-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecute_retrieval.py
148 lines (118 loc) · 4.71 KB
/
execute_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import re
import json
import copy
import time
import torch
import random
import argparse
import warnings
from tqdm import tqdm
import pandas as pd
from pathlib import Path
import clip
import faiss
import yaml
import uuid
import requests
import concurrent.futures
# Suppress warnings
warnings.filterwarnings("ignore")
IMAGE_DB_SOURCE_NAMES = ["cc12m", "redcaps12m", "mathvision", "chartqa", "ai2d"] #, "gqa", "ocr_vqa", "textvqa", "vg"]
IMAGE_SEARCH_NUM = 5
def load_json(path):
with open(path, 'r', encoding='utf-8') as f:
return json.load(f)
class ImageDBLoader:
"""
Load image list and image indices.
"""
@staticmethod
def load_image_db():
image_list = dict()
image_indices = dict()
for image_dataset in IMAGE_DB_SOURCE_NAMES:
data_dir = Path(f'../Sonny-PM/prepare_image_db/embeddings_folder/{image_dataset}/metadata')
df = pd.concat(
pd.read_parquet(parquet_file)
for parquet_file in data_dir.glob('*.parquet')
)
ind = faiss.read_index(f'../Sonny-PM/prepare_image_db/index_folder/{image_dataset}/knn.index')
image_list[image_dataset] = df['image_path'].tolist()
image_indices[image_dataset] = ind
return {
'image_list': image_list,
'image_indices': image_indices
}
image_db = ImageDBLoader.load_image_db()
print(f'Load Image DB Done!')
image_mapper = {
'cc12m': load_json('../Sonny-PM/prepare_image_db/image_mapper/cc12m.json'),
'redcaps12m': load_json('../Sonny-PM/prepare_image_db/image_mapper/redcaps12m.json')
}
print(f'Load image mapper Done!')
MODULE_MAPPER = {
't2i': 'sdxl-lightning',
'p-t2i': 'photomaker',
'web': 'bing',
'retrieval': 'image_db'
}
def load_openai_clip_model(device: str):
model, _ = clip.load('ViT-L/14@336px', device=device, jit=False)
return model
model = load_openai_clip_model('cuda:0')
@torch.no_grad
def retrieve_image(instance, persona_seed_num):
image_desc = instance['image_description']
image_uuid = '{}:{}'.format(persona_seed_num, instance['image_uuid'])
desc_tokens = clip.tokenize(image_desc, truncate=True)
desc_feats = model.encode_text(desc_tokens.to('cuda:0'))
desc_feats /= desc_feats.norm(dim=-1, keepdim=True)
desc_embeds = desc_feats.cpu().detach().numpy().astype('float32')
#print("Done get embedding")
image_search_result = dict()
for src_name in IMAGE_DB_SOURCE_NAMES:
D, I = image_db['image_indices'][src_name].search(desc_embeds, IMAGE_SEARCH_NUM)
tmp_result = []
for item_D, item_I in zip(D[0], I[0]):
if src_name in ['redcaps12m', 'cc12m']:
target_mapper = image_mapper[src_name]
tmp_result.append({
'image_path_from_db': image_db['image_list'][src_name][item_I], #target_mapper[image_db['image_list'][src_name][item_I]],
'clip_score': str(item_D)
})
else:
tmp_result.append({
'image_path_from_db': image_db['image_list'][src_name][item_I],
'clip_score': str(item_D)
})
image_search_result[src_name] = tmp_result
return image_search_result
def batch_images(dataset, persona_seed_num):
target_dataset, non_target_dataset = [], []
for instance in tqdm(dataset, total=len(dataset)):
module = instance['image_alignment_module']
model_id = MODULE_MAPPER[module]
if model_id == 'image_db':
target_dataset.append(instance)
else:
non_target_dataset.append(instance)
final_dataset = []
for target_instance in tqdm(target_dataset, total=len(target_dataset)):
retrieved_results = retrieve_image(target_instance, persona_seed_num)
cp_instance = copy.deepcopy(target_instance)
cp_instance['db_searched_results'] = retrieved_results
final_dataset.append(cp_instance)
return final_dataset + non_target_dataset
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--start-idx', type=int)
parser.add_argument('--end-idx', type=int)
args = parser.parse_args()
for persona_seed_num in range(args.start_idx, args.end_idx):
dataset = load_json(f'curated_stark/planner-parsed-openai/stark_{persona_seed_num}.json')
generations = batch_images(dataset, persona_seed_num)
data_save_path = 'curated_stark/plan-and-execute/image_db'
os.makedirs(data_save_path, exist_ok=True)
with open(os.path.join(data_save_path, f'stark_{persona_seed_num}.json'), 'w', encoding='utf-8') as f:
json.dump(generations, f, ensure_ascii=False, indent='\t')