forked from xarg/gopathfinding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathastar.go
233 lines (213 loc) · 4.83 KB
/
astar.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
//pathfinding package implements pathfinding algorithms such as Dijkstra and A*
package pathfinding
import (
"fmt"
)
//Defining possible graph elements
const (
UNKNOWN int = iota - 1
LAND
WALL
START
STOP
)
type MapData [][]int
//Return a new MapData by value given some dimensions
func NewMapData(rows, cols int) *MapData {
result := make(MapData, rows)
for i := 0; i < rows; i++ {
result[i] = make([]int, cols)
}
return &result
}
//A node is just a set of x, y coordinates with a parent node and a
//heuristic value H
type Node struct {
x, y int //Using int for efficiency
parent *Node
H int //Heuristic (aproximate distance)
cost int //Path cost for this node
}
//Create a new node
func NewNode(x, y int) *Node {
node := &Node{
x: x,
y: y,
parent: nil,
H: 0,
cost: 0,
}
return node
}
//Return string representation of the node
func (self *Node) String() string {
return fmt.Sprintf("<Node x:%d y:%d addr:%d>", self.x, self.y, &self)
}
//Start, end nodes and a slice of nodes
type Graph struct {
start, stop *Node
nodes []*Node
data *MapData
}
//Return a Graph from a map of coordinates (those that are passible)
func NewGraph(map_data *MapData) *Graph {
var start, stop *Node
var nodes []*Node
for i, row := range *map_data {
for j, _type := range row {
if _type == START || _type == STOP {
node := NewNode(i, j)
nodes = append(nodes, node)
if _type == START {
start = node
}
if _type == STOP {
stop = node
}
}
}
}
g := &Graph{
nodes: nodes,
start: start,
stop: stop,
data: map_data,
}
return g
}
//Get *Node based on x, y coordinates.
func (self *Graph) Node(x, y int) *Node {
//Check if node is not already in the graph and append that node
for _, n := range self.nodes {
if n.x == x && n.y == y {
return n
}
}
map_data := *self.data
if map_data[x][y] == LAND || map_data[x][y] == STOP {
//Create a new node and add it to the graph
n := NewNode(x, y)
self.nodes = append(self.nodes, n)
return n
}
return nil
}
//Get the nodes near some node
func (self *Graph) adjacentNodes(node *Node) []*Node {
var result []*Node
map_data := *self.data
rows := len(map_data)
cols := len(map_data[0])
//If the coordinates are passable then create a new node and add it
if node.x <= rows && node.y+1 < cols {
if new_node := self.Node(node.x, node.y+1); new_node != nil {
result = append(result, new_node)
}
}
if node.x <= rows && node.y-1 >= 0 {
new_node := self.Node(node.x, node.y-1)
if new_node != nil {
result = append(result, new_node)
}
}
if node.y <= cols && node.x+1 < rows {
new_node := self.Node(node.x+1, node.y)
if new_node != nil {
result = append(result, new_node)
}
}
if node.y <= cols && node.x-1 >= 0 {
new_node := self.Node(node.x-1, node.y)
if new_node != nil {
result = append(result, new_node)
}
}
return result
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
func removeNode(nodes []*Node, node *Node) []*Node {
ith := -1
for i, n := range nodes {
if n == node {
ith = i
break
}
}
if ith != -1 {
copy(nodes[ith:], nodes[ith+1:])
nodes = nodes[:len(nodes)-1]
}
return nodes
}
func hasNode(nodes []*Node, node *Node) bool {
for _, n := range nodes {
if n == node {
return true
}
}
return false
}
//Return the node with the minimum H
func minH(nodes []*Node) *Node {
if len(nodes) == 0 {
return nil
}
result_node := nodes[0]
minH := result_node.H
for _, node := range nodes {
if node.H < minH {
minH = node.H
result_node = node
}
}
return result_node
}
func retracePath(current_node *Node) []*Node {
var path []*Node
path = append(path, current_node)
for current_node.parent != nil {
path = append(path, current_node.parent)
current_node = current_node.parent
}
//Reverse path
for i, j := 0, len(path)-1; i < j; i, j = i+1, j-1 {
path[i], path[j] = path[j], path[i]
}
return path
}
// In our particular case: Manhatan distance
func Heuristic(graph *Graph, tile *Node) int {
return abs(graph.stop.x-tile.x) + abs(graph.stop.y-tile.y)
}
//A* search algorithm. See http://en.wikipedia.org/wiki/A*_search_algorithm
func Astar(graph *Graph) []*Node {
var path, openSet, closedSet []*Node
openSet = append(openSet, graph.start)
for len(openSet) != 0 {
//Get the node with the min H
current := minH(openSet)
if current.parent != nil {
current.cost = current.parent.cost + 1
}
if current == graph.stop {
return retracePath(current)
}
openSet = removeNode(openSet, current)
closedSet = append(closedSet, current)
for _, tile := range graph.adjacentNodes(current) {
if tile != nil && graph.stop != nil && !hasNode(closedSet, tile) {
tile.H = Heuristic(graph, tile) + current.cost
if !hasNode(openSet, tile) {
openSet = append(openSet, tile)
}
tile.parent = current
}
}
}
return path
}