-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathrun_embed.py
326 lines (266 loc) · 13.4 KB
/
run_embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2014 Radim Rehurek <[email protected]>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
USAGE: %(program)s INPUT_FILE QUESTIONS OUTPUT_DIR
Compare various word embedding techniques on the analogy task.
Example: python ./run_word2vec.py /data/shootout/title_tokens.txt.gz /data/embeddings/questions-words.txt ./results_dim300_vocab30k
"""
import os
import sys
import logging
import itertools
from collections import defaultdict
import numpy
import scipy.sparse
import gensim
from gensim import utils, matutils
import glove # https://github.com/maciejkula/glove-python
# parameters controlling what is to be computed: how many dimensions, window size etc.
DIM = 600
DOC_LIMIT = None # None for no limit
TOKEN_LIMIT = 30000
WORKERS = 8
WINDOW = 10
DYNAMIC_WINDOW = False
NEGATIVE = 10 # 0 for plain hierarchical softmax (no negative sampling)
logger = logging.getLogger("run_embed")
import pyximport; pyximport.install(setup_args={'include_dirs': numpy.get_include()})
from cooccur_matrix import get_cooccur
def most_similar(model, positive=[], negative=[], topn=10):
"""
Find the top-N most similar words. Positive words contribute positively towards the
similarity, negative words negatively.
`model.word_vectors` must be a matrix of word embeddings (already L2-normalized),
and its format must be either 2d numpy (dense) or scipy.sparse.csr.
"""
if isinstance(positive, basestring) and not negative:
# allow calls like most_similar('dog'), as a shorthand for most_similar(['dog'])
positive = [positive]
# add weights for each word, if not already present; default to 1.0 for positive and -1.0 for negative words
positive = [
(word, 1.0) if isinstance(word, (basestring, numpy.ndarray)) else word
for word in positive]
negative = [
(word, -1.0) if isinstance(word, (basestring, numpy.ndarray)) else word
for word in negative]
# compute the weighted average of all words
all_words, mean = set(), []
for word, weight in positive + negative:
if isinstance(word, numpy.ndarray):
mean.append(weight * word)
elif word in model.word2id:
word_index = model.word2id[word]
mean.append(weight * model.word_vectors[word_index])
all_words.add(word_index)
else:
raise KeyError("word '%s' not in vocabulary" % word)
if not mean:
raise ValueError("cannot compute similarity with no input")
if scipy.sparse.issparse(model.word_vectors):
mean = scipy.sparse.vstack(mean)
else:
mean = numpy.array(mean)
mean = matutils.unitvec(mean.mean(axis=0)).astype(model.word_vectors.dtype)
dists = model.word_vectors.dot(mean.T).flatten()
if not topn:
return dists
best = numpy.argsort(dists)[::-1][:topn + len(all_words)]
# ignore (don't return) words from the input
result = [(model.id2word[sim], float(dists[sim])) for sim in best if sim not in all_words]
return result[:topn]
def log_accuracy(section):
correct, incorrect = section['correct'], section['incorrect']
if correct + incorrect > 0:
logger.info("%s: %.1f%% (%i/%i)" %
(section['section'], 100.0 * correct / (correct + incorrect),
correct, correct + incorrect))
def accuracy(model, questions, ok_words=None):
"""
Compute accuracy of the word embeddings.
`questions` is a filename where lines are 4-tuples of words, split into
sections by ": SECTION NAME" lines.
See https://code.google.com/p/word2vec/source/browse/trunk/questions-words.txt for an example.
The accuracy is reported (=printed to log and returned as a list) for each
section separately, plus there's one aggregate summary at the end.
Only evaluate on words in `word2id` (such as 30k most common words), ignoring
any test examples where any of the four words falls outside `word2id`.
This method corresponds to the `compute-accuracy` script of the original C word2vec.
"""
if ok_words is None:
ok_words = model.word2id
sections, section = [], None
for line_no, line in enumerate(utils.smart_open(questions)):
line = utils.to_unicode(line)
if line.startswith(': '):
# a new section starts => store the old section
if section:
sections.append(section)
log_accuracy(section)
section = {'section': line.lstrip(': ').strip(), 'correct': 0, 'incorrect': 0}
else:
if not section:
raise ValueError("missing section header before line #%i in %s" % (line_no, questions))
try:
a, b, c, expected = [word.lower() for word in line.split()] # TODO assumes vocabulary preprocessing uses lowercase, too...
except:
logger.info("skipping invalid line #%i in %s" % (line_no, questions))
if a not in ok_words or b not in ok_words or c not in ok_words or expected not in ok_words:
logger.debug("skipping line #%i with OOV words: %s" % (line_no, line.strip()))
continue
ignore = set(model.word2id[v] for v in [a, b, c]) # indexes of words to ignore
predicted = None
# find the most likely prediction, ignoring OOV words and input words
sims = most_similar(model, positive=[b, c], negative=[a], topn=False)
for index in numpy.argsort(sims)[::-1]:
if model.id2word[index] in ok_words and index not in ignore:
predicted = model.id2word[index]
if predicted != expected:
logger.debug("%s: expected %s, predicted %s" % (line.strip(), expected, predicted))
break
section['correct' if predicted == expected else 'incorrect'] += 1
if section:
# store the last section, too
sections.append(section)
log_accuracy(section)
total = {'section': 'total', 'correct': sum(s['correct'] for s in sections), 'incorrect': sum(s['incorrect'] for s in sections)}
log_accuracy(total)
sections.append(total)
return sections
def raw2ppmi(cooccur, word2id, k_shift=1.0):
"""
Convert raw counts from `get_coccur` into positive PMI values (as per Levy & Goldberg),
in place.
The result is an efficient stream of sparse word vectors (=no extra data copy).
"""
logger.info("computing PPMI on co-occurence counts")
# following lines a bit tedious, as we try to avoid making temporary copies of the (large) `cooccur` matrix
marginal_word = cooccur.sum(axis=1)
marginal_context = cooccur.sum(axis=0)
cooccur /= marginal_word[:, None] # #(w, c) / #w
cooccur /= marginal_context # #(w, c) / (#w * #c)
cooccur *= marginal_word.sum() # #(w, c) * D / (#w * #c)
numpy.log(cooccur, out=cooccur) # PMI = log(#(w, c) * D / (#w * #c))
logger.info("shifting PMI scores by log(k) with k=%s" % (k_shift, ))
cooccur -= numpy.log(k_shift) # shifted PMI = log(#(w, c) * D / (#w * #c)) - log(k)
logger.info("clipping PMI scores to be non-negative PPMI")
cooccur.clip(0.0, out=cooccur) # SPPMI = max(0, log(#(w, c) * D / (#w * #c)) - log(k))
logger.info("normalizing PPMI word vectors to unit length")
for i, vec in enumerate(cooccur):
cooccur[i] = matutils.unitvec(vec)
return matutils.Dense2Corpus(cooccur, documents_columns=False)
class PmiModel(object):
def __init__(self, corpus):
# serialize PPMI vectors into an explicit sparse CSR matrix, in RAM, so we can do
# dot products more easily
self.word_vectors = matutils.corpus2csc(corpus).T
class SvdModel(object):
def __init__(self, corpus, id2word, s_exponent=0.0):
logger.info("calculating truncated SVD")
lsi = gensim.models.LsiModel(corpus, id2word=id2word, num_topics=DIM, chunksize=1000)
self.singular_scaled = lsi.projection.s ** s_exponent
# embeddings = left singular vectors scaled by the (exponentiated) singular values
self.word_vectors = lsi.projection.u * self.singular_scaled
if __name__ == "__main__":
logging.basicConfig(format='%(asctime)s : %(threadName)s : %(levelname)s : %(message)s', level=logging.INFO)
logger.info("running %s" % " ".join(sys.argv))
from run_embed import PmiModel, SvdModel # for pickle
# check and process cmdline input
program = os.path.basename(sys.argv[0])
if len(sys.argv) < 4:
print(globals()['__doc__'] % locals())
sys.exit(1)
in_file = gensim.models.word2vec.LineSentence(sys.argv[1])
# in_file = gensim.models.word2vec.Text8Corpus(sys.argv[1])
q_file = sys.argv[2]
outf = lambda prefix: os.path.join(sys.argv[3], prefix)
logger.info("output file template will be %s" % outf('PREFIX'))
sentences = lambda: itertools.islice(in_file, DOC_LIMIT)
# use only a small subset of all words; otherwise the methods based on matrix
# decomposition (glove, ppmi) take too much RAM (quadratic in vocabulary size).
if os.path.exists(outf('word2id')):
logger.info("dictionary found, loading")
word2id = utils.unpickle(outf('word2id'))
else:
logger.info("dictionary not found, creating")
id2word = gensim.corpora.Dictionary(sentences(), prune_at=10000000)
id2word.filter_extremes(keep_n=TOKEN_LIMIT) # filter out too freq/infreq words
word2id = dict((v, k) for k, v in id2word.iteritems())
utils.pickle(word2id, outf('word2id'))
id2word = gensim.utils.revdict(word2id)
# filter sentences to contain only the dictionary words
corpus = lambda: ([word for word in sentence if word in word2id] for sentence in sentences())
if 'word2vec' in program:
if os.path.exists(outf('w2v')):
logger.info("word2vec model found, loading")
model = utils.unpickle(outf('w2v'))
else:
logger.info("word2vec model not found, creating")
if NEGATIVE:
model = gensim.models.Word2Vec(size=DIM, min_count=0, window=WINDOW, workers=WORKERS, hs=0, negative=NEGATIVE)
else:
model = gensim.models.Word2Vec(size=DIM, min_count=0, window=WINDOW, workers=WORKERS)
model.build_vocab(corpus())
model.train(corpus()) # train with 1 epoch
model.init_sims(replace=True)
model.word2id = dict((w, v.index) for w, v in model.vocab.iteritems())
model.id2word = utils.revdict(model.word2id)
model.word_vectors = model.syn0norm
utils.pickle(model, outf('w2v'))
if 'glove' in program:
if os.path.exists(outf('glove')):
logger.info("glove model found, loading")
model = utils.unpickle(outf('glove'))
else:
if os.path.exists(outf('glove_corpus')):
logger.info("glove corpus matrix found, loading")
cooccur = utils.unpickle(outf('glove_corpus'))
else:
logger.info("glove corpus matrix not found, creating")
cooccur = glove.Corpus(dictionary=word2id)
cooccur.fit(corpus(), window=WINDOW)
utils.pickle(cooccur, outf('glove_corpus'))
logger.info("glove model not found, creating")
model = glove.Glove(no_components=DIM, learning_rate=0.05)
model.fit(cooccur.matrix, epochs=10, no_threads=WORKERS, verbose=True)
model.add_dictionary(cooccur.dictionary)
model.word2id = dict((utils.to_unicode(w), id) for w, id in model.dictionary.iteritems())
model.id2word = gensim.utils.revdict(model.word2id)
utils.pickle(model, outf('glove'))
if 'pmi' in program:
if os.path.exists(outf('pmi')):
logger.info("PMI model found, loading")
model = utils.unpickle(outf('pmi'))
else:
if not os.path.exists(outf('pmi_matrix.mm')):
logger.info("PMI matrix not found, creating")
if os.path.exists(outf('cooccur.npy')):
logger.info("raw cooccurrence matrix found, loading")
raw = numpy.load(outf('cooccur.npy'))
else:
logger.info("raw cooccurrence matrix not found, creating")
raw = get_cooccur(corpus(), word2id, window=WINDOW, dynamic_window=False)
numpy.save(outf('cooccur.npy'), raw)
# store the SPPMI matrix in sparse Matrix Market format on disk
gensim.corpora.MmCorpus.serialize(outf('pmi_matrix.mm'), raw2ppmi(raw, word2id, k_shift=NEGATIVE or 1))
del raw
logger.info("PMI model not found, creating")
model = PmiModel(gensim.corpora.MmCorpus(outf('pmi_matrix.mm')))
model.word2id = word2id
model.id2word = id2word
utils.pickle(model, outf('pmi'))
if 'svd' in program:
if os.path.exists(outf('svd')):
logger.info("SVD model found, loading")
model = utils.unpickle(outf('svd'))
else:
logger.info("SVD model not found, creating")
model = SvdModel(gensim.corpora.MmCorpus(outf('pmi_matrix.mm')), id2word, s_exponent=0.0)
model.word2id = word2id
model.id2word = id2word
utils.pickle(model, outf('svd'))
logger.info("evaluating accuracy")
print accuracy(model, q_file, word2id) # output result to stdout as well
logger.info("finished running %s" % program)