-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
58 lines (47 loc) · 2.44 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
import torch.nn as nn
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1):
super(DecoderRNN, self).__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.num_layers = num_layers
self.embedding = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, features, captions):
#I haven't initiated the initial hidden states, in that case as per documentation, it will be at default 0 initially.
#make captions also the same size as embedded features
embed = self.embedding(captions[:,:-1])
# Stack the features and captions
embedded_input = torch.cat((features.unsqueeze(1), embed), dim=1) # shape :(batch_size, caption length,embed_size)
hidden_op, (h_1, c_1) = self.lstm(embedded_input) #didn't pass any initial hidden states so its automatically zero
output = self.fc(hidden_op)
return output
def sample(self, inputs, states=None, max_len=20):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
tokens = []
for i in range(max_len):
hidden_output, states = self.lstm(inputs, states)
outputs = self.fc(hidden_output.squeeze(1))
_, predicted = outputs.max(dim=1) # predicted: (1, 1)
tokens.append(predicted.item())
inputs = self.embedding(predicted) # inputs: (1, embed_size)
inputs = inputs.unsqueeze(1) # inputs: (1, 1, embed_size)
return tokens