-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
1059 lines (860 loc) · 36.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
Water Quality System (WQMS)
This module is the bussiness logic layer.
It does data validation,
...dynamic data processing,
...generates and render contents to be delivered to UI
...pulls data from DB for processing
...data download in csv format
Usage:
run <python app.py>
follow url given
Created : March 2019
Author(s) : John Pk Erbynn([email protected]),
Josiah Nii Kortey([email protected]),
Isaac Agyen Duffour([email protected])
'''
from flask import Flask, render_template, flash, redirect, request, jsonify, url_for, Response
# from aquaLite import *
import datetime
import json
import sqlite3
import time
import statistics as stat
import mail
from config import credential
import generator
from flask_toastr import Toastr # toastr module import
import create_database
app = Flask(__name__)
# python notification toaster
toastr = Toastr(app)
# Set the secret_key on the application to something unique and secret.
app.config['SECRET_KEY'] = '5791628bb0b13ce0c676dfde280ba245'
# home route....landing page
@app.route("/", methods = ['GET', 'POST'])
@app.route("/index", methods=["GET", "POST"])
def index():
print("landing page running...")
if request.method == 'POST':
username = request.form['username']
passwd = request.form['password']
# credentials from config files imported
if username == credential['name'] and passwd == credential['passwd']:
flash('Login successful :)', 'success')
# flash("You have successfully logged in.", 'success') # python Toastr uses flash to flash pages
return redirect(url_for('dashboard'))
else:
flash('Login Unsuccessful. Please check username and password', 'error')
return render_template("index.html", todayDate=datetime.date.today(), )
# posting collected data to database
@app.route("/postData", methods=["POST"])
def create_data():
"""
To remotely access this route and post data after deployment on Heroku, use:
<deployed link>/postData
Eg; https://wqms.herokuapp.com/postData
"""
print(">>> posting data ....")
# expected data format from microcontroller;
# b"temperatureValue", "turbidityValue", "phValue", "waterlevelValue"
# data = request.data
# # decoding bytes data to string
# decoded_data = data.decode('utf-8')
# key = ['temperature', 'turbidity', 'ph', 'water_level']
# # data into list
# string_value = decoded_data.split(',')
# # dictionary processing
# value = []
# for v in string_value:
# v = float(v)
# value.append(v)
# #merge to dict()
# data = dict(zip(key, value))
# # print(data)
"""
for testing purposes with Postman(json data format), use:
request.json and comment code above to line 79(data.request)
"""
data = request.json
print(data)
"""
This code snippet handles database posting
"""
con = sqlite3.connect('iot_wqms_data.db')
cursor = con.cursor()
print('before try...')
try:
cursor.execute(""" INSERT INTO iot_wqms_table( temperature, turbidity, ph, water_level)
VALUES (?, ?, ?, ?) """,
(data["temperature"], data["turbidity"], data["ph"], data["water_level"]))
con.commit()
print("Data posted SUCCESSFULLY")
except Exception as err:
print('...posting data FAILED')
print(err)
"""
This attribute sends an email as an alert whenever data is out of normal range
normal parameter ranges ;
...temp 23-34
...turbidity(Nephelometric Turbidity Units or Jackson Turbidity Unit) 0 - 5
...ph 4-10
...water level 5 - 27
example;
{'temperature': 25.31, 'turbidity': 4.13, 'ph': 8.04, 'water_level': 16.0}
"""
try:
if (data["temperature"] < 23) | (data["temperature"] > 34) | \
(data["turbidity"] < 0) | (data["turbidity"] > 5) | \
(data["ph"] < 6) | (data["ph"] > 10) | \
(data["water_level"] < 5) | (data["water_level"] > 27) :
mail.send_mail(data)
except Exception as err:
print(f'Email unsuccessful. {err}')
return jsonify({ "Status": "Data posted successfully\n"})
# empty list to be used for all parameter route
time = []
ph=[]
temp= []
turbidity= []
waterlevel=[]
# initial temps
average_temp = 0
min_temp=0
max_temp=0
range_temp = 0
@app.route("/tempChart/<x>")
def temperature(x):
print(">>> temperature page running ...")
# connecting to datebase
con = sqlite3.connect('iot_wqms_data.db')
cursor = con.cursor()
# 30secs time interval for pushing data from sensor to database, that the limit of data to be determined
# data processing for an hour
if x == '1h':
name = '1 Hour'
label = 'Minute'
# with 30 seconds interval, ...2,880 temperature data will be posted within an hour
cursor.execute(" SELECT time,temperature FROM ( SELECT * from iot_wqms_table ORDER BY id DESC LIMIT 120 ) order by id asc ")
data = cursor.fetchall()
# emptying list
del time[:]
del temp[:]
for datum in data:
# temperature data extraction
datum_float = float(datum[1])
temp.append(datum_float)
# time extraction
t = str(datum[0][14:])
time.append(t)
# analysis
mean_temp = stat.mean(temp)
average_temp = round(mean_temp, 2)
min_temp = round(min(temp), 2) # assigned to global min_temp
max_temp = round(max(temp), 2)
range_temp = max_temp - min_temp
# data processing for a day
if x == '1d':
name = '1 Day'
label = 'Hour'
cursor.execute(" SELECT time,temperature FROM iot_wqms_table ORDER BY id ASC LIMIT 2880 ")
data = cursor.fetchall()
del time[:] # time on the x-axis
del temp[:]
for datum in data:
# print(datum)
datum_float = float(datum[1])
temp.append(datum_float)
t = str(datum[0][11:16])
time.append(t)
# analysis
mean_temp = stat.mean(temp)
average_temp = round(mean_temp, 2)
min_temp = round(min(temp), 2) # assigned to global min_temp
max_temp = round(max(temp), 2)
range_temp = max_temp - min_temp
# weekly data processing ,,,,,
if x == '1w':
name = '1 Week'
label = 'Day'
# fetching data from database
cursor.execute(" SELECT time,temperature FROM iot_wqms_table ORDER BY id ASC LIMIT 20160")
data = cursor.fetchall()
# converting timestamp from database to day in string like Mon, Tue
def date_to_day(year, month, day):
time = datetime.datetime(year, month, day)
return (time.strftime("%a"))
# emptying time and temperature container list
del time[:]
del temp[:]
# retrieving weekly time and temp from database data
for datum in data:
# collecting temperature
datum_float = float(datum[1]) # temp data in float
temp.append(datum_float) # pushing to temp list
# string day processing from full timestamp
tm = str(datum[0][:10])
tm_split = tm.split("-")
year = int(tm_split[0])
month = int(tm_split[1])
day = int(tm_split[2])
# using full_date to day_string function defined
current_day = date_to_day(year, month, day)
time.append(current_day)
# analysis
mean_temp = stat.mean(temp)
average_temp = round(mean_temp, 2)
min_temp = round(min(temp), 2) # assigned to global min_temp
max_temp = round(max(temp), 2)
range_temp = max_temp - min_temp
# monthly data processing
if x == '1m':
name = '1 Month'
label = 'Month-Date'
# fetching data from database.....change number of data to fetch
cursor.execute(" SELECT time,temperature FROM iot_wqms_table ORDER BY id ASC LIMIT 87600")
data = cursor.fetchall()
# retreiving month string from timestamp of database to get sth like January, Febuary
def string_month_from_full_date(year, month, day):
time = datetime.datetime(year, month, day)
return (time.strftime("%b")) # %B for fullname
# emptying time and temperature container list
del time[:]
del temp[:]
# retrieving monthly time and temp from database data
for datum in data:
# collecting temperature
# print(datum)
datum_float = float(datum[1]) # temp data in float
temp.append(datum_float) # pushing to temp list
# string month processing from full date timestamp
tm = str(datum[0][5:10])
time.append(tm)
# analysis
mean_temp = stat.mean(temp)
average_temp = round(mean_temp, 2)
min_temp = round(min(temp), 2) # assigned to global min_temp
max_temp = round(max(temp), 2)
range_temp = max_temp - min_temp
# yearly data processing
if x == '1y':
name = '1 Year'
label = 'Month'
# fetching data from database.....change number of data to fetch
cursor.execute(" SELECT time,temperature FROM iot_wqms_table ORDER BY id ASC LIMIT 1051333")
data = cursor.fetchall()
# retreiving month string from timestamp of database to get sth like January, Febuary
def string_month_from_full_date(year, month, day):
time = datetime.datetime(year, month, day)
return (time.strftime("%b")) # %B for fullname
# emptying time and temperature container list
del time[:]
del temp[:]
# retrieving monthly time and temp from database data
for datum in data:
# collecting temperature
# print(datum)
datum_float = float(datum[1]) # temp data in float
temp.append(datum_float) # pushing to temp list
# string month processing from full date timestamp
tm = str(datum[0][:10])
tm_split = tm.split("-")
year = int(tm_split[0])
month = int(tm_split[1])
day = int(tm_split[2])
# using full_date to day_string function defined
current_month = string_month_from_full_date(year, month, day)
time.append(current_month)
# time.append(year)
# analysis
mean_temp = stat.mean(temp)
average_temp = round(mean_temp, 2)
min_temp = round(min(temp), 2) # assigned to global min_temp
max_temp = round(max(temp), 2)
range_temp = max_temp - min_temp
# all data processing
if x == 'all':
name = 'All'
label = 'Time'
# fetching data from database.....change number of data to fetch
# cursor.execute(" SELECT time,temperature FROM iot_wqms_table ORDER BY id DESC LIMIT 1440")
cursor.execute(" SELECT time,temperature FROM ( SELECT * from iot_wqms_table ORDER BY id DESC ) order by id asc")
data = cursor.fetchall()
# emptying time and temperature container list
del time[:]
del temp[:]
# retrieving monthly time and temp from database data
for datum in data:
# collecting temperature
# print(datum)
datum_float = float(datum[1]) # temp data in float
temp.append(datum_float) # pushing to temp list
# string month processing from full date timestamp
tm = str(datum[0][:7])
time.append(tm)
# analysis
mean_temp = stat.mean(temp)
average_temp = round(mean_temp, 2)
min_temp = round(min(temp), 2) # assigned to global min_temp
max_temp = round(max(temp), 2)
range_temp = max_temp - min_temp
return render_template("tempChart.html", temp=temp, time=time, label=label, name=name, mean=average_temp, max_temp=max_temp, min_temp=min_temp, range_temp=range_temp)
@app.route("/phChart/<x>")
def powerOfHydrogen(x):
print(">>> ph page running ...")
# connecting to datebase
con = sqlite3.connect('iot_wqms_data.db')
cursor = con.cursor()
# data processing for an hour
if x == '1h':
name = '1 Hour'
label = 'Minute'
# selecting ph data
cursor.execute(" SELECT time, ph FROM ( SELECT * from iot_wqms_table ORDER BY id DESC LIMIT 120 ) order by id asc ")
data = cursor.fetchall()
# print(data)
# emptying list
del time[:]
del ph[:]
# data extraction
for datum in data:
# print(datum)
# extracting ph data
datum_float = float(datum[1])
ph.append(datum_float)
# extracting minutes and seconds
t = str(datum[0][14:])
time.append(t)
# analysis
average_ph = round(stat.mean(ph), 2)
min_ph = round(min(ph), 2)
max_ph = round(max(ph), 2)
range_ph = float( round((max_ph - min_ph), 2) )
# data processing for day
if x == '1d':
name = '1 Day'
label = 'Hour'
# selecting ph data
cursor.execute(" SELECT time, ph FROM iot_wqms_table ORDER BY id ASC LIMIT 2880 ")
data = cursor.fetchall()
# emptying list
del time[:]
del ph[:]
# data extraction
for datum in data:
# print(datum)
# extracting ph data
datum_float = float(datum[1])
ph.append(datum_float)
# extracting minutes and seconds
t = str(datum[0][11:16])
time.append(t)
# analysis
average_ph = round(stat.mean(ph), 2)
min_ph = round(min(ph), 2)
max_ph = round(max(ph), 2)
range_ph = float( round((max_ph - min_ph), 2) )
# weekly data processing ,,,,,
if x == '1w':
name = '1 Week'
label = 'Day'
# fetching data from database
cursor.execute(" SELECT time, ph FROM iot_wqms_table ORDER BY id ASC LIMIT 20160")
data = cursor.fetchall()
# converting timestamp from database to day in string like Mon, Tue
def date_to_day(year, month, day):
time = datetime.datetime(year, month, day)
return (time.strftime("%a"))
# emptying time and ph container list
del time[:]
del ph[:]
# retrieving weekly time and ph from database data
for datum in data:
# collecting ph
# print(datum)
datum_float = float(datum[1]) # ph data in float
ph.append(datum_float) # pushing to ph list
# string day processing from full timestamp
tm = str(datum[0][:10])
tm_split = tm.split("-")
year = int(tm_split[0])
month = int(tm_split[1])
day = int(tm_split[2])
# converting full_date to day_string function defined
current_day = date_to_day(year, month, day)
time.append(current_day)
# analysis
average_ph = round(stat.mean(ph), 2)
min_ph = round(min(ph), 2)
max_ph = round(max(ph), 2)
range_ph = float( round((max_ph - min_ph), 2) )
# monthly data processing
if x == '1m':
name = '1 Month'
label = 'Month-Date'
# fetching data from database.....change number of data to fetch
cursor.execute(" SELECT time, ph FROM iot_wqms_table ORDER BY id ASC LIMIT 87600")
data = cursor.fetchall()
# emptying list
del time[:]
del ph[:]
# extracting monthly time and ph data to empty list
for datum in data:
# collecting ph
# print(datum)
datum_float = float(datum[1]) # ph data to float
ph.append(datum_float)
# extracting month from full timestamp
tm = str(datum[0][5:10])
time.append(tm)
# analysis
average_ph = round(stat.mean(ph), 2)
min_ph = round(min(ph), 2)
max_ph = round(max(ph), 2)
range_ph = float( round((max_ph - min_ph), 2) )
# yearly data processing
if x == '1y':
name = '1 Year'
label = 'Month'
cursor.execute(" SELECT time, ph FROM iot_wqms_table ORDER BY id ASC LIMIT 1051333")
data = cursor.fetchall()
# retreiving month in string from timestamp of database to get sth like January, Febuary
def string_month_from_full_date(year, month, day):
time = datetime.datetime(year, month, day)
return (time.strftime("%b")) # %B for fullname
# emptying
del time[:]
del ph[:]
# retrieving monthly time and ph to emptied list above
for datum in data:
# collecting ph
datum_float = float(datum[1]) # temp data in float
ph.append(datum_float) # pushing to temp list
# string month processing from full date timestamp
tm = str(datum[0][:10])
tm_split = tm.split("-")
year = int(tm_split[0])
month = int(tm_split[1])
day = int(tm_split[2])
# using full_date to day_string function to get month in string
current_month = string_month_from_full_date(year, month, day)
time.append(current_month)
# analysis
average_ph = round(stat.mean(ph), 2)
min_ph = round(min(ph), 2)
max_ph = round(max(ph), 2)
range_ph = float( round((max_ph - min_ph), 2) )
# all data processing
if x == 'all':
name = 'All'
label = "Time"
cursor.execute(" SELECT time, ph FROM ( SELECT * from iot_wqms_table ORDER BY id DESC ) order by id asc")
data = cursor.fetchall()
# emptying
del time[:]
del ph[:]
# retrieving monthly time and ph to emptied list
for datum in data:
# collecting temperature
datum_float = float(datum[1]) # ph data in float
ph.append(datum_float) # pushing to ph list
# string month processing from full date timestamp
tm = str(datum[0][:7])
time.append(tm)
# analysis
average_ph = round(stat.mean(ph), 2)
min_ph = round(min(ph), 2)
max_ph = round(max(ph), 2)
range_ph = float( round((max_ph - min_ph), 2) )
return render_template("phChart.html", ph=ph, time=time, label=label, name=name, average_ph=average_ph, min_ph=min_ph, max_ph=max_ph, range_ph=range_ph)
@app.route("/turbChart/<x>")
def turb(x):
print(">>> turbidity page running ...")
con = sqlite3.connect('iot_wqms_data.db')
cursor = con.cursor()
if x == '1h':
name = '1 Hour'
label = 'Minute'
cursor.execute(" SELECT time, turbidity FROM ( SELECT * from iot_wqms_table ORDER BY id DESC LIMIT 120 ) order by id asc ")
data = cursor.fetchall()
del time[:]
del turbidity[:]
for datum in data:
datum_float = float(datum[1])
turbidity.append(datum_float)
t = str(datum[0][14:])
time.append(t)
average_turbidity = round(stat.mean(turbidity), 2)
min_turbidity = round(min(turbidity), 2)
max_turbidity = round(max(turbidity), 2)
range_turbidity = float( round((max_turbidity - min_turbidity), 2) )
print("range", range_turbidity)
# data processing for day
if x == '1d':
name = '1 Day'
label = 'Hour'
cursor.execute(" SELECT time, turbidity FROM iot_wqms_table ORDER BY id ASC LIMIT 2880 ")
data = cursor.fetchall()
del time[:]
del turbidity[:]
# appending data to emptied list
for datum in data:
datum_float = float(datum[1])
turbidity.append(datum_float)
t = str(datum[0][11:16])
time.append(t)
# to 2 decimal places
average_turbidity = round( stat.mean(turbidity) , 2)
min_turbidity = round(min(turbidity), 2)
max_turbidity = round(max(turbidity), 2)
range_turbidity = float( round((max_turbidity - min_turbidity), 2) )
if x == '1w':
name = '1 Week'
label = 'Day'
cursor.execute(" SELECT time, turbidity FROM iot_wqms_table ORDER BY id ASC LIMIT 20160")
data = cursor.fetchall()
def date_to_day(year, month, day):
time = datetime.datetime(year, month, day)
return (time.strftime("%a"))
del time[:]
del turbidity[:]
for datum in data:
# print(datum)
datum_float = float(datum[1]) # ph data in float
turbidity.append(datum_float) # pushing to ph list
tm = str(datum[0][:10])
tm_split = tm.split("-")
year = int(tm_split[0])
month = int(tm_split[1])
day = int(tm_split[2])
current_day = date_to_day(year, month, day)
time.append(current_day)
average_turbidity = round( stat.mean(turbidity) , 2)
min_turbidity = round(min(turbidity), 2)
max_turbidity = round(max(turbidity), 2)
range_turbidity = float( round((max_turbidity - min_turbidity), 2) )
if x == '1m':
name = '1 Month'
label = 'Month-Date'
cursor.execute(" SELECT time, turbidity FROM iot_wqms_table ORDER BY id ASC LIMIT 87600")
data = cursor.fetchall()
del time[:]
del turbidity[:]
for datum in data:
datum_float = float(datum[1]) # ph data to float
turbidity.append(datum_float)
tm = str(datum[0][5:10])
time.append(tm)
average_turbidity = round( stat.mean(turbidity) , 2)
min_turbidity = round(min(turbidity), 2)
max_turbidity = round(max(turbidity), 2)
range_turbidity = float( round((max_turbidity - min_turbidity), 2) )
if x == '1y':
name = '1 Year'
label = 'Month'
cursor.execute(" SELECT time, turbidity FROM iot_wqms_table ORDER BY id ASC LIMIT 1051333")
data = cursor.fetchall()
def string_month_from_full_date(year, month, day):
time = datetime.datetime(year, month, day)
return (time.strftime("%b")) # %B for fullname
del time[:]
del turbidity[:]
for datum in data:
datum_float = float(datum[1]) # temp data in float
turbidity.append(datum_float) # pushing to temp list
tm = str(datum[0][:10])
tm_split = tm.split("-")
year = int(tm_split[0])
month = int(tm_split[1])
day = int(tm_split[2])
current_month = string_month_from_full_date(year, month, day)
time.append(current_month)
average_turbidity = round( stat.mean(turbidity) , 2)
min_turbidity = round(min(turbidity), 2)
max_turbidity = round(max(turbidity), 2)
range_turbidity = float( round((max_turbidity - min_turbidity), 2) )
if x == 'all':
name = 'All'
label = "Time"
cursor.execute(" SELECT time, turbidity FROM ( SELECT * from iot_wqms_table ORDER BY id DESC ) order by id asc")
data = cursor.fetchall()
del time[:]
del turbidity[:]
for datum in data:
datum_float = float(datum[1]) # ph data in float
turbidity.append(datum_float) # pushing to ph list
tm = str(datum[0][:7])
time.append(tm)
average_turbidity = round( stat.mean(turbidity) , 2)
min_turbidity = round(min(turbidity), 2)
max_turbidity = round(max(turbidity), 2)
range_turbidity = float( round((max_turbidity - min_turbidity), 2) )
return render_template("turbChart.html", turbidity=turbidity, time=time, label=label, name=name, average_turbidity=average_turbidity, min_turbidity=min_turbidity, max_turbidity=max_turbidity, range_turbidity=range_turbidity)
@app.route("/waterlevelChart/<x>")
def waterdepth(x):
print(">>> waterlevel page running ...")
con = sqlite3.connect('iot_wqms_data.db')
cursor = con.cursor()
if x == '1h':
name = '1 Hour'
label = 'Minute'
cursor.execute(" SELECT time, water_level FROM ( SELECT * from iot_wqms_table ORDER BY id DESC LIMIT 120 ) order by id asc ")
data = cursor.fetchall()
del time[:]
del waterlevel[:]
for datum in data:
datum_float = float(datum[1])
waterlevel.append(datum_float)
t = str(datum[0][14:])
time.append(t)
average_waterlevel = round(stat.mean(waterlevel), 2)
min_waterlevel = round(min(waterlevel), 2)
max_waterlevel = round(max(waterlevel), 2)
range_waterlevel = float( round((max_waterlevel - min_waterlevel), 2) )
# data processing for day
if x == '1d':
name = '1 Day'
label = 'Hour'
cursor.execute(" SELECT time, water_level FROM iot_wqms_table ORDER BY id ASC LIMIT 2880 ")
data = cursor.fetchall()
del time[:]
del waterlevel[:]
for datum in data:
datum_float = float(datum[1])
waterlevel.append(datum_float)
t = str(datum[0][11:16])
time.append(t)
average_waterlevel = round( stat.mean(waterlevel) , 2)
min_waterlevel = round(min(waterlevel), 2)
max_waterlevel = round(max(waterlevel), 2)
range_waterlevel = float( round((max_waterlevel - min_waterlevel), 2) )
if x == '1w':
name = '1 Week'
label = 'Day'
cursor.execute(" SELECT time, water_level FROM iot_wqms_table ORDER BY id ASC LIMIT 20160")
data = cursor.fetchall()
def date_to_day(year, month, day):
time = datetime.datetime(year, month, day)
return (time.strftime("%a"))
del time[:]
del waterlevel[:]
for datum in data:
# print(datum)
datum_float = float(datum[1]) # ph data in float
waterlevel.append(datum_float) # pushing to ph list
tm = str(datum[0][:10])
tm_split = tm.split("-")
year = int(tm_split[0])
month = int(tm_split[1])
day = int(tm_split[2])
current_day = date_to_day(year, month, day)
time.append(current_day)
average_waterlevel = round( stat.mean(waterlevel) , 2)
min_waterlevel = round(min(waterlevel), 2)
max_waterlevel = round(max(waterlevel), 2)
range_waterlevel = float( round((max_waterlevel - min_waterlevel), 2) )
if x == '1m':
name = '1 Month'
label = 'Month-Date'
cursor.execute(" SELECT time, water_level FROM iot_wqms_table ORDER BY id ASC LIMIT 87600")
data = cursor.fetchall()
del time[:]
del waterlevel[:]
for datum in data:
datum_float = float(datum[1]) # ph data to float
waterlevel.append(datum_float)
tm = str(datum[0][5:10])
time.append(tm)
average_waterlevel = round( stat.mean(waterlevel) , 2)
min_waterlevel = round(min(waterlevel), 2)
max_waterlevel = round(max(waterlevel), 2)
range_waterlevel = float( round((max_waterlevel - min_waterlevel), 2) )
if x == '1y':
name = '1 Year'
label = 'Month'
cursor.execute(" SELECT time, water_level FROM iot_wqms_table ORDER BY id ASC LIMIT 1051333")
data = cursor.fetchall()
def string_month_from_full_date(year, month, day):
time = datetime.datetime(year, month, day)
return (time.strftime("%b")) # %B for fullname
del time[:]
del waterlevel[:]
for datum in data:
datum_float = float(datum[1]) # temp data in float
waterlevel.append(datum_float) # pushing to temp list
tm = str(datum[0][:10])
tm_split = tm.split("-")
year = int(tm_split[0])
month = int(tm_split[1])
day = int(tm_split[2])
current_month = string_month_from_full_date(year, month, day)
time.append(current_month)
average_waterlevel = round( stat.mean(waterlevel) , 2)
min_waterlevel = round(min(waterlevel), 2)
max_waterlevel = round(max(waterlevel), 2)
range_waterlevel = float( round((max_waterlevel - min_waterlevel), 2) )
if x == 'all':
name = 'All'
label = "Time"
cursor.execute(" SELECT time, water_level FROM ( SELECT * from iot_wqms_table ORDER BY id DESC ) order by id asc")
data = cursor.fetchall()
del time[:]
del waterlevel[:]
for datum in data:
datum_float = float(datum[1]) # ph data in float
waterlevel.append(datum_float) # pushing to ph list
tm = str(datum[0][:7])
time.append(tm)
average_waterlevel = round( stat.mean(waterlevel) , 2)
min_waterlevel = round(min(waterlevel), 2)
max_waterlevel = round(max(waterlevel), 2)
range_waterlevel = float( round((max_waterlevel - min_waterlevel), 2) )
return render_template("waterlevelChart.html", waterlevel=waterlevel, time=time, label=label, name=name, average_waterlevel=average_waterlevel, min_waterlevel=min_waterlevel, max_waterlevel=max_waterlevel, range_waterlevel=range_waterlevel)
@app.route("/dashboard", methods=["GET"])
def dashboard():
print(">>> dashboard running ...")
con = sqlite3.connect('iot_wqms_data.db')
cursor = con.cursor()
# selecting current hour data ...ie, 120 for every 30 seconds of posting
cursor.execute(" SELECT * FROM iot_wqms_table ORDER BY id DESC LIMIT 120")
data = cursor.fetchall()
data = list(data)
print(".........Page refreshed at", datetime.datetime.now())
# data collector
temp_data = []
turbidity_data = []
ph_data = []
waterlevel_data = []
# collecting individual data to collectors
for row in data:
temp_data.append(row[2])
turbidity_data.append(row[3])
ph_data.append(row[4])
waterlevel_data.append(row[5])
# last value added to database...current data recorded
last_temp_data = temp_data[0]
last_turbidity_data = turbidity_data[0]
last_ph_data = ph_data[0]
last_waterlevel_data = waterlevel_data[0]
# message toasting
if (last_temp_data < 23) | (last_temp_data > 34):
flash("Abnormal Water Temperature", 'warning')
if (last_turbidity_data < 0) | (last_turbidity_data > 5):
flash("Abnormal Water Turbidity", 'warning')
if (last_ph_data < 6) | (last_ph_data > 10):
flash("Abnormal Water pH", 'warning')
if (last_waterlevel_data < 5) | (last_waterlevel_data > 27):
flash("Abnormal Water Level", 'warning')
# current sum of 1hour data rounded to 2dp
current_temp_sum = round(sum(temp_data), 2)
current_turbidity_sum = round(sum(turbidity_data), 2)
current_ph_sum = round( sum(ph_data), 2 )
current_waterlevel_sum = round( sum(waterlevel_data), 2)
# fetching 240 data from db to extract the penultimate 120 data to calculate percentage change
cursor.execute(" SELECT * FROM iot_wqms_table ORDER BY id DESC LIMIT 240")
data = list(cursor.fetchall())
# collecting individual data
prev_temp_data = [] # collecting temp values
prev_turbidity_data = []
prev_ph_data = []
prev_waterlevel_data = []
for row in data:
prev_temp_data.append(row[2])
prev_turbidity_data.append(row[3])
prev_ph_data.append(row[4])
prev_waterlevel_data.append(row[5])
# slicing for immediate previous 120 data
prev_temp_data = prev_temp_data[120:240]
prev_temp_sum = round( sum(prev_temp_data), 2 )
prev_turbidity_data = prev_turbidity_data[120:240]
prev_turbidity_sum = round( sum(prev_turbidity_data), 2 )
prev_ph_data = prev_ph_data[120:240]
prev_ph_sum = round( sum(prev_ph_data), 2 )
prev_waterlevel_data = prev_waterlevel_data[120:240]
prev_waterlevel_sum = round( sum(prev_waterlevel_data), 2 )
# temp, getting the percentage change
temp_change = prev_temp_sum - current_temp_sum
temp_change = round(temp_change, 2)
percentage_temp_change = (temp_change/current_temp_sum) * 100
percentage_temp_change = round(percentage_temp_change, 1)
# ph, getting the percentage change
ph_change = prev_ph_sum - current_ph_sum
ph_change = round(ph_change, 2)
percentage_ph_change = (ph_change/current_ph_sum) * 100
percentage_ph_change = round(percentage_ph_change,1)
# turbidity, getting the percentage change
turbidity_change = prev_turbidity_sum - current_turbidity_sum
turbidity_change = round(turbidity_change, 2)
percentage_turbidity_change = (turbidity_change/current_turbidity_sum) * 100
percentage_turbidity_change = round(percentage_turbidity_change,1)
# waterlevel, getting the percentage change
waterlevel_change = prev_waterlevel_sum - current_waterlevel_sum
waterlevel_change = round(waterlevel_change, 2)
percentage_waterlevel_change = (waterlevel_change/current_waterlevel_sum) * 100
percentage_waterlevel_change = round(percentage_waterlevel_change,1)
# notification toast
# flash("Not So OK", 'error')
return render_template("dashboard.html", data=data, percentage_temp_change=percentage_temp_change, percentage_ph_change=percentage_ph_change, percentage_turbidity_change=percentage_turbidity_change, percentage_waterlevel_change=percentage_waterlevel_change, temp_change=temp_change, ph_change=ph_change, turbidity_change=turbidity_change, waterlevel_change=waterlevel_change, last_temp_data=last_temp_data, last_ph_data=last_ph_data, last_turbidity_data=last_turbidity_data, last_waterlevel_data=last_waterlevel_data)
"""
This section prepares and download the data in csv format for analysis
Created: 31st May, 2019 by John PK Erbynn
Ack: Dennis Effa Amponsah
NB: prop implies property(of water)
"""
@app.route("/download/<prop>")
def get_CSV(prop):
print(">>> csv file downloaded")
if prop == 'temperature':
# prepare data in csv format
generator.generate_csv_file(prop)
# opens, reads, closes csv file for download
with open(f'data/wqms_{prop}_data.csv', 'r') as csv_file:
csv_reader = csv_file.read().encode('latin-1')
csv_file.close()
# routes function returning the file download
return Response(
csv_reader,