-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
224 lines (162 loc) · 6.81 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import time
import pandas as pd
import numpy as np
import pickle
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchtext.data import TabularDataset, Field, NestedField, Iterator
from utils import *
from model import Unified_xtransformerXd, xtransformer1d, xtransformer2d, Unified_xtransformer1d
# torch.manual_seed(0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
import warnings
warnings.filterwarnings("ignore")
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def init_weights(m):
for name, param in m.named_parameters():
if 'weight' in name:
nn.init.normal_(param.data, mean=0, std=0.01)
else:
nn.init.constant_(param.data, 0)
def contrib_itos(itos, token_ids, contrib):
# itos: id to string mapping
# token_ids: (seq_ln, token_cnt) or (seq_ln,)
# contrib: (seq_ln, token_cnt, nclass) or (seq_ln, nclass)
# return:
# ---> tokens: a list of list of tokens
# ---> cb: a list of list of contributions (numeric)
tokens = []
cb = []
if len(token_ids.shape) == 2:
for r1,r2 in zip(token_ids, contrib):
tk = [itos[u] for u in r1 if itos[u] != '<pad>']
tokens.append(tk)
cb.append(r2[:len(tk)])
if len(token_ids.shape) == 1:
tokens = [itos[u] for u in token_ids if itos[u] != '<pad>']
cb = contrib[:len(tokens)]
return tokens, cb
def train(model, iterator, optimizer, criterion, device):
model.train()
epoch_loss = 0
for _, batch in enumerate(iterator):
inputs = (batch.ego_netloc.squeeze(-1),
batch.ngh_netloc.squeeze(-1))
label = batch.label
optimizer.zero_grad()
for tensor in inputs:
tensor.to(device)
output = model(inputs)
loss = criterion(output,label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def evaluate(model, iterator, criterion, device):
model.eval()
epoch_loss = 0
with torch.no_grad():
for _, batch in enumerate(iterator):
inputs = (batch.ego_netloc.squeeze(-1),
batch.ngh_netloc.squeeze(-1))
label = batch.label
for tensor in inputs:
tensor.to(device)
output = model(inputs)
loss = criterion(output,label)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def test(model, iterator, device):
model.eval()
output_lst, target_lst = [], []
with torch.no_grad():
for _, batch in enumerate(iterator):
inputs = (batch.ego_netloc.squeeze(-1),
batch.ngh_netloc.squeeze(-1))
target = batch.label
for tensor in inputs:
tensor.to(device)
output = model(inputs)
output_lst.append(output)
target_lst.append(target)
return output_lst, target_lst
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--filename', type=str, default='data.json', help='which data to use')
parser.add_argument('--verbose', type=str, default='both', help='which sequence(s) to use')
args = parser.parse_args()
BATCH_SIZE = 16
nclass = 2
emb_sz = 64
dim_feedforward = 1024
nhead = 4
nlayer = 2
dropout = 0.8
## === load data === ##
NETLOC = NestedField(Field())
LABEL = Field(sequential=False, use_vocab=False)
WEEK = Field(sequential=False, use_vocab=False)
fields = {"ego_netloc": ("ego_netloc", NETLOC), # use same field for two columns
"ngh_netloc": ("ngh_netloc", NETLOC),
"week": ("week", WEEK),
"label": ("label",LABEL)}
data = TabularDataset(path='../dataset/{}'.format(args.filename), format='json',fields=fields)
NETLOC.build_vocab(data.ego_netloc, data.ngh_netloc, min_freq=10)
ntoken = len(NETLOC.vocab)
trn,tst,val = data.split([0.6,0.2,0.2], stratified=True)
# divide into buckets
trn_iter = Iterator(trn, batch_size=BATCH_SIZE, shuffle=True, device=device)
val_iter = Iterator(val, batch_size=BATCH_SIZE, shuffle=True, device=device)
tst_iter = Iterator(tst, batch_size=BATCH_SIZE, shuffle=False, device=device)
## === setting environment === ##
criterion = nn.CrossEntropyLoss() # combination of LogSoftmax and NLLoss
# model = Unified_xtransformerXd(ntokens, dim_feedforwards, nheads, nlayers, dropout, emb_sz, nclass).to(device)
model = Unified_xtransformer1d(ntoken, dim_feedforward, nhead, nlayer, dropout, emb_sz, nclass, args.verbose).to(device)
# model = xtransformer1d(ntoken, emb_sz, dim_feedforward, nhead, nlayer, nclass, dropout)
model.apply(init_weights)
if torch.cuda.device_count() > 1:
print("let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001) # 1e-3 is good, 1e-4 is too small/slow
# optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
## === run model == ##
N_EPOCHS = 50
PATH = 'ckpt/best_model'
best_valid_loss = float('inf')
no_improvement = 0
for epoch in range(N_EPOCHS):
start_time = time.time()
train_loss = train(model, trn_iter, optimizer, criterion, device)
valid_loss = evaluate(model, val_iter, criterion, device)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
print('Epoch: %02d | Time: %02dm %02ds | Train Loss: %.3f | Eval Loss: %.3f' % (
epoch, epoch_mins, epoch_secs, train_loss, valid_loss))
if valid_loss > best_valid_loss:
no_improvement += 1
elif valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), PATH)
no_improvement = 0
if no_improvement == 1:
break
## === test model === ##
model.load_state_dict(torch.load('ckpt/best_model'))
output_lst, target_lst = test(model, tst_iter, device)
output = torch.cat(output_lst, 0)
target = torch.cat(target_lst, 0)
acc,auc,pre,rec,f1 = perf(output,target)
print('filename: %s, verbose: %s' % (args.filename, args.verbose))
print('acc: %.3f' % acc)
print('auc: %.3f' % auc)
print('pre: %.3f' % pre)
print('rec: %.3f' % rec)
print('f1 : %.3f' % f1)