-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_7.rkt
229 lines (202 loc) · 5.14 KB
/
chapter_7.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
(define member*
(lambda (a l)
(cond
((null? l) #f)
((list? (car l)) (or (member* a (car l)) (member* a (cdr l))))
((eq? (car l) a) #t)
(else (member* a (cdr l)))
)
))
(define atom?
(lambda (a)
(not (list? a))
))
#|
This was my original implementation, which used two functions.
I used two functions because I didn't realize that once I asked
member* on the car of the list, I could throw that element away
completely as it was unique. I should have realized this, as I never
do anything with the contents of b.
There's no use saving things as state if they're never referenced.
|#
(define is-set?
(lambda (a b)
(cond
((null? a) #t)
((member* (car a) b) #f)
(else (is-set? (cdr a) (cons (car a) b)))
)))
(define set?
(lambda (a)
(is-set? a (quote()))
))
;(set? (list 'a 'b 'a))
(define simple-is-set?
(lambda(a)
(cond
((null? a) #t)
((member* (car a) (cdr a)) #f)
(else (simple-is-set? (cdr a)))
)))
;(simple-is-set? (list 'a 'b 'a))
(define makeset
(lambda (a)
(cond
((null? a) (quote()))
((member* (car a) (cdr a)) (makeset (cdr a)))
(else (cons (car a) (makeset (cdr a))))
)))
;(makeset (list 'a 'b 'a 'c 'a 'd))
(define multirember
(lambda (a lat)
(cond
((null? lat) (quote()))
(else
(cond
((eq? (car lat) a) (multirember a (cdr lat)))
(else (cons (car lat) (multirember a (cdr lat))))
)
)
)))
;(multirember 'a (list 'a 'b 'a 'c))
(define makeset2
(lambda (a)
(cond
((null? a) (quote()))
((member* (car a) (cdr a)) (makeset2 (multirember (car a) (cdr a))))
(else (cons (car a) (makeset2 (cdr a))))
)))
; (makeset2 (list 'a 'b 'a 'c 'a 'd))
(define subset?
(lambda (a b)
(cond
((null? a) #t)
((member* (car a) b) (subset? (cdr a) b))
(else #f)
)))
(define subset2?
(lambda (a b)
(cond
((null? a) #t)
(else (and (member* (car a) b) (subset? (cdr a) b)))
)))
;(subset2? (list 'a 'b) (list 'b 'c 'd 'a 'e))
;(subset2? (list 'a 'b 'c) (list 'b 'c))
(define eqset-naive?
(lambda (a b)
(cond
((null? a) #t)
((member* (car a) b) (eqset? (cdr a) b))
((or (not (is-set? a)) (not (is-set? b))) #f)
(else #f)
)))
(define eqset?
(lambda (a b)
(and (subset? a b) (subset? b a))
))
;(eqset? (list 'a 'b 'c) (list 'b 'c 'a))
(define intersect?
(lambda (a b)
(cond
((null? a) #f)
((member* (car a) b) #t)
(else (intersect? (cdr a) b))
)))
(define intersect2?
(lambda (a b)
(cond
((null? a) #f)
((or (member* (car a) b) #t) (intersect? (cdr a) b))
)))
;(intersect2? (list 'a 'b 'c 'd) (list 'c 'd))
(define intersect
(lambda (a b)
(cond
((null? a) (quote ()))
((member* (car a ) b) (cons (car a) (intersect (cdr a) b)))
(else (intersect (cdr a) b))
)))
;(intersect (list 's 't 'a 'm) (list 'm 'a 'c))
; I originally wrote union this way, it's kinda wrong
(define wrong_union
(lambda (a b)
(cond
((null? a) (quote ()))
((member* (car a) (intersect a b)) (cons (car a) (union (cdr a) (multirember (car a) b))))
(else (cons (car a) (union (cdr a) b) ))
)))
; better way to do it is take elements off a and put them onto b, if they are not already
; members of b. if they are in b already, then just call discard the car of a and continue
; recursing
(define union
(lambda (a b)
(cond
((null? a) b)
((member* (car a) b) (union (cdr a) b))
(else (cons (car a) (union (cdr a) b)))
)))
;(union (list 's 't 'a 'm 'c) (list 'm 'a 'c))
(define intersect-all
(lambda (a)
(cond
((null? (cdr a)) (car a))
(else (intersect (car a) (intersect-all (cdr a))) )
)))
;(intersect-all (list (list 6 'p 'a) (list 3 'p 'a 6 'p) (list 8 'p 'a 6 'p) (list 'a 6)))
(define a-pair?
(lambda (a)
(cond
((atom? a) #f)
((null? (cdr a)) #f)
((null? (cdr a)) #f)
(not (null? (cdr (cdr a))))
(else #f)
)))
(define first
(lambda (p)
(car p)))
(define second
(lambda (p)
(car (cdr p))
))
(define third
(lambda (p)
(car (cdr (cdr p)))
))
(define build
(lambda (a b)
(cons a (cons b (quote())))
))
(define (firsts lat)
(cond
((null? lat) (quote()))
(else (cond
( (atom? (car lat)) (cons (car lat) (firsts (cdr lat))))
(else (cons (car (car lat)) (firsts (cdr lat))))
))
)
)
(define fun?
(lambda (a)
(set? (firsts a))
))
;(fun? (list (list 'd 4) (list 'b 0) (list 'b 9)))
(define revrel
(lambda (rel)
(cond
((null? rel) (quote()))
(else (cons (build (second (car rel)) (first (car rel))) (revrel (cdr rel))))
)))
;(revrel (list (list 1 2) (list 3 4) (list 5 6)))
(define seconds
(lambda (rel)
(cond
((null? rel) (quote()))
(else (cons (second (car rel)) (seconds (cdr rel))))
)))
;(seconds (list (list 1 2) (list 3 4) (list 5 6)))
(define fullfun?
(lambda (rel)
(and (set? (firsts rel)) (set? (seconds rel)))
))
(fullfun? (list (list 'g 'r) (list 'pl 'pr) (list 's 'pr)))