-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrans_conv.m
160 lines (132 loc) · 4.79 KB
/
trans_conv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
classdef trans_conv < trans_basic
%TRANS_CONV Convolution
% Detailed explanation goes here
properties
ks; % [1]. kernel size
M; % [1]. #output maps
MM; % [1]. #input maps connected for each output map
ker;
% [ks,ks,MM, Mo]. the kernels.
% Mi = #input maps, Mo = #output maps
b;
% [Mout]. bias
indMask;
% [Mi, Mo]. Indicator for the input-output map connection.
% Each colum has MM 1s with the other elements 0.
dker; % [ks,ks,Min, Mout]. the kernels derivatives.
db; % [Mout]. bias derivatives
hpmker; % handle of parameter manager
hpmb;
end
methods
function obj = trans_conv(ks_, M_, varargin)
obj.ks = ks_;
obj.M = M_;
obj.MM = -1;
if ( ~isempty(varargin) ), obj.MM = varargin{1}; end
obj.hpmker = param_mgr_fmwl();
obj.hpmb = param_mgr_fmwl();
end
function [obj, data_o] = ff(obj, data_i, data_o)
%
N = data_i.N;
data_o.a = zeros( [obj.szs_out(1:end-1), N] );
Mout = obj.szs_out(3);
Min = obj.szs_in(3);
for j = 1 : Mout
% convolution: for each connected input map
z2 = [];
ii = 0; % sub-index for input map connected to j
for i = 1 : Min
if ( ~obj.indMask(i,j) ), continue; end % not connected, skip
ii = ii + 1; % input map index
tt = convn(squeeze(data_i.a(:,:,i,:)),... % note: i
obj.ker(:,:,ii,j),... % note: ii
'valid');
if (isempty(z2)), z2 = zeros( size(tt) ); end
z2 = z2 + tt;
end % for i
% no non-linear activation!
data_o.a(:,:,j,:) = z2 + obj.b(j); % [Hou,Wou,1,N] + 1
end % for j
end % ff
function data_i = deriv_input(obj, data_i, data_o)
Mi = obj.szs_in(3); % assert(Mi == size(data_i.d,3));
Mo = obj.szs_out(3); % assert(Mo == size(data_o.a,3));
N = data_o.N; % assert(N == size(data_o.a,4));
for i = 1 : Mi
z = zeros( [obj.szs_in(1),obj.szs_in(2),N] );
for j = 1 : Mo
if ( ~obj.indMask(i,j) ), continue; end % not connected, skip
ii = sum( obj.indMask(1:i, j) ); % TODO: a reverse index be better
z = z + convn(squeeze( data_o.d(:,:,j,:) ), ... % note: j
rot180( obj.ker(:,:,ii,j) ), ... % note: ii
'full');
end % for j
data_i.d(:,:,i,:) = z; % note: i
end % for i
end % deriv_input
function obj = deriv_param(obj, data_i, data_o)
Mo = size(data_o.a, 3); % assert(Mo == size(data_o.d,3);
Mi = size(data_i.a, 3);
N = size(data_o.d, 4);
Nden = 1/N;
obj.db = zeros(Mo,1);
for j = 1 : Mo
%%% calculate dker
ii = 0;
for i = 1 : Mi
% TODO: check this!
% obj.dker(:,:,i,j) = Nden .* ...
% rot180(convn(squeeze(data_i.a(:,:,i,:)),...
% rot180(squeeze(dxo(:,:,j,:))),...
% 'valid') );
if ( ~obj.indMask(i,j) ), continue; end % not connected, skip
ii = ii + 1; % input map index
obj.dker(:,:,ii,j) = Nden .* ... % note: ii
convn(flipall(data_i.a(:,:,i,:)),... % note: i
data_o.d(:,:,j,:), ... % note: j
'valid');
end % for i
%%% calculate db
tmp = data_o.d(:,:,j,:);
obj.db(j) = sum(tmp(:)) ./ N;
end % for j
end % deriv_param
function obj = update_param(obj, t)
[obj.hpmker, obj.ker] = obj.hpmker.update_param(...
obj.ker, obj.dker, t);
[obj.hpmb, obj.b] = obj.hpmb.update_param(...
obj.b, obj.db, t);
end
function obj = init_param(obj, szs)
% set input map size
obj.szs_in = szs;
Mi = szs(3);
% index mask for connected input maps
if (obj.MM<0), obj.MM = szs(3); end % unset; set it fully connected
if (obj.MM>Mi), obj.MM = Mi; end % no more than #input maps
obj.indMask = false(obj.MM, obj.M);
for i = 1 : obj.M
tmp = randsample(Mi, obj.MM);
obj.indMask(tmp, i) = true;
end
% randomly initialize the kernels
f = 0.01;
obj.ker = f * randn( [obj.ks, obj.ks, obj.MM, obj.M] );
% Min = szs(3);
% Mout = obj.M;
% obj.ker = 2*(rand(obj.ks,obj.ks,Min, Mout) - 0.5); % in range [-1,+1]
% fan_in = obj.ks*obj.ks*Min;
% fan_out = Mout;
% obj.ker = obj.ker * sqrt(6/(fan_in + fan_out));
% set zeros the bias
obj.b = zeros(obj.M, 1);
% deduce the output map size
tmp = [szs(1), szs(2)];
N = szs(4);
obj.szs_out = ...
[tmp(1)-obj.ks+1, tmp(2)-obj.ks+1, obj.M, N];
end
end % methods
end