-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcluster.py
325 lines (279 loc) · 10.5 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
"""
Clusters and Span data structure file
"""
class SpanLike():
def __init__(self, start, end, sentence, sentence_offset):
self.start = start # true indices
self.end = end
self.sentence = sentence
self.sentence_offset = sentence_offset # adjusted for sentence
def bracket_print(self):
total = []
for i, tok in enumerate(self.sentence):
if i + self.sentence_offset == self.start:
total.append("[")
total.append(tok)
if i + self.sentence_offset == self.end:
total.append("]")
print(" ".join(total))
def bracket_string(self):
return self.sentence[self.start - self.sentence_offset:
self.end - self.sentence_offset + 1]
def detach_(self):
pass
def __str__(self):
return "[{}, {}]".format(self.start, self.end)
def __repr__(self):
return str(self)
def __eq__(self, other):
return self.start == other.start and self.end == other.end
def __lt__(self, other):
return ((self.start < other.start) or
(self.start == other.start and self.end < other.end))
class Span(SpanLike):
def __init__(self, emb, start, end, offset, sentence, score):
super(Span, self).__init__(start, end, sentence, offset)
self.emb = emb
self.score = score
self.meta = SpanLike(start, end, sentence, offset)
self.original_device = emb.device
def detach_(self):
self.emb = self.emb.detach_()
self.score.detach_()
def as_string(self):
return self.sentence[self.start:self.end + 1]
def __str__(self):
return str(self.meta)
class Cluster(SpanLike):
def __init__(self, span, merge_fn, debug_embs):
super(Cluster, self).__init__(span.start, span.end, span.sentence, span.sentence_offset)
self.first = SpanLike(span.start, span.end, span.sentence, span.sentence_offset)
self.size = 1.0
self.scores = [span.score]
self.score = span.score
self.spans = [span.meta]
self.merge_fn = merge_fn # ["mean", "first", "last", "exp", "mlp"]
# Initial cluster
self.emb = span.emb.clone()
self.debug_embs = debug_embs
if not self.debug_embs:
self.span_embs = [] # [self.emb] reserved for debugging and analysis
else:
self.span_embs = [self.emb.tolist()]
self.merge_data = [1.0]
self.probs = [1.0]
self.original_device = span.original_device
def merge(self, cluster, score=0.0):
self.emb, metadata = self.merge_fn(self, cluster, score)
# for debug visualization only
if self.debug_embs:
self.span_embs.append(cluster.emb.tolist())
self.renormalize(metadata)
self.start = cluster.start
self.end = cluster.end
self.sentence = cluster.sentence
self.sentence_offset = cluster.sentence_offset
# first is always the earliest
if (cluster.first.start < self.first.start or
(cluster.first.start == self.first.start and cluster.first.end < self.first.end)):
self.first = SpanLike(cluster.first.start, cluster.first.end,
cluster.first.sentence, cluster.first.sentence_offset)
self.scores.extend(cluster.scores)
self.spans.extend(cluster.spans)
self.score = (self.size * self.score + cluster.size * cluster.score) / (self.size + cluster.size)
self.size += cluster.size
def renormalize(self, metadata):
alpha = float(metadata)
new = 1.0 - alpha
self.merge_data = [weight * alpha for weight in self.merge_data]
self.probs = self.merge_data
self.merge_data.append(new)
def detach_(self):
self.emb.detach_()
self.scores = [score.detach() for score in self.scores]
self.score = self.score.detach()
[emb.detach() for emb in self.span_embs]
def cpu_(self):
self.emb = self.emb.cpu()
self.scores = [score.to("cpu") for score in self.scores]
def reset(self):
""" Reset cluster to a single prior """
self.size = 0.0
self.spans = [] # Pick first one as canonical mention? Or maybe it should be max
self.scores = []
self.merge_data = [1.0]
self.probs = [1.0]
self.emb = self.emb.to(self.original_device)
# Set to 0 when reset, to simulate background context
# Or use first since that's the "official" name of the cluster?
self.start = 0 #self.first.start
self.end = 0 # self.first.end
def as_list(self):
return [[int(span.start), int(span.end)] for span in self.spans]
def __iter__(self):
return iter(self.spans)
def __len__(self):
return len(self.spans)
def __str__(self):
return (",".join([str(span) for span in self.spans]))
class ClusterList(list):
"""
The graph that is built incrementally
"""
def __init__(self):
# 0th cluster is the empty antecedent
self.clusters = [] # active
self.cpu_clusters = [] # cpu
self.span_to_cluster = {}
self.num_clusters = len(self.clusters)
def update(self, clusterlist):
self.clusters = clusterlist.clusters
self.cpu_clusters = clusterlist.cpu_clusters
self.span_to_cluster = clusterlist.span_to_cluster
self.num_clusters = clusterlist.num_clusters
for cluster in self.clusters:
cluster.reset()
def append(self, cluster):
self.clusters.append(cluster)
for span in cluster:
self.span_to_cluster[(span.start, span.end)] = self.num_clusters + 1
self.num_clusters += 1
def clear_cache(self, idx, evict_fn):
# evict_fn has typecluster, idx --> Bool
# detach singletons, move to cpu?
"""
Move things to cpu_clusters if appropriate
"""
new_cluster_list = []
for cluster in self.clusters:
if evict_fn(cluster, idx):
cluster.cpu_()
self.cpu_clusters.append(cluster)
else:
new_cluster_list.append(cluster)
self.restrict_clusters(new_cluster_list)
def detach_(self):
for cluster in self.clusters:
cluster.detach_()
def cpu_(self):
for cluster in self.clusters:
cluster.cpu_()
def merge(self, best_idx, cluster, score=0.0):
# Note this is shifted up by one
self.clusters[best_idx - 1].merge(cluster, score=score)
for span in cluster:
self.span_to_cluster[(span.start, span.end)] = best_idx
def reset(self):
"""
Keep only the best clusters, wipe everything else in the list.
"""
# print([len(c) for c in self.clusters] + [len(c) for c in self.cpu_clusters])
# Need to add cpu clusters to span_to_cluster
for c in self.cpu_clusters:
self.append(c)
curr_idx = self.num_clusters
for span in c.spans:
self.span_to_cluster[(span.start, span.end)] = curr_idx
clusters = []
self.cpu_clusters = [] # We are doing a hard reset
self.restrict_clusters(clusters)#, first_only=True)
self.detach_()
for cluster in self.clusters:
cluster.emb = cluster.emb.to(cluster.original_device)
# cluster.reset()
def restrict_clusters(self, clusters, first_only=False):
num_clusters = 0
span_to_cluster = {}
saved_cluster_idxs = {}
for cluster in clusters:
if first_only:
span_to_cluster[(cluster.first.start, cluster.first.end)] = num_clusters + 1
else:
curr_span_idx = self.span_to_cluster[(cluster.first.start, cluster.first.end)]
saved_cluster_idxs[curr_span_idx] = num_clusters + 1
num_clusters += 1
if not first_only:
for span, c_idx in self.span_to_cluster.items():
if c_idx in saved_cluster_idxs:
span_to_cluster[span] = saved_cluster_idxs[c_idx]
self.clusters = clusters
self.num_clusters = num_clusters
self.span_to_cluster = span_to_cluster
# self.check_invariants()
def get_cluster_id(self, span, original=0):
if original in self.span_to_cluster:
return self.span_to_cluster[original]
return self.span_to_cluster.get(span,
self.span_to_cluster.get(original, 0))
def get_cluster_ids(self, spans, original=0):
if spans is None:
return [0]
cluster_ids = []
for span in spans:
cluster_id = self.get_cluster_id(span, original=original)
if cluster_id != 0:
cluster_ids.append(cluster_id)
if len(cluster_ids) == 0:
return [0]
return list(set(cluster_ids))
def check_invariants(self):
assert len(self.clusters) == self.num_clusters
assert max(self.span_to_cluster.values(), default=0) == self.num_clusters
for cluster in self.clusters:
assert (cluster.first.start, cluster.first.end) in self.span_to_cluster
# this doesn't need to be true if span_to_cluster contains ghosts
# assert self.num_spans() == len(self.span_to_cluster)
def finalize_clusters(self, filter_f=lambda x: x):
sorted_total = sorted(self.clusters + self.cpu_clusters, key=lambda c: -c.size)
return [cluster for cluster in sorted_total if filter_f(cluster)]
def get_clusters(self, singleton_eval, condensed=False, print_clusters=True, ):
"Mostly for printing purposes"
def maybe_print(s):
if print_clusters:
print(s)
sorted_total = self.finalize_clusters(lambda x: len(x) > (0 if singleton_eval else 1))
response_dict = {}
extracted_clusters = []
cluster_embs = []
span_embs = []
for cluster in sorted_total:
current_cluster = []
maybe_print("=" * 50)
for span in cluster.spans:
if not condensed:
maybe_print(span.bracket_string())
else:
maybe_print("{}, {}: {}".format(span.start, span.end, span.bracket_string()))
maybe_print(f"{span.__dict__}")
current_cluster.append((span.start, span.end))
span_embs.append(cluster.span_embs)
cluster_embs.append(cluster.emb.tolist())
extracted_clusters.append(current_cluster)
response_dict["clusters"] = extracted_clusters
response_dict["span_embs"] = span_embs
response_dict["cluster_embs"] = cluster_embs
return response_dict
def get_cluster_embs(self):
return [(i, c.span_embs) for i, c in enumerate(self.clusters)]
def ugly_print(self, limit=1000):
clusters = sorted(self.clusters, key=lambda x: x.size)
print("\n\n".join(
["\t\t".join(
[" ".join(s.bracket_string()) for s in c.spans])
for c in clusters[:limit]]
))
def as_list(self, singleton_eval):
return [cluster.as_list() for cluster in
self.finalize_clusters(lambda x: len(x) > (0 if singleton_eval else 1))]
def num_spans(self, total=False):
if total:
cluster_iter = iter(self.clusters + self.cpu_clusters)
else:
cluster_iter = iter(self.clusters)
return sum([len(cluster) for cluster in cluster_iter])
def __iter__(self):
return iter(self.clusters)
def __len__(self):
return len(self.clusters)
def __repr__(self):
return str(self.clusters)