forked from datadolphyn/R
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenerateOtherPads.R
406 lines (344 loc) · 17.8 KB
/
GenerateOtherPads.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Generate PADS - Recessions, Social Networks, Olympic Medals, Failed Banks
# Author: Jitender Aswani, Co-Founder @datadolph.in
# Date: 3/15/2013
# Copyright (c) 2011, under the Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) License
# For more information see: https://creativecommons.org/licenses/by-nc/3.0/
# All rights reserved.
# PADS Related to Recessions, Social Networks, Olympic Medals, Failed Banks
#
source("CreatePADS.R")
#
# load recession data
#
loadUSRecessionData <- function() {
recessions.data = read.table(textConnection(
"peak, trough
1857-06-01, 1858-12-01
1860-10-01, 1861-06-01
1865-04-01, 1867-12-01
1869-06-01, 1870-12-01
1873-10-01, 1879-03-01
1882-03-01, 1885-05-01
1887-03-01, 1888-04-01
1890-07-01, 1891-05-01
1893-01-01, 1894-06-01
1895-12-01, 1897-06-01
1899-06-01, 1900-12-01
1902-09-01, 1904-08-01
1907-05-01, 1908-06-01
1910-01-01, 1912-01-01
1913-01-01, 1914-12-01
1918-08-01, 1919-03-01
1920-01-01, 1921-07-01
1923-05-01, 1924-07-01
1926-10-01, 1927-11-01
1929-08-01, 1933-03-01
1937-05-01, 1938-06-01
1945-02-01, 1945-10-01
1948-11-01, 1949-10-01
1953-07-01, 1954-05-01
1957-08-01, 1958-04-01
1960-04-01, 1961-02-01
1969-12-01, 1970-11-01
1973-11-01, 1975-03-01
1980-01-01, 1980-07-01
1981-07-01, 1982-11-01
1990-07-01, 1991-03-01
2001-03-01, 2001-11-01
2007-12-01, 2009-06-01"),
sep=',',
colClasses=c('Date', 'Date'), header=TRUE)
recessions.data$length <- recessions.data$trough - recessions.data$peak
assign("recessions.data", recessions.data, envir=.GlobalEnv)
}
#
# generate
#
generate <- function() {
#initialize system
initializeSystem()
#prepare pad meta data
series <- list()
series["source"] <- "LMC Automotive, CNN Money"
series["category"] <- "Transportation"
series["subcategory"] <- "Automotives"
series["category_id"]<- 23
series["subcategory_id"]<- 211
series["tags"] <- tolower(paste(series$category, series$subcategory, series$source, "Tesla, Mercedes-Benz, BMW, Audi, Cars, Luxury", sep=","))
series["desc"] <- "In the first quarter of 2013, more people bought a Tesla Model S than bought any of the similarly priced gasoline-powered cars from the top three German luxury brands, according to data from LMC Automotive. About 4,750 buyers bought a Model S while just over 3,000 people bought Mercedes top-level sedan."
series["title"] <- "Tesla sales beating Mercedes, BMW and Audi, 1Q-2013"
series.data <- data.frame(car_brand=c("Tesla", "Mercedes-Benz", "BMW", "Audi"),
model=c("Model-S", "S Class", "7 Series", "A8"),
sales=c(4750, 3077,2338,1462), stringsAsFactors=F)
padify(series, series.data[1:2])
padify(series, series.data[1:2])
padify(series, series.data)
#clean up
cleaupSystem()
updateCatPadCount()
}
generateSN <- function() {
#initialize system
initializeSystem()
assign("dataset", "Social-Network", envir=.GlobalEnv)
#prepare pad meta data
series <- list()
series["source"] <- "Browser Media, Socialnomics, MacWorld"
series["category"] <- "Social"
series["subcategory"] <- "People"
series["tags"] <- tolower(paste(series$category, series$subcategory, series$source, "Facebook, Twitter, YouTube, Social Networks", sep=","))
series["desc"] <- "Online social networks have emerged has the new way in which people connect socially. The leader currently being Facebook with over 1.2 billion members. Web-based social networking services make it possible to connect people who share interests and activities across political, economic, and geographic borders."
series["title"] <- tocamel("Top ten most engaged countries for social networking")
series.data <- data.frame(read.csv("./pads/raw-data/sn-by-country.csv", stringsAsFactors=F))
padify(series, series.data)
#clean up
cleaupSystem()
updateCatPadCount()
}
generateIn <- function() {
#initialize system
initializeSystem()
assign("verbose", T, envir=.GlobalEnv)
assign("dataset", "India", envir=.GlobalEnv)
#prepare pad meta data
series <- list()
series["source"] <- "US Census Data, 2010"
series["category"] <- "Social"
series["subcategory"] <- "People"
series["tags"] <- tolower(paste(series$category, series$subcategory, series$source, "India, Indian, Indian American, Population", sep=","))
series["desc"] <- "Cities with large Indian American populations with a critical mass of at least 1% of the total urban population and at least 10% of the total suburban population. Information is based on the 2010 US Census. This article provides an incomplete list of places with large Indo-American populations."
series["title"] <- tocamel("U.S. cities with large Indian-American populations")
series.data <- data.frame(read.csv("./pads/raw-data/indian_population_in_major_cities.csv", stringsAsFactors=F))
series.data <- trimData(series.data)
series.data[3] <- as.numeric(gsub("%", "", series.data$percent_of_population, fixed=T))
padify(series, series.data)
#clean up
cleaupSystem()
updateCatPadCount()
}
generateOlympics <- function() {
#initialize system
initializeSystem()
assign("verbose", T, envir=.GlobalEnv)
assign("dataset", "Olympics", envir=.GlobalEnv)
#prepare pad meta data
series <- list()
series["source"] <- "Wikipedia Summer Olympics Medal Tables"
series["category"] <- "Sports"
series["subcategory"] <- "Olympics"
series["tags"] <- tolower(paste(series$category, series$subcategory, series$source, "summer olpympics, medals, gold medals, silver medals, bronze medals", sep=","))
series["desc"] <- "Summer Olympics Medal Tables, 1896-2012"
# no of nations participating in olympics
sum.oly <- data.table(read.csv("./pads/raw-data/olympics/summer-olympics-medals-1896-2012.csv", stringsAsFactors=F))
sum.oly <- replaceNAWithZeros(sum.oly)
setkeyv(sum.oly, c("year", "country", "country_code"))
series["title"] <- "Number of Countries Participated in Summer Olympics"
series.data <- sum.oly[, list(countries_count=nrow(.SD)), by=year]
padify(series, series.data)
# no of olympics played by countries
series["title"] <- "Participation in Summer Olympics by Country"
series.data <- sum.oly[, list(times_participated_in_olympics=nrow(.SD)), by=country][order(-times_participated_in_olympics)][1:25]
padify(series, series.data)
#clean up
cleaupSystem()
updateCatPadCount()
}
generateFailedBanks <- function() {
#recession data for bands
loadUSRecessionData()
#initialize system
initializeSystem(0)
#assign("verbose", T, envir=.GlobalEnv)
assign("dataset", "FB", envir=.GlobalEnv)
#prepare pad meta data
series <- list()
series["source"] <- "FDIC"
series["category"] <- "Financial Sector"
series["subcategory"] <- "Banks"
series["tags"] <- tolower(paste(series$category, series$subcategory, series$source, "Recession, US Banks, Failed Banks, Failed Institutions, Bank Failures", sep=","))
series["desc"] <- "A bank failure is the closing of a bank by a federal or state banking regulatory agency. The FDIC is named as Receiver for a bank assets when its capital levels are too low, or it cannot meet obligations the next day. After a bank assets are placed into Receivership, the FDIC acts in two capacities—first, it pays insurance to the depositors, up to the deposit insurance limit, for assets not sold to another bank. Second, as the receiver of the failed bank, it assumes the task of selling and collecting the assets of the failed bank and settling its debts, including claims for deposits in excess of the insured limit."
series["pagetag"] <- "failedbanks"
#series["title"] <- tocamel("List of bank failures in the United States")
#
# read the bank names file
#
stats <- read.csv("./pads/raw-data/failed-banks/banklist_fdic.csv", stringsAsFactors=F)
stats <- trimData(stats)
colnames(stats) <- replaceMetaChars(tolower(colnames(stats)))
# get col indexes that need to be converted to date
cols <- c(grep("closing_date", colnames(stats)), grep("updated_date", colnames(stats)))
stats[cols] <- llply(stats[cols], as.Date, "%d-%b-%y")
# generate years, days, quarters and months
stats$closing_year <- year(stats$closing_date)
stats <- stats[complete.cases(stats),]
stats$closing_day=as.character(factor(weekdays(stats$closing_date), levels=lDays))
stats$closing_month=as.character(factor(months(stats$closing_date), levels=lMonths))
stats$closing_quarter=as.character(quarters(stats$closing_date))
#series.data[3] <- as.numeric(gsub("%", "", series.data$percent_of_population, fixed=T))
f.b <- data.table(stats)
setkey(f.b, bank_name)
# Number of failed banks by year
s.d <- f.b[, list(number_of_failed_banks=nrow(.SD)), by=closing_year][order(closing_year)]
series["title"] <- "Bank Failures in the United States Since 2000"
padify(series, s.d)
# Number of failed banks by state
s.d <- f.b[, list(number_of_failed_banks=nrow(.SD)), by=st]
setkey(s.d, st)
setnames(states, colnames(states), c("state", "st"))
s.d <- merge(s.d, states, by="st", all.x=T)[,st:=NULL]
s.d$state <- tocamel(tolower(s.d$state))
series["title"] <- "Bank Failures Across States in the United States Since 2000"
padify(series, s.d[order(-number_of_failed_banks)])
#by city
s.d <- f.b[, list(number_of_failed_banks=nrow(.SD)), by=city]
series["title"] <- "Bank Failures Across Cities in the United States Since 2000"
padify(series, s.d[order(-number_of_failed_banks)][1:25,])
#by day
s.d <- f.b[, list(number_of_failed_banks=nrow(.SD)), by=closing_day]
series["title"] <- "Bank Failures Across Weekdays in the United States Since 2000"
s.d$closing_day <- factor(s.d$closing_day, levels= lDays)
s.d <- s.d[order(closing_day)]
s.d$closing_day <- as.character(s.d$closing_day)
padify(series, s.d)
#by month
s.d <- f.b[, list(number_of_failed_banks=nrow(.SD)), by=closing_month]
series["title"] <- "Bank Failures Across Months in the United States Since 2000"
s.d$closing_month <- factor(s.d$closing_month, levels= lMonths)
s.d <- s.d[order(closing_month)]
s.d$closing_month <- as.character(s.d$closing_month)
padify(series, s.d[order(-number_of_failed_banks)])
#by quarter
s.d <- f.b[, list(number_of_failed_banks=nrow(.SD)), by=closing_quarter]
series["title"] <- "Bank Failures Across Quarters in the United States Since 2000"
padify(series, s.d)
#by acquiring_institution
s.d <- f.b[, list(number_of_banks_acquired=nrow(.SD)), by=acquiring_institution][order(-number_of_banks_acquired)]
series["title"] <- "Acquiring Institution for Failed Banks Since 2000"
padify(series, s.d[order(-number_of_banks_acquired)][1:25,])
#
# Read the second file
#
# stats <- read.csv("./pads/raw-data/failed-banks/failed_banks_assets_fdic.csv", stringsAsFactors=F)
# stats <- trimData(stats)
# stats$closing_date <- as.Date(stats$closing_date, "%Y-%m-%d")
# # generate years, days, quarters and months
# stats$closing_year <- year(stats$closing_date)
# stats$assets_in_mil_usd <- as.numeric(stats$assets_in_mil_usd)
# stats <- stats[complete.cases(stats),]
# stats$closing_day=as.character(factor(weekdays(stats$closing_date), levels=lDays))
# stats$closing_month=as.character(factor(months(stats$closing_date), levels=lMonths))
# stats$closing_quarter=as.character(quarters(stats$closing_date))
# f.b.assets <- data.table(stats)
# setkey(f.b.assets, bank_name)
# Assets of failed banks by year
#s.d <- f.b.assets[, list(assets_in_usd = sum(assets_in_mil_usd)*1000000), by=closing_year][order(closing_year)]
#series["title"] <- "Aggregated Assets (in USD) of Failed Banks in the US Since 2008"
#padify(series, s.d)
# Largest failed banks
#s.d <- f.b.assets[f.b$bank_name, list(assets_in_usd = assets_in_mil_usd*1000000)][order(-assets_in_usd)]
#series["title"] <- "Twenty Largest Bank (by Assets in USD) To Fail in the US Since 2000"
#padify(series, s.d[1:20,])
#
# Read the third file
#
stats <- read.csv("./pads/raw-data/failed-banks/failed_bank_lists_1934_2013_fdic.csv", stringsAsFactors=F)
stats <- trimData(stats)
colnames(stats) <- replaceMetaChars(tolower(colnames(stats)))
#stats$closing_date <- as.Date(stats$effective_date, "%m/%d/%y")
stats$closing_date <- getOlderDate(mdy(stats$effective_date))
stats$city <- str_extract(stats$location, "^[A-Za-z ]+")
stats$st <- str_extract(stats$location, "[A-Za-z ]+$")
# generate years
stats$closing_year <- year(stats$closing_date)
stats$assets_in_mil_usd <- removeMetaFromNumeric(stats$total_assets)
stats$deposits_in_mil_usd <- removeMetaFromNumeric(stats$total_deposits)
stats$estimated_loss_in_mil_usd <- removeMetaFromNumeric(stats$estimated_loss)
# generate table
f.b.all <- data.table(stats)
setkey(f.b.all, institution_name)
#
# Assisted banks
#
s.d <- f.b.all[, list(institution_name, failure_assistance, assets_in_usd = assets_in_mil_usd*1000,
deposits_in_usd = deposits_in_mil_usd*1000)][order(-assets_in_usd)]
series["title"] <- "Assets and Deposits of 10 Large Banks Who Received Assistance from FDIC"
padify(series, s.d[failure_assistance=="ASSISTANCE"][,failure_assistance:=NULL][1:10,])
#
# Failed vs Assisted
#
s.d <- f.b.all[, list(no_of_banks=nrow(.SD)), by=failure_assistance]
series["title"] <- "Ratio of Failed and Assisted Banks in the US Since 1934"
padify(series, s.d)
# Largest failed banks
s.d <- f.b.all[closing_year >=2000][failure_assistance=="FAILURE"][, list(institution_name, assets_in_usd = assets_in_mil_usd*1000,
deposits_in_usd = deposits_in_mil_usd*1000)][order(-assets_in_usd)]
series["title"] <- "Ten Largest Bank Failures (by Assets in USD) in the US Since 2000"
padify(series, s.d[,c(1,2), with=F][1:10,])
series["title"] <- "Assets and Deposits of Ten Largest Failed Banks in the US Since 2000"
padify(series, s.d[1:10,])
#
# Failed banks
#
s.d <- f.b.all[failure_assistance=="FAILURE"][, list(number_of_failed_banks=nrow(.SD), assets_in_usd = sum(assets_in_mil_usd)*1000,
deposits_in_usd = sum(deposits_in_mil_usd)*1000), by=closing_year][order(closing_year)]
series["title"] <- "Number of Failed Banks in the US Between 1930 and 1980"
padify(series, s.d[closing_year < 1980][, c(1,2), with=F])
series["title"] <- "Number of Failed Banks in the US Between 1980 and 2013"
padify(series, s.d[closing_year >= 1980][, c(1,2), with=F])
s.d.second <- s.d[closing_year >= 1980][, c(1,2), with=F]
series["title"] <- "Number of Failed Banks in the US Between 1980 and 2013 With Recession Bands"
r.d <- subset(recessions.data, year(peak) >= min(s.d.second$closing_year ))
x.plot.band <- as.matrix(r.d)
dimnames(x.plot.band) <- NULL
padify(series, s.d.second, x.plot.band)
series["title"] <- "Assets and Deposits (in USD) of Failed Banks in the US Between 1930 and 1980"
padify(series, s.d[closing_year < 1980][, c(1,3,4), with=F])
series["title"] <- "Assets and Deposits (in USD) of Failed Banks in the US Between 1980 and 2013"
padify(series, s.d[closing_year >= 1980][, c(1,3,4), with=F])
s.d.second <- s.d[closing_year >= 1980][, c(1,3,4), with=F]
series["title"] <- "Assets and Deposits (in USD) of Failed Banks in the US Between 1980 and 2013 With Recession Bands"
r.d <- subset(recessions.data, year(peak) >= min(s.d.second$closing_year ))
x.plot.band <- as.matrix(r.d)
dimnames(x.plot.band) <- NULL
padify(series, s.d.second, x.plot.band)
#
# loss to FDIC from failed banks
#
s.d <- f.b.all[failure_assistance=="FAILURE"][, list(estimated_losses_to_FDIC = sum(estimated_loss_in_mil_usd)*1000),
by=closing_year][order(closing_year)]
#remove NA
s.d <- s.d[complete.cases(s.d),]
series["title"] <- "Estimated Losses to FDIC from Failed Banks in the US Since 1989 With Recession Bands"
# apply recession bands
r.d <- subset(recessions.data, year(peak) >= min(s.d$closing_year ))
x.plot.band <- as.matrix(r.d)
dimnames(x.plot.band) <- NULL
padify(series, s.d, x.plot.band)
##
# add key stats
#
addPageStat(series$pagetag, prettyNum(nrow(f.b.all[failure_assistance=="FAILURE"]),big.mark = ","), "Banks Failed Since 1934")
addPageStat(series$pagetag, paste("$", prettyNum(f.b.all[failure_assistance=="FAILURE"][, sum(estimated_loss_in_mil_usd, na.rm=T)*1000],big.mark = ","), sep=""),
"Esitimated Losses to FDIC")
addPageStat(series$pagetag, prettyNum(f.b.all[failure_assistance=="FAILURE"][, list(n=nrow(.SD)), by=closing_year][which.max(n)]$n, big.mark = ","),
paste("Banks Closed in", f.b.all[failure_assistance=="FAILURE"][, list(n=nrow(.SD)), by=closing_year][which.max(n)]$closing_year, sep=" "))
addPageStat(series$pagetag, prettyNum(f.b.all[failure_assistance=="FAILURE"][, list(n=nrow(.SD)), by=st][which.max(n)]$n, big.mark = ","),
paste("Banks Closed in", f.b.all[failure_assistance=="FAILURE"][, list(n=nrow(.SD)), by=st][which.max(n)]$st, "State", sep=" "))
addPageStat(series$pagetag, f.b.all[failure_assistance=="FAILURE"][which.max(assets_in_mil_usd)]$institution_name,
"Largest Bank to Fail")
addPageStat(series$pagetag, f.b.all[which.max(assets_in_mil_usd)]$institution_name,
"Largest Bank to Receive FDIC Assistance")
#clean up
cleaupSystem()
updateCatPadCount()
}
#delete few things - be careful - this will remove all pads from mongodb and remove the cache entirely
deleteFewThings <- function() {
initializeSystem(0)
cleanCacheFiles()
deletePageStat("failedbanks")
emptySystemPadsForCat(getOrInsertCategory("Financial Sector"))
emptyCollection(mongo.db$system.pads)
updateCatPadCount()
}
#generateIn()