-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
executable file
·48 lines (37 loc) · 1.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/python
import time
import six.moves.cPickle
from sklearn.manifold import TSNE
import numpy as np
import csv
import model as mdl
import yelp_reader
model, model2, tokeniser, dictionarySize = mdl.train(yelp_reader, oneHot = True, oneHotAveraged = True, contextHashes
= True)
SamplesNum = 1000
testGenerator = mdl.mapGenerator(
yelp_reader.validationData(SamplesNum + 100),
tokeniser,
dictionarySize,
oneHot = True,
oneHotAveraged = True,
contextHashes = True
)
activations = model2.predict_generator((row[0] for row in testGenerator), val_samples=SamplesNum)
sampled = [row for row in yelp_reader.validationData(SamplesNum + 100)][:SamplesNum]
sentences = [row[0] for row in sampled]
ratings = [row[1] for row in sampled]
tsneModel = TSNE(n_components=2, random_state=0)
tsneCoords = tsneModel.fit_transform(activations)
x = np.asarray([row[0] for row in tsneCoords])
y = np.asarray([row[1] for row in tsneCoords])
with open('data.csv', 'w', newline='') as csvfile:
writer = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
writer.writerow(['x', 'y', 'rating', 'text'])
for i, sentence in enumerate(sentences):
writer.writerow([str(x[i]), str(y[i]), str(ratings[i]), sentence.replace("\n", " ")])
jsonModel = model.to_json()
open('model.json', 'w').write(jsonModel)
open('model-dictionary-size.dat', 'w').write(str(dictionarySize))
six.moves.cPickle.dump(tokeniser, open("tokeniser.pkl", "wb"))
model.save_weights('model-' + str(time.time()) + '.h5')