-
-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathpropulsion_electric.py
563 lines (432 loc) · 20.1 KB
/
propulsion_electric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import aerosandbox.numpy as np
from aerosandbox.tools import units as u
from aerosandbox.performance.operating_point import OperatingPoint
from typing import Union, Dict
def motor_electric_performance(
voltage: Union[float, np.ndarray] = None,
current: Union[float, np.ndarray] = None,
rpm: Union[float, np.ndarray] = None,
torque: Union[float, np.ndarray] = None,
kv: float = 1000.0, # rpm/volt
resistance: float = 0.1, # ohms
no_load_current: float = 0.4, # amps
) -> Dict[str, Union[float, np.ndarray]]:
"""
A function for predicting the performance of an electric motor.
Performance equations based on Mark Drela's First Order Motor Model:
http://web.mit.edu/drela/Public/web/qprop/motor1_theory.pdf
Instructions: Input EXACTLY TWO of the following parameters: voltage, current, rpm, torque.
Exception: You cannot supply the combination of current and torque - this makes for an ill-posed problem.
Note that this function is fully vectorized, so arrays can be supplied to any of the inputs.
Args:
voltage: Voltage across motor terminals [Volts]
current: Current through motor [Amps]
rpm: Motor rotation speed [rpm]
torque: Motor torque [N m]
kv: voltage constant, in rpm/volt
resistance: resistance, in ohms
no_load_current: no-load current, in amps
Returns:
A dictionary where keys are:
"voltage",
"current",
"rpm",
"torque",
"shaft power",
"electrical power",
"efficiency"
"waste heat"
And values are corresponding quantities in SI units.
Note that "efficiency" is just (shaft power) / (electrical power), and hence implicitly assumes that the
motor is operating as a motor (electrical -> shaft power), and not a generator (shaft power -> electrical).
If you want to know the efficiency of the motor as a generator, you can simply calculate it as (electrical
power) / (shaft power).
"""
# Validate inputs
voltage_known = voltage is not None
current_known = current is not None
rpm_known = rpm is not None
torque_known = torque is not None
if not (voltage_known + current_known + rpm_known + torque_known == 2):
raise ValueError("You must give exactly two input arguments.")
if current_known and torque_known:
raise ValueError(
"You cannot supply the combination of current and torque - this makes for an ill-posed problem."
)
kv_rads_per_sec_per_volt = kv * np.pi / 30 # rads/sec/volt
### Iterate through the motor equations until all quantities are known.
while not (voltage_known and current_known and rpm_known and torque_known):
if rpm_known:
if current_known and not voltage_known:
speed = rpm * np.pi / 30 # rad/sec
back_EMF_voltage = speed / kv_rads_per_sec_per_volt
voltage = back_EMF_voltage + current * resistance
voltage_known = True
if torque_known:
if not current_known:
current = torque * kv_rads_per_sec_per_volt + no_load_current
current_known = True
if voltage_known:
if rpm_known and not current_known:
speed = rpm * np.pi / 30 # rad/sec
back_EMF_voltage = speed / kv_rads_per_sec_per_volt
current = (voltage - back_EMF_voltage) / resistance
current_known = True
if not rpm_known and current_known:
back_EMF_voltage = voltage - (current * resistance)
speed = back_EMF_voltage * kv_rads_per_sec_per_volt
rpm = speed * 30 / np.pi
rpm_known = True
if current_known:
if not torque_known:
torque = (current - no_load_current) / kv_rads_per_sec_per_volt
torque_known = True
shaft_power = (rpm * np.pi / 30) * torque
electrical_power = voltage * current
efficiency = shaft_power / electrical_power
waste_heat = np.fabs(electrical_power - shaft_power)
return {
"voltage": voltage,
"current": current,
"rpm": rpm,
"torque": torque,
"shaft power": shaft_power,
"electrical power": electrical_power,
"efficiency": efficiency,
"waste heat": waste_heat,
}
def electric_propeller_propulsion_analysis(
total_thrust: float,
n_engines: int,
propeller_diameter: float,
op_point: OperatingPoint,
motor_kv: float,
motor_no_load_current: float,
motor_resistance: float,
wire_resistance: float,
battery_voltage: float,
propeller_tip_mach: float = 0.50,
gearbox_ratio: float = 1,
gearbox_efficiency: float = 1,
esc_efficiency: float = 0.98,
battery_discharge_efficiency: float = 0.985,
) -> Dict[str, float]:
"""
Performs a propulsion analysis for an electric propeller-driven aircraft.
May be used for single-engine or multi-engine aircraft, so long as all engines / propellers are identical.
Args:
total_thrust: Total thrust force produced by all engines at the cruise operating point [N].
n_engines: Number of engines on the aircraft.
propeller_diameter: Diameter of each of the propellers [m].
op_point: The cruise operating point. Must be an AeroSandbox OperatingPoint object.
motor_kv: Motor voltage constant [rpm/volt].
motor_no_load_current: Motor no-load current [amps].
motor_resistance: Motor resistance [ohms].
wire_resistance: Round-trip resistance of the wires connecting the ESC to the battery [ohms].
battery_voltage: Battery voltage [volts].
propeller_tip_mach: Mach number at the propeller tip. Defaults to 0.50. From a propulsive efficiency
perspective, you want this to be as high as possible while still keeping the tip speed (hypotenuse of the
velocity triangle) below the critical Mach number of the propeller blade airfoil. This is because motor
efficiency and specific power tend to be better at high-speed low-torque conditions, and also the propeller
aerodynamics tend to be better at low solidity. But there may be reasons to lower this, such as propeller
structural considerations or noise considerations (with noise being a *strong* function of tip Mach).
gearbox_ratio: Gearbox reduction ratio. Defaults to 1 (no gearbox). For example, a `gearbox_ratio` of 5 is a 5:1
reduction, meaning that the propeller turns 5 times slower than the motor.
gearbox_efficiency: Gearbox efficiency. Defaults to 1, only because the `gearbox_ratio` defaults to 1 (no
gearbox), and so this represents no losses. If you have a gearbox, you should probably use a value of 0.98 or
so.
esc_efficiency: Efficiency of the electronic speed controller (ESC), sometimes called the inverter. Defaults to
0.98, which is a reasonable value for a high-quality ESC at a large (>5 kW) scale. Small components will
lower efficiencies than this.
battery_discharge_efficiency: Coulobmic efficiency of the battery in discharge only (i.e., not round-trip).
Defaults to 0.985, which is a reasonable value for a high-quality lithium-polymer battery. Other battery
chemistries will have different values.
Returns: A dictionary of various parameters of the propulsion analysis. Of particular note are the following keys:
* "air_power": The power delivered to the air (thrust * velocity) [W]
* "shaft_power": The power at the propeller shaft (after the gearbox; rotational speed * torque) [W]
* "motor_electrical_power": The electrical power input to the motor [W]
* "esc_electrical_power": The electrical power input to the ESC [W]
* "battery_power": The power draw from the battery [W].
* "propeller_efficiency": The propulsive efficiency of the propeller, defined as (air_power / shaft_power).
* "motor_efficiency": The efficiency of the motor, defined as (shaft_power / motor_electrical_power).
* "overall_efficiency": The overall efficiency of the propulsion system, defined as (air_power / battery_power).
"""
### Propeller Analysis
propulsive_area_per_propeller = (np.pi / 4) * propeller_diameter**2
propulsive_area_total = propulsive_area_per_propeller * n_engines
propeller_wake_dynamic_pressure = (
op_point.dynamic_pressure() + total_thrust / propulsive_area_total
)
propeller_wake_velocity = (
# Derived from the above pressure jump relation, with adjustments to avoid singularity at zero velocity
2 * total_thrust / (propulsive_area_total * op_point.atmosphere.density())
+ op_point.velocity**2
) ** 0.5
propeller_tip_speed = propeller_tip_mach * op_point.atmosphere.speed_of_sound()
propeller_rads_per_sec = propeller_tip_speed / (propeller_diameter / 2)
propeller_rpm = propeller_rads_per_sec * 60 / (2 * np.pi)
propeller_advance_ratio = op_point.velocity / propeller_tip_speed
air_power = total_thrust * op_point.velocity
from aerosandbox.library.propulsion_propeller import (
propeller_shaft_power_from_thrust,
)
shaft_power = propeller_shaft_power_from_thrust(
thrust_force=total_thrust,
area_propulsive=propulsive_area_total,
airspeed=op_point.velocity,
rho=op_point.atmosphere.density(),
propeller_coefficient_of_performance=0.90,
)
propeller_efficiency = air_power / shaft_power
### Motor Analysis
motor_rpm = propeller_rpm / gearbox_ratio
motor_rads_per_sec = motor_rpm * 2 * np.pi / 60
motor_torque_per_motor = (
shaft_power / n_engines / motor_rads_per_sec / gearbox_efficiency
)
motor_parameters_per_motor = motor_electric_performance(
rpm=motor_rpm,
torque=motor_torque_per_motor,
kv=motor_kv,
no_load_current=motor_no_load_current,
resistance=motor_resistance,
)
motor_electrical_power = motor_parameters_per_motor["electrical power"] * n_engines
motor_efficiency = shaft_power / motor_electrical_power
### ESC Analysis
esc_electrical_power = motor_electrical_power / esc_efficiency
### Wire Analysis
wire_power_loss = (esc_electrical_power / battery_voltage) ** 2 * wire_resistance
wire_efficiency = esc_electrical_power / (esc_electrical_power + wire_power_loss)
### Battery Analysis
battery_power = (
esc_electrical_power + wire_power_loss
) / battery_discharge_efficiency
battery_current = battery_power / battery_voltage
### Overall
overall_efficiency = air_power / battery_power
return locals()
def motor_resistance_from_no_load_current(no_load_current):
"""
Estimates the internal resistance of a motor from its no_load_current. Gates quotes R^2=0.93 for this model.
Source: Gates, et. al., "Combined Trajectory, Propulsion, and Battery Mass Optimization for Solar-Regen..."
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3932&context=facpub
Args:
no_load_current: No-load current [amps]
Returns:
motor internal resistance [ohms]
"""
return 0.0467 * no_load_current**-1.892
def mass_ESC(
max_power,
):
"""
Estimates the mass of an ESC.
Informal correlation I did to Hobbyking ESCs in the 8S LiPo, 100A range
Args:
max_power: maximum power [W]
Returns:
estimated ESC mass [kg]
"""
return 2.38e-5 * max_power
def mass_battery_pack(
battery_capacity_Wh,
battery_cell_specific_energy_Wh_kg=240,
battery_pack_cell_fraction=0.7,
):
"""
Estimates the mass of a lithium-polymer battery.
Args:
battery_capacity_Wh: Battery capacity, in Watt-hours [W*h]
battery_cell_specific_energy: Specific energy of the battery at the CELL level [W*h/kg]
battery_pack_cell_fraction: Fraction of the battery pack that is cells, by weight.
* Note: Ed Lovelace, a battery engineer for Aurora Flight Sciences, gives this figure as 0.70 in a Feb.
2020 presentation for MIT 16.82
Returns:
Estimated battery mass [kg]
"""
return (
battery_capacity_Wh
/ battery_cell_specific_energy_Wh_kg
/ battery_pack_cell_fraction
)
def mass_motor_electric(
max_power,
kv_rpm_volt=1000, # This is in rpm/volt, not rads/sec/volt!
voltage=20,
method="hobbyking",
):
"""
Estimates the mass of a brushless DC electric motor.
Curve fit to scraped Hobbyking BLDC motor data as of 2/24/2020.
Estimated range of validity: 50 < max_power < 10000
Args:
max_power (float): maximum power [W]
kv_rpm_volt (float): Voltage constant of the motor, measured in rpm/volt, not rads/sec/volt! [rpm/volt]
voltage (float): Operating voltage of the motor [V]
method (str): method to use. "burton", "hobbyking", or "astroflight" (increasing level of detail).
* Burton source: https://dspace.mit.edu/handle/1721.1/112414
* Hobbyking source: C:\Projects\GitHub\MotorScraper,
* Astroflight source: Gates, et. al., "Combined Trajectory, Propulsion, and Battery Mass Optimization for
Solar-Regen..." https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3932&context=facpub
* Validity claimed from 1.5 kW to 15 kW, kv from 32 to 1355.
Returns:
Estimated motor mass [kg]
"""
if method == "burton":
return (
max_power / 4128
) # Less sophisticated model. 95% CI (3992, 4263), R^2 = 0.866
elif method == "hobbyking":
return 10 ** (0.8205 * np.log10(max_power) - 3.155) # More sophisticated model
elif method == "astroflight":
max_current = max_power / voltage
return (
2.464 * max_current / kv_rpm_volt + 0.368
) # Even more sophisticated model
def mass_wires(
wire_length,
max_current,
allowable_voltage_drop,
material="aluminum",
insulated=True,
max_voltage=600,
wire_packing_factor=1,
insulator_density=1700,
insulator_dielectric_strength=12e6,
insulator_min_thickness=0.2e-3, # silicone wire
return_dict: bool = False,
):
"""
Estimates the mass of wires used for power transmission.
Materials data from: https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity#Resistivity-density_product
All data measured at STP; beware, as this data (especially resistivity) can be a strong function of temperature.
Args:
wire_length (float): Length of the wire [m]
max_current (float): Max current of the wire [Amps]
allowable_voltage_drop (float): How much is the voltage allowed to drop along the wire?
material (str): Conductive material of the wire ("aluminum"). Determines density and resistivity. One of:
* "sodium"
* "lithium"
* "calcium"
* "potassium"
* "beryllium"
* "aluminum"
* "magnesium"
* "copper"
* "silver"
* "gold"
* "iron"
insulated (bool): Should we add the mass of the wire's insulator coating? Usually you'll want to leave this True.
max_voltage (float): Maximum allowable voltage (used for sizing insulator). 600 is a common off-the-shelf rating.
wire_packing_factor (float): What fraction of the enclosed cross section is conductor? This is 1 for solid wire,
and less for stranded wire.
insulator_density (float): Density of the insulator [kg/m^3]
insulator_dielectric_strength (float): Dielectric strength of the insulator [V/m]. The default value of 12e6 corresponds
to rubber.
insulator_min_thickness (float): Minimum thickness of the insulator [m]. This is essentially a gauge limit.
The default value is 0.2 mm.
return_dict (bool): If True, returns a dictionary of all local variables. If False, just returns the wire
mass as a float. Defaults to False.
Returns: If `return_dict` is False (default), returns the wire mass as a single number. If `return_dict` is True,
returns a dictionary of all local variables.
"""
if (
material == "sodium"
): # highly reactive with water & oxygen, low physical strength
density = 970 # kg/m^3
resistivity = 47.7e-9 # ohm-meters
elif (
material == "lithium"
): # highly reactive with water & oxygen, low physical strength
density = 530 # kg/m^3
resistivity = 92.8e-9 # ohm-meters
elif (
material == "calcium"
): # highly reactive with water & oxygen, low physical strength
density = 1550 # kg/m^3
resistivity = 33.6e-9 # ohm-meters
elif (
material == "potassium"
): # highly reactive with water & oxygen, low physical strength
density = 890 # kg/m^3
resistivity = 72.0e-9 # ohm-meters
elif material == "beryllium": # toxic, brittle
density = 1850 # kg/m^3
resistivity = 35.6e-9 # ohm-meters
elif material == "aluminum":
density = 2700 # kg/m^3
resistivity = 26.50e-9 # ohm-meters
elif material == "magnesium": # worse specific conductivity than aluminum
density = 1740 # kg/m^3
resistivity = 43.90e-9 # ohm-meters
elif (
material == "copper"
): # worse specific conductivity than aluminum, moderately expensive
density = 8960 # kg/m^3
resistivity = 16.78e-9 # ohm-meters
elif material == "silver": # worse specific conductivity than aluminum, expensive
density = 10490 # kg/m^3
resistivity = 15.87e-9 # ohm-meters
elif (
material == "gold"
): # worse specific conductivity than aluminum, very expensive
density = 19300 # kg/m^3
resistivity = 22.14e-9 # ohm-meters
elif material == "iron": # worse specific conductivity than aluminum
density = 7874 # kg/m^3
resistivity = 96.1e-9 # ohm-meters
else:
raise ValueError("Bad value of 'material'!")
# Conductor mass
resistance = allowable_voltage_drop / max_current
area_conductor = resistivity * wire_length / resistance
volume_conductor = area_conductor * wire_length
mass_conductor = volume_conductor * density
# Insulator mass
if insulated:
insulator_thickness = np.softmax(
4.0 * max_voltage / insulator_dielectric_strength,
insulator_min_thickness,
softness=0.005 * u.inch,
)
radius_conductor = (area_conductor / wire_packing_factor / np.pi) ** 0.5
radius_insulator = radius_conductor + insulator_thickness
area_insulator = np.pi * radius_insulator**2 - area_conductor
volume_insulator = area_insulator * wire_length
mass_insulator = insulator_density * volume_insulator
else:
mass_insulator = 0
# Total them up
mass_total = mass_conductor + mass_insulator
if return_dict:
return locals()
else:
return mass_total
if __name__ == "__main__":
print(motor_electric_performance(rpm=100, current=3))
print(motor_electric_performance(rpm=4700, torque=0.02482817))
print(mass_battery_pack(100))
pows = np.logspace(2, 5, 300)
mass_mot_burton = mass_motor_electric(pows, method="burton")
mass_mot_hobbyking = mass_motor_electric(pows, method="hobbyking")
mass_mot_astroflight = mass_motor_electric(pows, method="astroflight")
import matplotlib.pyplot as plt
import aerosandbox.tools.pretty_plots as p
fig, ax = plt.subplots(1, 1, figsize=(6.4, 4.8), dpi=200)
plt.loglog(pows, np.array(mass_mot_burton), "-", label="Burton Model")
plt.plot(pows, np.array(mass_mot_hobbyking), "--", label="Hobbyking Model")
plt.plot(pows, np.array(mass_mot_astroflight), "-.", label="Astroflight Model")
p.show_plot(
"Small Electric Motor Mass Models\n(500 kv, 100 V)",
"Motor Power [W]",
"Motor Mass [kg]",
)
print(
mass_wires(
wire_length=1,
max_current=100,
allowable_voltage_drop=1,
material="aluminum",
)
)