-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
123 lines (87 loc) · 3.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import logging
import os
from typing import Optional
import numpy as np
import stable_baselines3 as sb
import stable_baselines3.common.env_checker as sb_env_checker
import stable_baselines3.common.vec_env as sb_vec_env
import stable_baselines3.common.callbacks as sb3_callbacks
import rl_env
def _create_simple_environment(seed: int = 0):
env = rl_env.KosciEnv(5)
env.seed(seed)
return env
def _create_vectorized_environment(n_cpu: int = 8, seed: int = 0):
def make_env(rank: int, seed: int = 0):
return _create_simple_environment(seed + rank)
return sb_vec_env.SubprocVecEnv([lambda: make_env(i, seed) for i in range(n_cpu)])
def check_env():
env = _create_simple_environment()
sb_env_checker.check_env(env)
def _create_model(env, tensorboard_log: Optional[str] = None, seed: int = 0):
policy_kwargs = {'net_arch': [256, 128, 64, {'pi': [64, 64], 'vf': [64, 64]}]}
return sb.PPO('MultiInputPolicy',
env,
seed=seed,
verbose=1,
learning_rate=0.1,
batch_size=256,
tensorboard_log=tensorboard_log,
policy_kwargs=policy_kwargs)
def _train(timesteps, env, saved_model_path: Optional[str] = None, seed: int = 0):
model = _create_model(env, 'tensorboard', seed)
if saved_model_path is not None:
model = model.load(saved_model_path, env)
if timesteps > 0:
checkpoint_callback = sb3_callbacks.CheckpointCallback(save_freq=10000, save_path='./logs/', name_prefix='model')
model.learn(total_timesteps=timesteps, callback=checkpoint_callback)
return model
def _test(env, model):
obs = env.reset()
for i in range(10000):
action, _state = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
# env.render()
if np.any(done):
return
# obs = env.reset()
def do_multiproc_training(model_path: Optional[str] = 'model.zip', timesteps: int = 1000000, n_cpu: int = 8, seed: int = 0):
logging.basicConfig(format='[%(levelname)s] %(message)s', level=logging.WARN)
env = _create_vectorized_environment(n_cpu, seed)
print('Training')
path_to_load = model_path if model_path is not None and os.path.exists(model_path) else None
model = _train(timesteps, env, path_to_load, seed)
if model_path is not None:
print(f'Saving to {model_path}')
model.save(model_path)
return model
def do_testing(model=None, model_path: Optional[str] = None, seed: int = 0):
assert (model is None) != (model_path is None)
logging.basicConfig(format='[%(levelname)s] %(message)s', level=logging.DEBUG)
env = _create_simple_environment(seed)
print('Test')
if model is not None:
_test(env, model)
elif model_path is not None:
model = _create_model(env, None, seed).load(model_path, env)
_test(env, model)
def check_gpu():
import torch
if torch.cuda.is_available():
print(torch.cuda.get_device_name(0))
else:
print('GPU not detected, try adjusting version of CUDA toolkit, CudNN or PyTorch')
def enable_gpu(enabled: bool = True):
# 0 - GPU, 1 - CPU (on the original machine)
os.environ['CUDA_VISIBLE_DEVICES'] = '0' if enabled else '1'
def __main__():
# check_env()
# check_gpu()
n_cpu = 8
seed = 0
model_path = 'model.zip'
enable_gpu(False)
# do_multiproc_training(n_cpu=n_cpu, seed=seed)
do_testing(model_path=model_path, seed=seed)
if __name__ == "__main__":
__main__()