forked from QuickChick/QuickChick
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuickChickInterface.v
814 lines (672 loc) · 30.9 KB
/
QuickChickInterface.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
(** * QuickChickInterface: QuickChick Reference Manual *)
From QuickChick Require Import QuickChick.
Require Import ZArith Strings.Ascii Strings.String.
From ExtLib.Structures Require Import Functor Applicative.
(** QuickChick provides a large collection of combinators and
notations for writing property-based random tests. This file
documents the entire public interface (the module type
[QuickChickSig]). *)
Module Type QuickChickSig.
(* #################################################################### *)
(** * The [Show] Typeclass *)
(** [Show] typeclass allows the test case to be printed as a string. *)
(** [[
Class Show (A : Type) : Type :=
{
show : A -> string
}.
]]
*)
(** Here are some [Show] instances for some basic types: *)
Declare Instance showNat : Show nat.
Declare Instance showBool : Show bool.
Declare Instance showZ : Show Z.
Declare Instance showString : Show string.
Declare Instance showList :
forall {A : Type} `{Show A}, Show (list A).
Declare Instance showPair :
forall {A B : Type} `{Show A} `{Show B}, Show (A * B).
Declare Instance showOpt :
forall {A : Type} `{Show A}, Show (option A).
Declare Instance showEx :
forall {A} `{Show A} P, Show ({x : A | P x}).
(** When defining [Show] instance for your own datatypes, you sometimes need to
start a new line for better printing. [nl] is a shorthand for it. *)
Definition nl : string := String (ascii_of_nat 10) EmptyString.
(* #################################################################### *)
(** * Generators *)
(* #################################################################### *)
(** ** Fundamental Types *)
(** A [RandomSeed] represents a particular starting point in a
pseudo-random sequence. *)
Parameter RandomSeed : Type.
(** [G A] is the type of random generators for type [A]. *)
Parameter G : Type -> Type.
(** Run a generator with a size parameter (a natural number denoting
the maximum depth of the generated A) and a random seed. *)
Parameter run : forall {A : Type}, G A -> nat -> RandomSeed -> A.
(** The semantics of a generator is its set of possible outcomes. *)
Parameter semGen : forall {A : Type} (g : G A), set A.
Parameter semGenSize : forall {A : Type} (g : G A) (size : nat), set A.
(* SOONER: Where does [set] come from?? Where can I read about what
operations / theorems are available? *)
(* SOONER: [set] comes from src/Sets.v. I think Maxime/Zoe wrote most
of that file quite a while ago (during her thesis at Catalin). It
is not really documented... would you want all of that file
here? *)
(* SOONER: I want this file to be a complete description of what most
people need to know to use QC. One possible approach could be to
split this interface into a "programming interface" for most users
and a "proving interface" for people that also want to do proofs
involving the QC semantics. Then the functions from Sets.v would
be relevant only to the second. (I actually kind of like this
idea, as it would streamline what most people need to think
about.) *)
(* SOONER: It *is* a complete description of what _the vast majority_ people need
to know to use QC. There are exactly three uses of the set library:
1) Allow derivation of correctness proofs. Here, the user doesn't
need to know all the lemmas that the proof uses in order to enjoy
the benefits of an end-to-end specification (but the lemmas
need to be exposed).
2) Allow manual correctness proofs. I don't think anyone has ever
done that outside of ourselves to practice before writing the
generic derivation of proofs. Writing correctness proofs for
generators is hard and not really worth it from the user's
perspective.
3) The only potential use of the set library from a user would
be in forAllProof variants to define dependently typed data. However,
this intrinsic verification approach is very rarely used and
comes with more severe testing problems than an undocumented
set library.
My thinking was to have [semGen] and [forAllProof] here as a small
glance into the world of generator semantics. I do think that
presenting the view that a generator is characterized by its set of
outcomes is a very useful notion, even if a user never has to
actively play with that notion. Do you want to just remove every
mention to [set]/[semGen] from this file to keep it a "programming
only" interface?
Besides, what would the "proving interface" entail?
We can't really document the entirety of the sets library. That's like
200 low-level lemmas that are only expanded to facilitate proof
derivation... For example, we have lemmas like the following:
[[
Lemma isSome_subset {A : Type} (s1 s2 s1' s2' : set (option A)) :
isSome :&: s1 \subset isSome :&: s2 ->
isSome :&: (s1 :|: ([set None] :&: s1')) \subset isSome :&: (s2 :|: ([set None] :&: s2')).
]]
This says that if the set of all "Some"s in s1 is a subset of all the
"Some"s in s2, then the set of all "Some"s in the the union of s1 with
[the intersection of {None} and s1'] is a subset of the set of all somes in
the union of s2 with [the intersection of {None} and s2']. Of course, the intersection of
{None} with any set is at most {None}, and that none will be filtered
out by [isSome], so this looks like a completely useless lemma. However,
we do need this lemma because of the particular structure of the
proofs involving the backtrack combinator. How can we explain this
lemma and its point to a user if we turn this file into a complete
documentation of everything that needs to be exposed?
BCP: Ok, ok... :-)
So what about moving all the stuff involving semantics to its own section at the
end of the file?
*)
(* #################################################################### *)
(** ** Structural Combinators *)
(** Generators are also instances of several generic typeclasses.
Many handy generator combinators can be found in the [Monad],
[Functor], [Applicative], [Foldable], and [Traversable] modules in
the [ExtLib.Structures] library from [coq-ext-lib]. *)
Declare Instance Monad_G : Monad G.
Declare Instance Functor_G : Functor G.
Declare Instance Applicative_G : Applicative G.
(** A variant of monadic bind where the continuation also takes a
_proof_ that the value received is within the set of outcomes of
the first generator. *)
Parameter bindGen' : forall {A B : Type} (g : G A),
(forall (a : A), (a \in semGen g) -> G B) -> G B.
(** A variant of bind for the [(G (option --))] monad. Useful for
chaining generators that can fail / backtrack. *)
Parameter bindGenOpt : forall {A B : Type},
G (option A) -> (A -> G (option B)) -> G (option B).
(* #################################################################### *)
(** ** Basic Generator Combinators *)
(** The [listOf] and [vectorOf] combinators construct generators for
[list A], provided a generator [g] for type [A]: [listOf g] yields
an arbitrary-sized list (which might be empty), while [vectorOf n
g] yields a list of fixed size [n]. *)
Parameter listOf : forall {A : Type}, G A -> G (list A).
Parameter vectorOf : forall {A : Type}, nat -> G A -> G (list A).
(** [elems_ a l] constructs a generator from a list [l] and a
default element [a]. If [l] is non-empty, the generator picks an
element from [l] uniformly; otherwise it always yields [a]. *)
Parameter elems_ : forall {A : Type}, A -> list A -> G A.
(** Similar to [elems_], instead of choosing from a list of [A]s,
[oneOf_ g l] returns [g] if [l] is empty; otherwise it uniformly
picks a generator for [A] in [l]. *)
Parameter oneOf_ : forall {A : Type}, G A -> list (G A) -> G A.
(** We can also choose generators with distributions other than the
uniform one. [freq_ g l] returns [g] if [l] is empty;
otherwise it chooses a generator from [l], where the first field
indicates the chance that the second field is chosen. For example,
[freq_ z [(2, x); (3, y)]] has 40%% probability of choosing
[x] and 60%% probability of choosing [y]. *)
Parameter freq_ :
forall {A : Type}, G A -> list (nat * G A) -> G A.
(** Try all generators until one returns a [Some] value or all failed once with
[None]. The generators are picked at random according to their weights
(like [frequency]), and each one is run at most once. *)
Parameter backtrack :
forall {A : Type}, list (nat * G (option A)) -> G (option A).
(** Internally, the G monad hides a [size] parameter that can be accessed by
generators. The [sized] combinator provides such access. The [resize]
combinator sets it. *)
Parameter sized : forall {A: Type}, (nat -> G A) -> G A.
Parameter resize : forall {A: Type}, nat -> G A -> G A.
(** Generate-and-test approach to generate data with preconditions. *)
Parameter suchThatMaybe :
forall {A : Type}, G A -> (A -> bool) -> G (option A).
Parameter suchThatMaybeOpt :
forall {A : Type}, G (option A) -> (A -> bool) -> G (option A).
(* #################################################################### *)
(** The [elems_], [oneOf_], and [freq_] combinators all take
default values; these are only used if their list arguments are
empty, which should not normally happen. The [QcDefaultNotation]
sub-module exposes notation (without the underscores) to hide this default.
*)
Module QcDefaultNotation.
(** [elems] is a shorthand for [elems_] without a default argument. *)
Notation " 'elems' [ x ] " :=
(elems_ x (cons x nil)) : qc_scope.
Notation " 'elems' [ x ; y ] " :=
(elems_ x (cons x (cons y nil))) : qc_scope.
Notation " 'elems' [ x ; y ; .. ; z ] " :=
(elems_ x (cons x (cons y .. (cons z nil) ..))) : qc_scope.
Notation " 'elems' ( x ;; l ) " :=
(elems_ x (cons x l)) (at level 1, no associativity) : qc_scope.
(** [oneOf] is a shorthand for [oneOf_] without a default argument. *)
Notation " 'oneOf' [ x ] " :=
(oneOf_ x (cons x nil)) : qc_scope.
Notation " 'oneOf' [ x ; y ] " :=
(oneOf_ x (cons x (cons y nil))) : qc_scope.
Notation " 'oneOf' [ x ; y ; .. ; z ] " :=
(oneOf_ x (cons x (cons y .. (cons z nil) ..))) : qc_scope.
Notation " 'oneOf' ( x ;; l ) " :=
(oneOf_ x (cons x l)) (at level 1, no associativity) : qc_scope.
(** [freq] is a shorthand for [freq_] without a default argument. *)
Notation " 'freq' [ x ] " :=
(freq_ x (cons x nil)) : qc_scope.
Notation " 'freq' [ ( n , x ) ; y ] " :=
(freq_ x (cons (n, x) (cons y nil))) : qc_scope.
Notation " 'freq' [ ( n , x ) ; y ; .. ; z ] " :=
(freq_ x (cons (n, x) (cons y .. (cons z nil) ..))) : qc_scope.
Notation " 'freq' ( ( n , x ) ;; l ) " :=
(freq_ x (cons (n, x) l)) (at level 1, no associativity) : qc_scope.
End QcDefaultNotation.
(** The original version of QuickChick used [elements], [oneof] and [frequency]
as the default-argument versions of the corresponding combinators.
These have since been deprecated in favor of a more consistent
naming scheme.
*)
(* #################################################################### *)
(** ** Choosing from Intervals *)
(** The combinators above allow us to generate elements by enumeration
and lifting. However, for numeric data types, we sometimes hope to
choose from an interval without writing down all the possible
values.
Such intervals can be defined on ordered data types, instances of
[OrdType], whose ordering [leq] satisfies reflexive, transitive,
and antisymmetric predicates. *)
Existing Class OrdType.
Declare Instance OrdBool : OrdType bool.
Declare Instance OrdNat : OrdType nat.
Declare Instance OrdZ : OrdType Z.
(** We also expect the random function to be able to pick every element in any
given interval. *)
Existing Class ChoosableFromInterval.
(** QuickChick has provided some instances for ordered data types that are
choosable from intervals, including [bool], [nat], and [Z]. *)
Declare Instance ChooseBool : ChoosableFromInterval bool.
Declare Instance ChooseNat : ChoosableFromInterval nat.
Declare Instance ChooseZ : ChoosableFromInterval Z.
(** [choose l r] generates a value between [l] and [r], inclusive the two
extremes. It causes a runtime error if [r < l]. *)
Parameter choose :
forall {A : Type} `{ChoosableFromInterval A}, (A * A) -> G A.
(* #################################################################### *)
(** ** The [Gen] and [GenSized] Typeclasses *)
(** [GenSized] and [Gen] are typeclasses whose instances can be generated
randomly. More specifically, [GenSized] depends on a generator for any given
natural number that indicate the size of output. *)
(** [[
Class GenSized (A : Type) := { arbitrarySized : nat -> G A }.
Class Gen (A : Type) := { arbitrary : G A }.
]]
*)
(** Given an instance of [GenSized], we can convert it to [Gen] automatically,
using [sized] function. *)
Declare Instance GenOfGenSized {A} `{GenSized A} : Gen A.
(** Here are some basic instances for generators: *)
Declare Instance genBoolSized : GenSized bool.
Declare Instance genNatSized : GenSized nat.
Declare Instance genZSized : GenSized Z.
Declare Instance genListSized :
forall {A : Type} `{GenSized A}, GenSized (list A).
Declare Instance genList :
forall {A : Type} `{Gen A}, Gen (list A).
Declare Instance genOption :
forall {A : Type} `{Gen A}, Gen (option A).
Declare Instance genPairSized :
forall {A B : Type} `{GenSized A} `{GenSized B}, GenSized (A*B).
Declare Instance genPair :
forall {A B : Type} `{Gen A} `{Gen B}, Gen (A * B).
(* #################################################################### *)
(** ** Generators for Data Satisfying Inductive Predicates *)
(** Just as QuickChick provides the [GenSized] and [Gen] typeclasses
for generators of type [A], it provides constrained variants for
generators of type [A] such that [P : A -> Prop] holds of all
generated values. Since it is not guaranteed that any such [A]
exist, these generators are partial. *)
(** [[
Class GenSizedSuchThat (A : Type) (P : A -> Prop) :=
{
arbitrarySizeST : nat -> G (option A)
}.
Class GenSuchThat (A : Type) (P : A -> Prop) :=
{
arbitraryST : G (option A)
}.
]]
*)
(** So, for example, if you have a typing relation
[has_type : exp -> type -> Prop] for some language, you could,
given some type [T] as input, write (or derive as we will see later on)
an instance of [GenSizedSuchThat (fun e => has_type e T)], that produces
an expression of with type [T].
Calling [arbitraryST] through such an instance would require
making an explicit application to [@arbitraryST] as follows:
[[
@arbitraryST _ (fun e => has_type e T) _
]]
where the first placeholder is the type of expressions [exp]
and the second placeholder is the actual instance to be inferred.
To avoid this, QuickChick also provides convenient notation to call
by providing only the predicate [P] that constraints the generation.
The typeclass constraint is inferred. *)
Notation "'genST' x" := (@arbitraryST _ x _) (at level 70).
(* #################################################################### *)
(** * Shrinking *)
(** ** The [Shrink] Typeclass *)
(** [Shrink] is a typeclass whose instances have an operation for
shrinking larger elements to smaller ones, allowing QuickChick to
search for a minimal counter example when errors occur. *)
(** [[
Class Shrink (A : Type) :=
{
shrink : A -> list A
}.
]]
*)
(** Default shrinkers for some basic datatypes: *)
Declare Instance shrinkBool : Shrink bool.
Declare Instance shrinkNat : Shrink nat.
Declare Instance shrinkZ : Shrink Z.
Declare Instance shrinkList {A : Type} `{Shrink A} : Shrink (list A).
Declare Instance shrinkPair {A B} `{Shrink A} `{Shrink B} : Shrink (A * B).
Declare Instance shrinkOption {A : Type} `{Shrink A} : Shrink (option A).
(* #################################################################### *)
(** ** The [Arbitrary] Typeclass *)
(** The [Arbitrary] typeclass combines generation and shrinking. *)
(** [[
Class Arbitrary (A : Type) `{Gen A} `{Shrink A}.
]]
*)
(* #################################################################### *)
(** ** The Generator Typeclass Hierarchy *)
(** [[
GenSized
|
|
Gen Shrink
\ /
\ /
Arbitrary
]]
*)
(** If a type has a [Gen] and a [Shrink] instance, it automatically gets
an [Arbitrary] one. *)
Declare Instance ArbitraryOfGenShrink :
forall {A} `{Gen A} `{Shrink A}, Arbitrary A.
(* #################################################################### *)
(** * Checkers *)
(** ** Basic Definitions *)
(** [Checker] is the opaque type of QuickChick properties. *)
Parameter Checker : Type.
(** The [Checkable] class indicates we can check a type A. *)
(** [[
Class Checkable (A : Type) : Type :=
{
checker : A -> Checker
}.
]]
*)
(** Boolean checkers always pass or always fail. *)
Declare Instance testBool : Checkable bool.
(** The unit checker is always discarded (that is, it represents a
useless test). It is used, for example, in the implementation of
the "implication [Checker]" combinator [==>]. *)
Declare Instance testUnit : Checkable unit.
(** Given a generator for showable [A]s, construct a [Checker]. *)
Parameter forAll :
forall {A prop : Type} `{Checkable prop} `{Show A}
(gen : G A) (pf : A -> prop), Checker.
(** A variant of [forAll] that provides evidence that the generated
values are members of the semantics of the generator. (Such evidence
can be useful when constructing dependently typed data, such as
bounded integers.) *)
(* SOONER: That's exactly the sort of concise explanation that I'm
looking for throughout! (And it makes me realize that separating
the interface into "operations for programmers" and "operations for
provers" may not be so simple! Though it may still make sense to
lump dependently typed programming in with proving. So one
interface could be called QCBasicInterface and the other
QCPowerUsersInterface :-) *)
(* SOONER: This file indeed used to be called QCBasicInterface :-) *)
Parameter forAllProof :
forall {A prop : Type} `{Checkable prop} `{Show A}
(gen : G A) (pf : forall (x : A), semGen gen x -> prop), Checker.
(** Given a generator and a shrinker for showable [A]s, construct a
[Checker]. *)
Parameter forAllShrink :
forall {A prop : Type} `{Checkable prop} `{Show A}
(gen : G A) (shrinker : A -> list A) (pf : A -> prop), Checker.
(** Lift ([Show], [Gen], [Shrink]) instances for [A]
to a [Checker] for functions [A] -> prop. This is what makes it
possible to write (for some example property [foo := fun x => x >?
0], say) [QuickChick foo] instead of [QuickChick (forAllShrink
arbitrary shrink foo)]. *)
Declare Instance testFun :
forall {A prop : Type} `{Show A} `{Arbitrary A} `{Checkable prop},
Checkable (A -> prop).
(** Lift products similarly. *)
Declare Instance testProd :
forall {A : Type} {prop : A -> Type} `{Show A} `{Arbitrary A}
`{forall x : A, Checkable (prop x)},
Checkable (forall (x : A), prop x).
(** Lift polymorphic functions by instantiating to 'nat'. :-) *)
Declare Instance testPolyFun :
forall {prop : Type -> Type} `{Checkable (prop nat)},
Checkable (forall T, prop T).
(* #################################################################### *)
(** ** Checker Combinators *)
(** Print a specific string if the property fails. *)
Parameter whenFail :
forall {prop : Type} `{Checkable prop} (str : string), prop -> Checker.
(** Record an expectation that a property should fail, i.e.
the property will fail if all the tests succeed. *)
(* SOONER: Don't understand this explanation. A Checker, in my model
of the world, maps a random seed to the outcome of a *single* test.
This seems to suggest that an expectFailure checker somehow knows
the value of the test on *all* random seeds... *)
(* SOONER: I think I need help with the phrasing here. What I mean is
QuickChick will run its default number of tests (whether that is
100 or 10000000 doesn't matter). If all of those 100 or 10000000
tests succeed, then an [expectFailure property] is considered to
fail because a failure was expected but not found. Does this make
sense?
BCP: Sort of, but not really. E.g., can I nest uses of
expectFailure? What happens then? (How many tests get run?) Or,
what happens if I conjoin an expectFailure with some other
checkers? I guess I need a model for how it is
implemented. (Which I think we didn't give in QC.v, right?)*)
Parameter expectFailure :
forall {prop: Type} `{Checkable prop} (p: prop), Checker.
(** Collect statistics across all tests. *)
Parameter collect :
forall {A prop : Type} `{Show A} `{Checkable prop} (x : A),
prop -> Checker.
(** Set the reason for failure. Will only count shrinks as valid if
they preserve the tag. *)
(* SOONER: Explain better. *)
Parameter tag :
forall {prop : Type} `{Checkable prop} (t : string), prop -> Checker.
(** Form the conjunction / disjunction of a list of checkers. *)
(* SOONER: We are not very consistent about when we name arguments and
when we do not. E.g. [l] here: *)
(* SOONER: We name all non-implicit/Typeclass ones, no? *)
(* SOONER: whenFail does not. Nor does, for example (of many) resize. *)
(* SOONER: What convention would you prefer to keep? Delete all names?
Keep all non-implicit names? Something else? I can do a consistency
pass after we fix everything. *)
(* SOONER: BCP: I think keeping is best. *)
Parameter conjoin : forall (l : list Checker), Checker.
Parameter disjoin : forall (l : list Checker), Checker.
(** Define a checker for a conditional property. Invalid generated
inputs (ones for which the antecedent fails) are discarded. *)
Parameter implication :
forall {prop : Type} `{Checkable prop} (b : bool) (p : prop), Checker.
(** Notation for implication. Clashes with many other notations in
other libraries, so it lives in its own module. Note that this
includes the notations for the generator combinators above
to avoid needing to import two modules.
*)
Module QcNotation.
Export QcDefaultNotation.
Notation "x ==> y" :=
(implication x y) (at level 55, right associativity)
: Checker_scope.
End QcNotation.
(* #################################################################### *)
(** * Decidability *)
(** ** The [Dec] Typeclass *)
(** Decidability typeclass using ssreflect's 'decidable'. *)
(** [[
Class Dec (P : Prop) : Type := { dec : decidable P }.
]]
*)
(** Decidable properties are Checkable. *)
Declare Instance testDec {P} `{H : Dec P} : Checkable P.
(** Logic Combinator instances. *)
Declare Instance Dec_neg {P} {H : Dec P} : Dec (~ P).
Declare Instance Dec_conj {P Q} {H : Dec P} {I : Dec Q} : Dec (P /\ Q).
Declare Instance Dec_disj {P Q} {H : Dec P} {I : Dec Q} : Dec (P \/ Q).
(* SOONER: We had discussed changing this to the partial decision procedure at some point. *)
(** A convenient notation for coercing a decidable proposition to a [bool]. *)
Notation "P '?'" := (match (@dec P _) with
| left _ => true
| right _ => false
end) (at level 100).
(** ** The [Dec_Eq] Typeclass *)
(** [[
Class Dec_Eq (A : Type) :=
{
dec_eq : forall (x y : A), decidable (x = y)
}.
]]
*)
(** Automation and conversions for Dec. *)
Declare Instance Eq__Dec {A} `{H : Dec_Eq A} (x y : A) : Dec (x = y).
(** Since deciding equalities is a very common requirement in testing,
QuickChick provides a tactic that can define instances of the form
[Dec (x = y)].
*)
(** [[
Ltac dec_eq.
]]
*)
(** QuickChick also lifts common decidable instances to the [Dec] typeclass. *)
Declare Instance Dec_eq_bool (x y : bool) : Dec (x = y).
Declare Instance Dec_eq_nat (m n : nat) : Dec (m = n).
Declare Instance Dec_eq_opt (A : Type) (m n : option A)
`{_ : forall (x y : A), Dec (x = y)} : Dec (m = n).
Declare Instance Dec_eq_prod (A B : Type) (m n : A * B)
`{_ : forall (x y : A), Dec (x = y)}
`{_ : forall (x y : B), Dec (x = y)}
: Dec (m = n).
Declare Instance Dec_eq_list (A : Type) (m n : list A)
`{_ : forall (x y : A), Dec (x = y)} : Dec (m = n).
Declare Instance Dec_ascii (m n : Ascii.ascii) : Dec (m = n).
Declare Instance Dec_string (m n : string) : Dec (m = n).
(* #################################################################### *)
(** * Automatic Instance Derivation *)
(** QuickChick allows the automatic derivation of typeclass instances
for simple types:
[[
Derive <class> for T.
]]
Here [<class>] must be one of [GenSized], [Shrink], [Arbitrary],
or [Show], and [T] must be an inductive defined datatype (think
Haskell/OCaml).
To derive multiple classes at once, write:
[[
Derive (<class>,...,<class>) for T.
]]
*)
(** QuickChick also allows for the automatic derivation of generators
satisfying preconditions in the form of inductive relations:
Derive ArbitrarySizedSuchThat for (fun x => P x1 ... x .... xn).
<P> must be an inductively defined relation.
<x> is the function to be generated.
<x1...xn> are (implicitly universally quantified) variable names.
*)
(** QuickChick also allows automatic derivations of proofs of
correctness of its derived generators! For more, look
at:
- A paper on deriving QuickChick generators for a large class of
inductive relations.
{http://www.cis.upenn.edu/~llamp/pdf/GeneratingGoodGenerators.pdf}
- Leo's PhD dissertation.
{https://lemonidas.github.io/pdf/Leo-PhD-Thesis.pdf}
- examples/DependentTest.v
*)
(* #################################################################### *)
(** * Top-level Commands and Settings *)
(** QuickChick provides a series of toplevel commands to sample
generators, test properties, and derive useful typeclass
instances. *)
(** The [Sample] command samples a generator. The argument [g] needs
to have type [G A] for some showable type [A]. *)
(** [[
Sample g.
]]
*)
(** The main testing command, [QuickChick], runs a test. The argument
[prop] must belong to a type that is an instance of [Checkable]. *)
(** [[
QuickChick prop.
]]
*)
(** QuickChick uses arguments to customize execution. *)
Record Args :=
MkArgs
{
(* Re-execute a test. *)
(* Default: None *)
replay : option (RandomSeed * nat);
(* Maximum number of successful tests to run. *)
(* Default: 10000 *)
maxSuccess : nat;
(* Maximum number of discards to accept. *)
(* Default: 20000 *)
maxDiscard : nat;
(* Maximum number of shrinks to perform before terminating. *)
(* Default : 1000 *)
maxShrinks : nat;
(* Maximum size of terms to generate (depth). *)
(* Default : 7 *)
maxSize : nat;
(* Verbosity. Note: Doesn't do much... *)
(* Default true. *)
chatty : bool
}.
(** Instead of record updates, you should overwrite extraction constants. *)
(** [[
Extract Constant defNumTests => "10000".
Extract Constant defNumDiscards => "(2 * defNumTests)".
Extract Constant defNumShrinks => "1000".
Extract Constant defSize => "7".
]]
*)
(* #################################################################### *)
(** * The [quickChick] Command-Line Tool *)
(** QuickChick comes with a command-line tool that supports:
- Batch processing, compilation and execution of tests
- Mutation testing
- Sectioning of tests and mutants
Comments that begin with an exclamation mark are special to the
QuickChick command-line tool parser and signify a test, a section,
or a mutant. *)
(** ** Test Annotations *)
(** A test annotation is just a [QuickChick] command wrapped inside
a comment with an exclamation mark.
[[
(*! QuickChick prop. *)
]]
Only tests that are annotated this way will be processed. Only property
names are allowed. *)
(** ** Mutant Annotations *)
(** A mutant annotation consists of 4 components. First an anottation
that signifies the beginning of the mutant [(*! *)]. That is followed
by the actual code. Then, we can include an optional annotation
(in a comment with double exclamation marks) that corresponds to
the mutant names. Finally, we can add a list of mutations inside
normal annotated comments. Each mutant should be able to be
syntactically substituted in for the normal code.
[[
(*! *)
Normal code
(*!! mutant-name *)
(*! mutant 1 *)
(*! mutant 2 *)
... etc ...
]]
*)
(** ** Section Annotations *)
(** To organize larger developments better, we can group together
different tests and mutants in sections. A section annotation is
a single annotation that defines the beginning of the section
(which lasts until the next section or the end of the file).
[[
(*! Section section-name *)
]]
Optionally, one can include an extends clause
[[
(*! Section section-name *)(*! extends other-section-name *)
]]
This signifies that the section being defined also
contains all tests and mutants from [other-section-name].
*)
(** ** Command-Line Tool Flags *)
(** The QuickChick command line tool can be passed the following options:
- [-s <section>]: Specify which sections properties and mutants to test
- [-v]: Verbose mode for debugging
- [-failfast]: Stop as soon as a problem is detected
- [-color]: Use colors on an ANSI-compatible terminal
- [-cmd <command>]: What compile command is used to compile the current directory
if it is not [make]
- [-top <name>]: Specify the name of the top-level logical module. That should
be the same as the [-Q] or [-R] directive in [_CoqProject] or [Top]
which is the default
- [-ocamlbuild <args>]: Any arguments necessary to pass to ocamlbuild when
compiling the extracted code (e.g. linked libraries)
- [-nobase]: Pass this option to not test the base mutant
- [-m <number>]: Pass this to only test a mutant with a specific id number
- [-tag <name>]: Pass this to only test a mutant with a specific tag
- [-include <name>]: Specify a to include in the compilation
- [-exclude <names>]: Specify files to be excluded from compilation. Must be the last argument passed.
*)
(* #################################################################### *)
(** * Deprecated Features *)
(** The following features are retained for backward compatibility,
but their use is deprecated. *)
(** Use the monad notations from [coq-ext-lib] instead of the
[QcDoNotation] sub-module: *)
Module QcDoNotation.
Notation "'do!' X <- A ; B" :=
(bindGen A (fun X => B))
(at level 200, X ident, A at level 100, B at level 200).
Notation "'do\'' X <- A ; B" :=
(bindGen' A (fun X H => B))
(at level 200, X ident, A at level 100, B at level 200).
Notation "'doM!' X <- A ; B" :=
(bindGenOpt A (fun X => B))
(at level 200, X ident, A at level 100, B at level 200).
End QcDoNotation.
End QuickChickSig.