-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_trainer.py
723 lines (590 loc) · 29.2 KB
/
run_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
"""Train conditional text GANs with trainer."""
import os
import argparse
import logging
import json
import pathlib
import sys
import pickle
import numpy as np
from functools import partial
import captum
import spacy
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchtext
import torchtext.legacy.data
from torchtext import vocab
from torchtext.vocab import Vocab
from captum.attr import LayerIntegratedGradients, TokenReferenceBase, visualization
from datasets import ClassLabel, load_dataset, load_metric
from models.rnn import LSTMEncoder,CustomLSTM
from models.transformer import Transformer
from models.utils import create_transformer_masks, init_weights, prepare_discriminator_data,convert_tensor_to_tokens,save_k_exmaple_from_tensor,check_k_exmaple_from_tensor, build_vocab
from models.transformer_blocks import WarmupScheduler
cuda_is_available = torch.cuda.is_available()
device = torch.device("cuda:6" if cuda_is_available else "cpu")
class LangugageGAN:
def __init__(self, generator, discriminator):
self.generator = generator
self.discriminator = discriminator
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_args():
"""Parse arguments."""
parser = argparse.ArgumentParser(description="")
# Model
parser.add_argument('--model_name_or_path', type=str, default="textgan")
parser.add_argument('--output_dir', type=str, default='tmp/')
parser.add_argument('--max_seq_length', type=int, default=40)
parser.add_argument('--vocab', type=str, required=True)
# Modeling discriminator
parser.add_argument('--rnn_layers', type=int, default=1)
parser.add_argument('--rnn_embedding_dims', type=int, default=256)
parser.add_argument('--rnn_dims', type=int, default=256)
parser.add_argument('--rnn_classes', type=int, default=1)
parser.add_argument('--rnn_dropout_rate', type=float, default=0.1)
parser.add_argument('--rnn_bidirectional', type=bool, default=False)
# Modeling generator
parser.add_argument('--tf_layers', type=int, default=2)
parser.add_argument('--tf_embedding_dims', type=int, default=256)
parser.add_argument('--tf_dims', type=int, default=512)
parser.add_argument('--tf_heads', type=int, default=8)
parser.add_argument('--tf_dropout_rate', type=float, default=0.1)
parser.add_argument('--tf_shared_emb_layer', type=bool, default=False)
parser.add_argument('--tf_learning_rate', type=float, default=1e-2)
# Training
parser.add_argument('--dataset_script', type=str)
parser.add_argument('--do_train', type=bool, default=True)
parser.add_argument('--do_eval', type=bool, default=False)
parser.add_argument('--do_predict', type=bool, default=False)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--mle_epochs', type=int, default=3)
parser.add_argument('--train_discriminator_epochs', type=int, default=1)
parser.add_argument('--max_steps', type=int, default=50)
parser.add_argument('--max_train_samples', type=int)
parser.add_argument('--max_val_samples', type=int)
parser.add_argument('--max_test_samples', type=int)
parser.add_argument('--logging_first_step', default=True, required=False)
parser.add_argument('--logging_steps', type=int, default=10)
parser.add_argument('--eval_steps', type=int, default=500)
parser.add_argument('--gpu_no', type=int, default=0)
return parser.parse_args()
def train_generator_MLE(generator,
dataset,
opt,
logging_steps=50,
epochs=1,
tokenizer_dict=None,
args=None):
"""Pre-train the generator with MLE."""
# Prepare for `decode_batch`
vocab_size = tokenizer_dict["vocab_size"]
id2tok = tokenizer_dict["id2tok"]
tok2id = tokenizer_dict["tok2id"]
unk_idx = tokenizer_dict["tok2id"]["[UNK]"]
pad_idx = tokenizer_dict["tok2id"]["[PAD]"]
# nn.NLLLoss: use log-softmax as input
# nn.CrossEntropyLoss: use logit as input
loss_fn = nn.CrossEntropyLoss(ignore_index=pad_idx)
for epoch in range(epochs):
print('epoch %d : ' % (epoch + 1))
total_loss = 0
total_accuracy = 0
for step, features_dict in enumerate(dataset):
opt.zero_grad()
batch_token_ids = features_dict["batch_token_ids"]
batch_labels = features_dict["batch_labels"]
batch_lengths = features_dict["batch_lengths"]
# To 2D tensor
batch_labels = batch_labels.unsqueeze(1) #.cuda()
#print("shape of encoder's input", batch_labels.shape)
#print(batch_labels)
batch_token_ids = torch.tensor(batch_token_ids) #.cuda()
# Sample a batch of sequences from generator
gen_inp = batch_token_ids[:, :-1] #.cuda()
gen_target = batch_token_ids[:, 1:] #.cuda()
enc_padding_mask, combined_mask, dec_padding_mask = create_transformer_masks(batch_labels, gen_inp, pad_idx, gpu=args.gpu)
output, attn = generator(batch_labels,
gen_inp,
training=False,
enc_padding_mask=enc_padding_mask,
look_ahead_mask=combined_mask,
dec_padding_mask=dec_padding_mask,
cuda=args.gpu)
# (batch_size*(seq_len-1), vocab_size)
viewed_output = output.view(-1, vocab_size)
# (batch_size*(seq_len-1))
gen_target = gen_target.reshape(-1)
# print("after reshape", viewed_output.shape)
# print("after reshape", gen_target.shape)
loss = loss_fn(viewed_output, gen_target)
loss.backward()
#torch.nn.utils.clip_grad_norm_(generator.parameters(), 0.5)
opt.step()
if (step+1) % logging_steps == 0:
msg = f"Model: generator, Step: {step+1}, Loss: {loss.item():.2f}"
logging.info(msg)
print(msg)
# NLLLoss(inp, target)
# inp: (batch)
# target: (batch_size, seq_len-1)
# print(gen_inp[0,:])
# print(gen_target[0,:])
# print("inp shape", gen_inp.shape)
# print("tgt shape", gen_target.shape)
# print("token1", decode_batch(gen_inp, id2tok, unk_idx)[0])
# print("token1", decode_batch(gen_target, id2tok, unk_idx)[0])
pred_sentences = decode_batch(gen_inp, id2tok, unk_idx)
return None
def train_discriminator(generator,
discriminator,
match_network,
dataset,
opt_gen,
opt_dis,
opt_match,
logging_steps=50,
epochs=1,
tokenizer_dict=None,
args=None):
"""Pre-train the discriminator.
(1) Distinguish true example from
(2) Measuring wetheater the sentence and condition are right paring.
"""
# Prepare for `decode_batch`
vocab_size = tokenizer_dict["vocab_size"]
id2tok = tokenizer_dict["id2tok"]
tok2id = tokenizer_dict["tok2id"]
unk_idx = tokenizer_dict["tok2id"]["[UNK]"]
pad_idx = tokenizer_dict["tok2id"]["[PAD]"]
loss_gen_fn = nn.BCELoss(size_average=False)
loss_opt_fn = nn.BCELoss(size_average=False)
loss_match_fn = nn.BCELoss(size_average=False)
total_loss = list()
classification_loss = list()
matching_loss = list()
for epoch in range(epochs):
print('epoch %d : ' % (epoch + 1))
sys.stdout.flush()
total_classification_loss = 0
total_matching_loss = 0
total_classification_acc = 0
total_matching_acc = 0
for step, features_dict in enumerate(dataset):
###############
# Batch preparation
###############
batch_size = features_dict["batch_token_ids"].shape[0]
half_batch = int(batch_size/2)
# G(c)
batch_labels = features_dict["batch_labels"][:half_batch]
batch_lengths = features_dict["batch_lengths"][:half_batch]
#print("type batch length", batch_lengths)
# D(x)
batch_token_ids = features_dict["batch_token_ids"][:half_batch,:]
# D(c, x)
batch_pos_condition_ids = features_dict["batch_pos_condition_ids"][:half_batch,:]
batch_neg_condition_ids = features_dict["batch_neg_condition_ids"][:half_batch,:]
# To 2D tensor
batch_labels = batch_labels.unsqueeze(1)
# Sample a batch of sequences from generator
fake_seq_target = torch.zeros(half_batch, 1)
######################
# Generator
######################
#opt_gen.zero_grad()
# (batch_size, max_seq_len)
fake_seq = generator.sample(inp=batch_labels,
max_len=args.max_seq_length,
temperature=0.5,
training=False,
sos_idx=tok2id["[CLS]"],
eos_idx=tok2id["[SEP]"],
cuda=args.gpu)
dis_seq_inp, dis_seq_tar, seq_lengths = prepare_discriminator_data(pos_samples=batch_token_ids,
neg_samples=fake_seq,
pos_lengths=batch_lengths,
neg_lengths=batch_lengths,
gpu=args.gpu)
##############################
# Discriminator: perform D(x)
##############################
# Set gradient zero
opt_dis.zero_grad()
# `logit` is unnormalized
# `pred` is normalized by sigmoid
# (batch_size*2, 1)
#print("dis seq inp shape", dis_seq_inp.shape)
#seq_logits, seq_pred = discriminator(dis_seq_inp, lengths=seq_lengths, mode="classification")
seq_pred = discriminator(dis_seq_inp, seq_lengths)
seq_pred = seq_pred.squeeze() # To 1D-tensor
### Adversarial Training ###
#generator_loss = loss_gen_fn(seq_pred, dis_seq_tar)
# (-generator_loss).backward(retain_graph=True)
# print("generator_loss", -generator_loss.data.item())
# opt_gen.step()
### Adversarial Training ###
# Check
# k_example = 10
# seq_tokens_list = convert_tensor_to_tokens(dis_seq_inp, tok2id, id2tok, first_k_example=k_example)
# save_k_exmaple_from_tensor('a.out', seq_tokens_list, seq_pred, dis_seq_tar, k_example=10)
classifcation_loss = loss_opt_fn(seq_pred, dis_seq_tar)
#print(classifcation_loss)
classifcation_loss.backward()
opt_dis.step()
##############################
# Discriminator: perform D(c, G(c))
##############################
# Set gradient zero
opt_match.zero_grad()
# Combine pos, neg examples
dis_pair_inp, dis_pair_tar, dis_pair_lengths = prepare_discriminator_data(pos_samples=batch_pos_condition_ids,
neg_samples=batch_neg_condition_ids,
pos_lengths=batch_lengths,
neg_lengths=batch_lengths,
gpu=args.gpu)
#pair_logits, pair_pred = match_network(dis_pair_inp, lengths=dis_pair_lengths, mode="matching")
pair_pred = match_network(dis_pair_inp, dis_pair_lengths)
pair_pred = pair_pred.squeeze() # To 1D-tensor
matching_loss = loss_match_fn(pair_pred, dis_pair_tar)
matching_loss.backward()
opt_match.step()
classification_acc = torch.sum((seq_pred>0.5)==(dis_seq_tar>0.5))
matching_acc = torch.sum((pair_pred>0.5)==(dis_pair_tar>0.5))
# print("classification after", classifcation_loss.data.item())
# print("matching after", matching_loss.data.item())
# Total loss
total_classification_loss += classifcation_loss.data.item()
total_matching_loss += matching_loss.data.item()
# Total acc
total_classification_acc += classification_acc.data.item()
total_matching_acc += matching_acc.data.item()
# Write to logger
logging.info(f'Step: {step+1}, Classifcation Loss: {classifcation_loss:.2f}, Classification Acc: {classification_acc:.2f}')
logging.info(f'Step: {step+1}, Matching Loss: {matching_loss:.2f}, Matching Acc: {matching_acc:.2f}')
# logging loss
if (step+1) % logging_steps == 0 or step == 0:
avg_cls_loss = classifcation_loss.data.item() / batch_size
avg_cls_acc= classification_acc.data.item() / batch_size
avg_match_loss =matching_loss.data.item() / batch_size
avg_match_acc = matching_acc.data.item() / batch_size
print(f'Step: {step+1}, Classifcation Loss: {classifcation_loss:.2f}, Avg loss: {avg_cls_loss:.2f}, Avg accuracy {avg_cls_acc:.2f}')
print(f'Step: {step+1}, Matching Loss: {matching_loss:.2f}, Avg loss: {avg_match_loss:.2f}, Avg accuracy {avg_match_acc:.2f}')
### Convert to python ###
# Python list
k_example = 20
fake_tokens_list = convert_tensor_to_tokens(dis_seq_inp, tok2id, id2tok, first_k_example=k_example)
write_file = get_output_dir(args.output_dir, f'fake.sequence.epoch-{epoch+1}.step-{step+1}.pred')
save_k_exmaple_from_tensor(write_file, fake_tokens_list, seq_pred, dis_seq_tar, k_example)
pair_tokens_list = convert_tensor_to_tokens(dis_pair_inp, tok2id, id2tok, first_k_example=k_example)
write_file = get_output_dir(args.output_dir, f'condition.epoch-{epoch+1}.step-{step+1}.pred')
save_k_exmaple_from_tensor(write_file, pair_tokens_list, pair_pred, dis_pair_tar, k_example)
# Save model
pt_file_dis = get_output_dir(args.output_dir, f"ckpt/dis.epoch-{epoch+1}.step-{step+1}.pt")
pt_file_match = get_output_dir(args.output_dir, f"ckpt/match.epoch-{epoch+1}.step-{step+1}.pt")
torch.save(discriminator, pt_file_dis)
torch.save(match_network, pt_file_match)
if step+1 == args.max_steps:
break
sys.stdout.flush()
### Convert to python ###
return ((total_classification_loss, total_matching_loss),
(total_classification_acc, total_matching_acc))
def get_output_dir(output_dir, file):
"""Joint path for output directory."""
return pathlib.Path(output_dir,file)
def build_dirs(output_dir,logger):
"""Build hierarchical directories."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
logger.info(f"Create folder for output directory: {output_dir}")
def decode_batch(inp, id2tok, unk_idx, batch=True):
"""Convert word indices into words.
Args:
inp: (batch_size, seq_max_len)
id2tok: dictionary.
unk_idx: int.
batch: bool
"""
batch_example = list()
if batch:
for pred_ids in inp:
batch_example.append([ id2tok[int(w_idx)] if int(w_idx) in id2tok else id2tok[unk_idx] for w_idx in pred_ids ])
return batch_example
def main():
# Argument parser
args = get_args()
SEED = 49
args.gpu = cuda_is_available
# Create output dir
output_dir = args.output_dir
# Logger
logger = logging.getLogger(__name__)
build_dirs(output_dir, logger)
build_dirs(pathlib.Path(output_dir, "ckpt"), logger)
log_file = get_output_dir(output_dir, 'example.log')
logging.basicConfig(filename=log_file,
filemode="w",
format="%(asctime)s, %(msecs)d %(name)s %(levelname)s %(message)s",
datefmt="%H:%M:%S",
level=logging.INFO)
logger.info(args)
# Saving arguments
write_path = get_output_dir(output_dir, 'hyparams.txt')
with open(write_path, 'w') as f:
json.dump(args.__dict__, f, indent=2)
logger.info(f"Saving hyperparameters to: {write_path}")
########## Load dataset from script. ##########
# 'wiki-table-questions.py'
datasets = load_dataset(args.dataset_script)
logger.info("Loading Datasets")
### Access column names and features ###
if args.do_train:
column_names = datasets["train"].column_names
features = datasets["train"].features
else:
column_names = datasets["validation"].column_names
features = datasets["validation"].features
# In the event the labels are not a `Sequence[ClassLabel]`,
# we will need to go through the dataset to get the unique labels.
if isinstance(features["label"], ClassLabel):
label_list = features["label"].names
# No need to convert the labels since they are already ints.
label_to_id = {i: i for i in range(len(label_list))}
print("here")
else:
pass
# `label_list` : label to id
# `label_to_id`: id to label
num_labels = len(label_list)
print(label_list)
# ['who', 'what', 'when', 'where', 'why', 'how', 'which', 'whose']
condition_list = [ '['+c+']' for c in label_list]
### Create vocabulary, token-to-index, index-to-token
vocab = build_vocab(args.vocab)
vocab.update(["[CLS]", "[UNK]", "[SEP]", "[PAD]"])
vocab.update(condition_list) # Add conditions words to vocab
vocab_lst = list(vocab)
## write vocab file ###
wf = get_output_dir(args.output_dir, "vocab.train")
with open(wf, "w") as f:
f.write('\n'.join(vocab_lst))
### write vocab file ##
tok2id = {w: idx for idx, w in enumerate(vocab_lst)}
id2tok = {v: k for k, v in tok2id.items()}
for i in range(10):
print(i, id2tok[i])
vocab_size = len(vocab)
UNK_IDX = tok2id["[UNK]"]
PAD_IDX = tok2id["[PAD]"]
logging.info(f"PAD_IDX: {PAD_IDX}")
#print("PAD_IDX", PAD_IDX)
tokenizer_collector = dict()
tokenizer_collector["vocab"] = vocab
tokenizer_collector["vocab_size"] = vocab_size
tokenizer_collector["tok2id"] = tok2id
tokenizer_collector["id2tok"] = id2tok
########## Load the custom model, tokenizer and config ##########
def tokenize_fn(examples, max_seq_len):
"""Add special tokens to input sequence and padd the max lengths.
Args:
Examples: dict of features:
{"tokens": [ 'what', 'was', 'the', 'average', 'in', '2001'],
"label": 3} # label index
Variables:
tokens:
[ '[CLS]','what', 'was', 'the', 'average', 'in', '2001', '[SEP]', '[PAD]']
condition_tokens:
[ '[what]', '[CLS]','what', 'was', 'the', 'average', 'in', '2001', '[SEP]', '[PAD]']
"""
def _pad_sequence(sequence, max_seq_len, n_special_token=0):
sent_len = len(sequence)
max_seq_len = max_seq_len - n_special_token
max_sent_len = max_seq_len if sent_len >= max_seq_len else (sent_len)
# Extend words list with special tokens
padded_sentence_lst = ["[CLS]"]+ sequence[:max_sent_len] + ["[SEP]"]
# [CLS] + sentence + [SEP]
padded_len = len(padded_sentence_lst)
# Add [PAD]
num_pad = max_seq_len+n_special_token - padded_len
padded_sentence_lst += ["[PAD]"] * num_pad
#print(padded_sentence_lst)
assert len(padded_sentence_lst) == (max_seq_len+n_special_token)
return padded_sentence_lst
feature_dict = dict()
token_col_name = 'tokens'
label_col_name = 'label'
token_ids = list()
tokens = examples[token_col_name]
sent_len = len(tokens)
# Positive example
label_idx = examples[label_col_name]
label_token = condition_list[label_idx] # [ "[who]", "[when]", "[where]", "[which]" ]
label_ids = list(range(len(condition_list)))
condition_tokens = [label_token] + examples[token_col_name]
# Negative example
neg_label_idx = label_idx
while neg_label_idx == label_idx:
neg_label_idx = np.random.choice(label_ids)
neg_label = condition_list[neg_label_idx]
### Add special token and pad ###
# 2 for [CLS] and [SEP]
padded_sentence_lst = _pad_sequence(tokens, max_seq_len, 2)
padded_condition_sentence_lst = [label_token] + padded_sentence_lst[:-1]
padded_neg_condition_sentence_lst = [neg_label] + padded_sentence_lst[:-1]
# Add the length up to [SEP]
if "[PAD]" not in padded_sentence_lst:
feature_dict["padded_length"] = max_seq_len
else:
feature_dict["padded_length"] = padded_sentence_lst.index("[PAD]")
# Add padded tokens
feature_dict["padded_tokens"]= padded_sentence_lst
feature_dict["padded_pos_condition_tokens"]= padded_condition_sentence_lst
feature_dict["padded_neg_condition_tokens"]= padded_neg_condition_sentence_lst
# Add features
token_ids = [ tok2id[tok] if tok in tok2id else tok2id["[UNK]"] for tok in padded_sentence_lst ]
feature_dict["token_ids"] = torch.tensor(token_ids)
condition_token_ids = [ tok2id[tok] if tok in tok2id else tok2id["[UNK]"] for tok in padded_condition_sentence_lst ]
feature_dict["pos_condition_token_ids"] = torch.tensor(condition_token_ids)
neg_condition_token_ids = [ tok2id[tok] if tok in tok2id else tok2id["[UNK]"] for tok in padded_neg_condition_sentence_lst ]
feature_dict["neg_condition_token_ids"] = torch.tensor(neg_condition_token_ids)
return feature_dict
tokenize_fn = partial(tokenize_fn, max_seq_len=args.max_seq_length)
### Truncate number of examples ###
if args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
if args.max_train_samples is not None:
train_dataset = train_dataset.select(range(args.max_train_samples))
train_dataset = train_dataset.map(
tokenize_fn
)
if args.do_eval:
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if args.max_val_samples is not None:
eval_dataset = eval_dataset.select(range(args.max_val_samples))
eval_dataset = eval_dataset.map(
tokenize_fn
)
if args.do_predict:
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
test_dataset = datasets["test"]
if args.max_test_samples is not None:
test_dataset = test_dataset.select(range(args.max_test_samples))
test_dataset = test_dataset.map(
tokenize_fn
)
### Feature
# `token_ids`, `labels` for training and loss computation
def generate_batch(data_batch, gpu):
"""Package feature as mini-batch."""
features_dict = dict()
batch_token_ids, batch_labels = list(), list()
batch_lengths = list() # List of sentence length
batch_pos_condition_ids = list()
batch_neg_condition_ids = list()
#print("len batch", len(data_batch))
for batch_group in data_batch:
batch_token_ids.append(batch_group["token_ids"])
batch_labels.append(batch_group["label"])
batch_lengths.append(batch_group["padded_length"])
batch_pos_condition_ids.append(batch_group["pos_condition_token_ids"])
batch_neg_condition_ids.append(batch_group["neg_condition_token_ids"])
features_dict["batch_token_ids"]= torch.tensor(batch_token_ids)
features_dict["batch_labels"]= torch.tensor(batch_labels)
features_dict["batch_lengths"]= torch.tensor(batch_lengths)
features_dict["batch_pos_condition_ids"] = torch.tensor(batch_pos_condition_ids)
features_dict["batch_neg_condition_ids"] = torch.tensor(batch_neg_condition_ids)
if gpu:
features_dict["batch_token_ids"] = features_dict["batch_token_ids"].cuda()
features_dict["batch_labels"]= features_dict["batch_labels"].cuda()
features_dict["batch_pos_condition_ids"] = features_dict["batch_pos_condition_ids"].cuda()
features_dict["batch_neg_condition_ids"] = features_dict["batch_neg_condition_ids"].cuda()
return features_dict
# Construct generator
generator = Transformer(num_layers=args.tf_layers,
d_model=args.tf_dims,
num_head=args.tf_heads,
intermediate_dim=args.tf_dims*2,
input_vocab_size=num_labels,
target_vocab_size=vocab_size,
src_max_len=5,
tgt_max_len=args.max_seq_length,
padding_idx=PAD_IDX,
shared_emb_layer=args.tf_shared_emb_layer, # Whether use embeeding layer from encoder
rate=args.tf_dropout_rate)
discriminator = CustomLSTM(vocab_size=vocab_size)
match_network = CustomLSTM(vocab_size=vocab_size)
if cuda_is_available:
generator.to(device)
discriminator.to(device)
match_network.to(device)
# if cuda_is_available:
# generator.cuda()
#generator.apply(init_weights)
logging.info(generator.encoder)
out = torch.tensor([1,0,1,1])
tar = torch.tensor([0,0,1,1])
batch_size = tar.shape[0]
#print(torch.sum((out>0.5)==(tar>0.5)).data/batch_size)
# discriminator = CustomLSTM(vocab_size=vocab_size)
# match_network = CustomLSTM(vocab_size=vocab_size)
# if cuda_is_available:
# discriminator.cuda()
# match_network.cuda()
logging.info(discriminator)
generate_batch_fn = partial(generate_batch, gpu=args.gpu)
### Fetch dataset iterator
train_iter = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, collate_fn=generate_batch_fn)
eval_iter = DataLoader(eval_dataset, batch_size=args.batch_size,
shuffle=True, collate_fn=generate_batch_fn)
test_iter = DataLoader(test_dataset, batch_size=args.batch_size,
shuffle=True, collate_fn=generate_batch_fn)
### train generator ###
print("train the generator")
gen_optimizer = optim.Adam(generator.parameters(), lr=0, betas=(0.9,0.98), eps=1e-9)
gen_optimizer = WarmupScheduler(model_size=args.tf_dims,
factor=2,
warmup=4000,
optimizer=gen_optimizer)
train_generator_MLE(generator=generator,
dataset=train_iter,
opt=gen_optimizer,
logging_steps=50,
epochs=args.mle_epochs,
tokenizer_dict=tokenizer_collector,
args=args)
### train Discriminator ###
print("train discriminator")
dis_optimizer = optim.Adam(discriminator.parameters(), lr=1e-2)
match_optimizer = optim.Adam(match_network.parameters(), lr=1e-2)
# gen_optimizer = optim.Adam(generator.parameters(), lr=1e-2)
train_discriminator(generator=generator,
discriminator=discriminator,
match_network=match_network,
dataset=train_iter,
opt_gen=None,
opt_dis=dis_optimizer,
opt_match=match_optimizer,
logging_steps=args.logging_steps,
epochs=args.train_discriminator_epochs,
tokenizer_dict=tokenizer_collector,
args=args)
if __name__ == "__main__":
main()