.reduce_mean(cross_entropy)
# # Back Prop
# In[9]:
# filter_conv_bp=tf.Variable(rng.randn(5,5,3,16), dtype = tf.float32)
#LAYER 1
net_conv_bp= forward_conv(5,5,3,32,images) # height,width,inshape,outshape
net_pool_bp = forward_max_pooling_layer(net_conv_bp,3) #output,windowsize
net_act_bp=activation(net_pool_bp)
#LAYER 2
net_conv_bp2 = forward_conv(5,5,32,64,net_act_bp) # height,width,inshape,outshape
net_pool_bp2 = forward_avg_pooling_layer(net_conv_bp2,3) #output,windowsize
net_act_bp2=activation(net_pool_bp2)
#LAYER 3
net_conv_bp3=forward_conv(5,5,64,64,net_act_bp2)
net_pool_bp3=forward_avg_pooling_layer(net_conv_bp3,3)
net_act_bp3=activation(net_pool_bp3)
net_flatten_bp,new_size_bp=flatten_forward(net_act_bp3)
net_fc_bp1=fc_forward(net_flatten_bp,new_size_bp,128)
net_act_bp4=activation(net_fc_bp1)
output_bp=fc_fc(128,no_of_classes,net_act_bp4)
#cross_entropy_bp=tf.nn.softmax_cross_entropy_with_logits_v2(logits=
# output_bp,labels=true_labels)
cross_entropy_bp=tf.nn.softmax_cross_entropy_with_logits(logits=
output_bp,labels=true_labels)
cost_bp=tf.reduce_mean(cross_entropy_bp)
# In[10]:
accuracy_fa=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(output,1),tf.argmax(true_labels,1)),tf.float32))
accuracy_bp=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(output_bp,1),tf.argmax(true_labels,1)),tf.float32))
# In[11]:
#BP gradients
bp_grad = tf.gradients(cross_entropy_bp, images)
override_grad = tf.gradients(cross_entropy, images)
# In[20]:
train_op_bp = tf.train.AdamOptimizer(1e-4).minimize(cost_bp)#changed learning rate from 1e-6
train_op_fa=tf.train.AdamOptimizer(1e-4).minimize(cost)
# In[ ]:
store_err_bp=[]
store_err_fa=[]
acc_fa=[]
acc_bp=[]
testing_fa=[]
testing_bp=[]
print("PARAMETERS:")
print("\nNo of epochs=",num_epochs)
print("\nBatch size=",batch)
print("\nIterations per epoch=",iterations)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
print("\n\t\t\tEPOCH NO:",epoch+1)
no=np.random.randint(1,5)
X,Y_hot=load_data(no)
print("Picking from data batch:",no)
batch_no=np.random.randint(0,X.shape[0],size=batch)
for count in range(iterations):
inp_features=X[batch_no,:,:,:]
inp_features=inp_features.astype(np.float32)
inp_labels=Y_hot[batch_no,:]
inp_labels=inp_labels.astype(np.float32)
# autobp_input=sess.run(bp_grad,feed_dict={images:inp_features,true_labels:inp_labels})
# override_input=sess.run(override_grad,feed_dict={images:inp_features,true_labels:inp_labels})
sess.run(train_op_bp,feed_dict={images:inp_features,true_labels:inp_labels})
sess.run(train_op_fa,feed_dict={images:inp_features,true_labels:inp_labels})
entropy_bp=sess.run(cross_entropy_bp,feed_dict={images:inp_features,true_labels:inp_labels})
store_err_bp.append(np.mean(entropy_bp))
entropy_fa=sess.run(cross_entropy,feed_dict={images:inp_features,true_labels:inp_labels})
store_err_fa.append(np.mean(entropy_fa))
acc_fa.append(sess.run(accuracy_fa,feed_dict={images:inp_features,true_labels:inp_labels}))
acc_bp.append(sess.run(accuracy_bp,feed_dict={images:inp_features,true_labels:inp_labels}))
if (count+1)%200==0:
print("Iteration:",count+1)
print("BackPropagation:",sess.run(cost_bp,feed_dict={images:inp_features,true_labels:inp_labels}),
"\t Feedback:",sess.run(cost,feed_dict={images:inp_features,true_labels:inp_labels}))
#Resource Exhausted with loading the entire testing data which has 10000 images.
#Instead testing on 1000 random images selected from the testing data. results may not be as consistent
pick_rnd=np.random.randint(0,X_tst.shape[0],1000)
tst_fa=sess.run(accuracy_fa,feed_dict={images:X_tst[pick_rnd,:,:,:].astype(np.float32),
true_labels:Y_hot_tst[pick_rnd,:]})
tst_bp=sess.run(accuracy_bp,feed_dict={images:X_tst[pick_rnd,:,:,:].astype(np.float32),
true_labels:Y_hot_tst[pick_rnd,:]})
testing_fa.append(tst_fa)
testing_bp.append(tst_bp)
print("\nAt the end of EPOCH:",epoch+1)
print("Testing Accuracy:\nBack Propagation",tst_bp,"\tRandom Feedback:",tst_fa)
# In[ ]:
with open('Analysis-CIFAR10_1e-4.pkl','wb') as f:
pickle.dump([store_err_bp,store_err_fa,acc_fa,acc_bp,testing_fa,testing_bp],f,protocol=2)
# In[ ]: