On Private Conversion Measurement via Global and Local DP

Maxime Vono, Senior Researcher, Criteo Al Lab <u>m.vono@criteo.com</u>

Private Conversion Measurement

- Input: features (user, contextual & ad) + conversion label (e.g., visit, sales, basket event)
- **Goal:** optimise advertising campaigns
- **How:** learn probabilities of (rare) events to build bidding models

Private Conversion Measurement

- **Input:** features (user, contextual & ad) + conversion label (e.g., visit, sales, basket event)
- **<u>Goal</u>**: optimise advertising campaigns
- **How:** learn probabilities of (rare) events to build bidding models

- Private learning constraints: input data is obfuscated
 - noisy event-level reporting: local DP applied to features and/or labels
 - learning via an aggregation API: **global** DP applied to aggregated statistics
 - learning via a trusted server: **global** DP applied to learning

Differential Privacy - Recap

Numerical information Additive Noise

Key Messages

Any information depending on user/cohorts data is noised •

Categorical information

Randomized Response

croissant

 $x^{obs} =$

In theory, the noise level for each bit of information retrieved ٠ depends on the total quantity of information retrieved

Local DP Learning Paradigm

• <u>Pros:</u>

- agnostic to the reporting/learning downstream task
- \circ noise is added once
- \circ easy to use within current stack
- <u>Cons:</u>
 - o learning is biased
 - noise amount could be detrimental to performance
 - few contributions on local DP frameworks to operate AI systems

Local DP Learning Paradigm

Position Paper: Open Research Challenges for Private Advertising Systems under Local Differential Privacy

Matilde Tullii *², Solenne Gaucher*², Hugo Richard*¹, Eustache Diemert¹, Vianney Perchet^{1, 2}, Alain Rakotomamonjy¹, Clément Calauzènes¹, and Maxime Vono¹

¹Criteo AI Lab, France ²ENSAE, Crest, France

February 5, 2024

Global DP Learning Paradigm – Aggregation API

• <u>Pros:</u>

- aggregate statistics are partially re-usable accross tasks
- \circ less noise than local DP

• <u>Cons:</u>

- learning approaches could be envisioned leveraging GLMs structure
- global full DP performance is not satisfying
- local label DP is promising (WALR)

Global DP Learning Paradigm – Learning Trusted Server

• <u>Pros:</u>

- o agnostic to the ML model
- less noise than local DP

• <u>Cons:</u>

- the more models/data analytics on the same data batch, the higher the noise
- o model monitoring/debugging?
- o distributed learning?

Impact of DP noise on offline performance

• <u>Rationale:</u>

- o general private learning problem is more complex (infra cost, availability of features at training/inference time,...)
- \circ we want to isolate the DP effect to have first insights for decision making
- **Base ML model:** ridge logistic regression
- **Privacy unit:** display (for the sake of simplicity)
- Approches benchmarked:
 - base model without DP
 - learning on event-level data (with full and label DP)
 - o learning via gradients queried from an Aggregation API (with full and label DP)
 - learning inside a trusted server with global DP (DP-SGD)

Empirical Results - Dataset

Criteo Attribution Modeling for Bidding Dataset

https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset/

- Sample of 30 days of Criteo live traffic data.
- Each example corresponds to a click and contains:
 - Features: campaign ID, 9 contextual features, and the cost paid for the display.
 - Label: a 0/1 field indicating whether there was a conversion in the 30 days after the click and that is last-touch attributed to this click.
 - User ID: can be used to evaluate User x Time privacy unit.
- Number of rows is 5,947,563. Conversion rate (under last-touch attribution) is 6.74%.

Empirical Results – Performance (epsilon = 1)

Private Learning Approach	DP paradigm	DP type	Relative uplift (in LLH)
Baseline without DP	N/A	N/A	26%
Learning on event—level data	Local DP	Full	< 0%
		Label	< 0%
Learning via gradients queried from Aggregation API	Global DP	Full	21%
		Label	23%
Learning on aggregated data from Aggregation API	Global DP	Label	22%
DP-SGD	Global DP	Full	24%

Empirical Results – Performance (epsilon = 5)

Private Learning Approach	DP paradigm	DP type	Relative uplift (in LLH)
Baseline without DP	N/A	N/A	26%
Learning on event—level data	Local DP	Full	16%
		Label	25%
Learning via gradients queried from Aggregation API	Global DP	Full	23%
		Label	26%
Learning on aggregated data from Aggregation API	Global DP	Label	24%
DP-SGD	Global DP	Full	26%

Empirical Results – Performance (epsilon = 5)

Private Learning Approach	DP paradigm	DP type	Relative uplift (in LLH)
Baseline without DP	N/A	N/A	26%
Learning on event—level data	Local DP	Full	16%
		Label	25%
Learning via gradients queried from Aggregation API	Global DP	Full	23%
		Label	26%
Learning on aggregated data from Aggregation API	Global DP	Label	24%
DP-SGD	Global DP	Full	26%

Next Steps

- Present to PATCG
 - A benchmark of SOTA on learning from noisy event-level reports, esp. featuring user-level budgeting
 - Insights regarding learning inside a trusted server (focus on TEE-empowered trusted server)
- Happy to collaborate on how to extend WALR (or related ideas) beyond GLMs