-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathplots.py
177 lines (152 loc) · 7.38 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import FormatStrFormatter
FLANN1000 = [ # results for k=1000
"[email protected] [email protected] [email protected] [email protected]".split(), # method accuracy settings
[1.404, 1.569, 1.839, 1.596], # timings
[0.185, 0.330, 0.371, 0.367], # precicions
[0.268, 0.129, 0.120, 0.113], # avg diffs
[0.205, 0.127, 0.0, 0.119], # stddev diff
[0.947, 0.781, 0.818, 0.801], # max diff
]
FLANN1000_BATCH = [0.244, 0.342, 0.396, 0.337] # batch timings (=resolving all 100 queries at once)
FLANN1000_SHORT = [[row[0], row[-1]] for row in FLANN1000]
FLANN100 = [
[0.350, 0.369, 0.409, 0.367],
[0.133, 0.248, 0.254, 0.239],
[0.257, 0.116, 0.119, 0.112],
[0.212, 0.114, 0.0, 0.1],
[0.906, 0.816, 0.885, 0.866],
]
FLANN100_BATCH = [0.056, 0.049, 0.055, 0.049]
FLANN100_SHORT = [[row[0], row[-1]] for row in FLANN100]
FLANN10 = [
[0.258, 0.275, 0.297, 0.334],
[0.234, 0.351, 0.381, 0.366],
[0.092, 0.045, 0.044, 0.042],
[0.112, 0.053, 0.0, 0.048],
[0.835, 0.707, 0.473, 0.265],
]
FLANN10_BATCH = [0.041, 0.024, 0.027, 0.027]
FLANN10_SHORT = [[row[0], row[-1]] for row in FLANN10]
FLANN1 = [
[0.213, 0.279, 0.321, 0.296],
[1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0],
]
FLANN1_BATCH = [0.035, 0.031, 0.038, 0.033]
FLANN1_SHORT = [[row[0], row[-1]] for row in FLANN1]
ANNOY1000 = [
"annoy@1 annoy@10 annoy@50 annoy@100 annoy@500".split(),
[1.030, 7.439, 34.163, 64.832, 287.705],
[0.048, 0.300, 0.703, 0.849, 0.992],
[0.489, 0.112, 0.017, 0.006, 0.0],
[0.193, 0.085, 0.020, 0.010, 0.001],
[0.929, 0.482, 0.111, 0.101, 0.015],
]
ANNOY100 = [
"annoy@1 annoy@10 annoy@50 annoy@100 annoy@500".split(),
[0.403, 1.083, 4.186, 8.026, 36.598],
[0.045, 0.168, 0.496, 0.664, 0.939],
[0.404, 0.152, 0.036, 0.018, 0.002],
[0.225, 0.126, 0.039, 0.024, 0.005],
[0.870, 0.563, 0.206, 0.126, 0.075],
]
ANNOY10 = [
"annoy@1 annoy@10 annoy@50 annoy@100 annoy@500".split(),
[0.395, 0.481, 0.958, 1.552, 6.592],
[0.160, 0.230, 0.391, 0.501, 0.824],
[0.175, 0.117, 0.052, 0.032, 0.006],
[0.163, 0.126, 0.064, 0.043, 0.013],
[0.870, 0.554, 0.364, 0.192, 0.075],
]
ANNOY1 = [
"annoy@1 annoy@10 annoy@50 annoy@100 annoy@500".split(),
[0.396, 0.479, 0.649, 0.851, 2.728],
[1.0, 1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
]
SKLEARN1 = 0.176
SKLEARN10 = 2142.822
SKLEARN100 = 2359.800
GENSIM = 678.671
GENSIM_BATCH = 353.908
max_avgdiff = max(max(res[3]) for res in [ANNOY1, ANNOY10, ANNOY100, ANNOY1000, FLANN1, FLANN10, FLANN100, FLANN1000])
min_prec = min(min(res[2]) for res in [ANNOY1, ANNOY10, ANNOY100, ANNOY1000, FLANN1, FLANN10, FLANN100, FLANN1000])
def annotate_points(ax, labels, xs, ys, colour, x_offset, marker='o', alternate=False):
ax.yaxis.set_major_formatter(FormatStrFormatter('%.2f'))
ax.scatter(xs, ys, s=80, marker=marker, c=colour, alpha=0.5)
s = sorted(range(len(xs)), key=lambda p: xs[p])
up_downs = [s.index(pos) % 2 if alternate else 0 for pos in range(len(xs))]
for num, (label, x, y) in enumerate(zip(labels, xs, ys)):
ax.annotate(
label,
xy=(x, y), xytext=(0, [-6, 6][up_downs[num]]), fontsize=12, color=colour, alpha=0.8,
textcoords='offset points', ha=x_offset, va=['top', 'bottom'][up_downs[num]],
# bbox = dict(boxstyle='round,pad=0.5', fc=colour, alpha=0.1),
# arrowprops = dict(arrowstyle='->', connectionstyle='arc3,rad=0.2')
)
def plot_results(methods, loc='best', colours=('r', 'g', 'b'), alternate=False, log=False):
plt.locator_params(axis='y', nbins=10)
fig = plt.figure(figsize=(12, 6))
ax1 = fig.add_subplot(1, 2, 1)
ax2 = fig.add_subplot(1, 2, 2)
if len(methods) != 2:
left_rights = ['center'] * len(methods)
else:
left_rights = [['left', 'right'][pos % 2] for pos in range(len(methods))]
max_avgdiff, min_prec = 0.0, 1.0
for pos, (labels, timings, precs, avgdiffs, stddevdiffs, maxdiff) in enumerate(methods):
assert len(labels) == len(avgdiffs) == len(precs) == len(timings) == len(maxdiff) == len(stddevdiffs)
annotate_points(ax1, labels, timings, avgdiffs, x_offset=left_rights[pos], colour=colours[pos], alternate=alternate) #ymax=max_avgdiff)
annotate_points(ax2, labels, timings, precs, x_offset=left_rights[pos], colour=colours[pos], alternate=alternate) #ymin=min_prec
max_avgdiff, min_prec = max(max(avgdiffs), max_avgdiff), min(min(precs), min_prec)
# ax1.legend(loc=loc)
# make the y axis for avgdiff go from 0.0 to max(avg diffs)
extra = (max_avgdiff + 0.001) / (15 * 2)
ax1.set_ylim(bottom=-2 * extra, top=max_avgdiff + extra)
# ax1.yaxis.set_ticks(np.arange(0.0, max_avgdiff + 0.001, (max_avgdiff + 0.001) / 10.0)) # 10 ticks on the y axis
ax1.yaxis.set_major_locator(plt.MaxNLocator(15))
# make the y axis for precision go from min(precision) to 1.0
extra = (1 - min_prec + 0.001) / (15 * 2)
ax2.set_ylim(bottom=min_prec - 2 * extra, top=1.0 + extra)
# ax2.yaxis.set_ticks(np.arange(1.0, min_prec - 0.001, -(1.0 - min_prec + 0.001) / 10.0)) # 10 ticks on the y axis
ax2.yaxis.set_major_locator(plt.MaxNLocator(15))
fig.tight_layout() #pad=0.4, w_pad=0.5, h_pad=1.0)
fig.subplots_adjust(wspace=.2)
if log:
ax1.set_xscale('log')
ax1.set_xlabel("ms/query")
ax1.set_ylabel("avg diff")
if log:
ax2.set_xscale('log')
ax2.set_xlabel("ms/query")
ax2.set_ylabel("avg precision")
# fig.suptitle(title)
return fig
def generate_figures():
plot_results([FLANN1], alternate=True, loc="center right").savefig("flann1.png", bbox_inches='tight')
plot_results([FLANN10], alternate=True).savefig("flann10.png", bbox_inches='tight')
plot_results([FLANN100], alternate=True).savefig("flann100.png", bbox_inches='tight')
plot_results([FLANN1000], alternate=True).savefig("flann1000.png", bbox_inches='tight')
plot_results([ANNOY1], alternate=True, loc="center right").savefig("annoy1.png", bbox_inches='tight')
plot_results([ANNOY10], log=False).savefig("annoy10.png", bbox_inches='tight')
plot_results([ANNOY100]).savefig("annoy100.png", bbox_inches='tight')
plot_results([ANNOY1000]).savefig("annoy1000.png", bbox_inches='tight')
plot_results([ANNOY1, FLANN1_SHORT], alternate=True, loc="center right").savefig("flann_annoy1.png", bbox_inches='tight')
plot_results([ANNOY10, FLANN10_SHORT], log=False).savefig("flann_annoy10.png", bbox_inches='tight')
plot_results([ANNOY100, FLANN100_SHORT], log=False).savefig("flann_annoy100.png", bbox_inches='tight')
plot_results([ANNOY1000, FLANN1000_SHORT], log=False).savefig("flann_annoy1000.png", bbox_inches='tight')
def generate_table():
for method in [ANNOY1, ANNOY10, ANNOY100, ANNOY1000, FLANN1, FLANN10, FLANN100, FLANN1000]:
for label, timing, precision, avgdiff, stddevdiff, maxdiff in zip(*method):
print '<tr><td>%s</td><td>%s</td><td>%.2f</td><td>%.2f</td><td>%.3f</td><td>%.2f</td><td>%.1f</td><td>%s</td><td>%s</td></tr>' %\
(label, '', precision, avgdiff, stddevdiff, maxdiff, timing, '', '')
print