This repository was archived by the owner on Jul 7, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
214 lines (183 loc) · 8.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import random
import argparse
import warnings
warnings.filterwarnings('ignore')
import torch
import torch.nn as nn
import torch.optim as optim
import skimage.color as sc
from torch.utils.data import DataLoader
from HPINet import HPINet
from dataset import DIV2KTrainDataset, FolderDataset
import utils
# settings
# below we suggest you check and customize them
parser = argparse.ArgumentParser(description='Train HPINet')
parser.add_argument('--exp_name', type=str, default='HPINet',
help='experiment name')
parser.add_argument('--model', type=str, default='M', choices=['S', 'M', 'L'],
help='model size')
parser.add_argument('--root', type=str, default='Train_Datasets/DIV2K/',
help='dataset directory')
parser.add_argument('--ext', type=str, choices=['.npy', '.png'], default='.png',
help='image suffix. npy or png is required')
parser.add_argument('--scale', type=int, default=4,
help='upscale factor')
parser.add_argument('--isY', action='store_true', default=True,
help='evaluate on y channel, if False evaluate on RGB channels')
parser.add_argument('--save_interval', type=int, default=20)
parser.add_argument('--test_interval', type=int, default=1)
parser.add_argument('--log_interval', type=int, default=100)
# if you want to reproduce results in paper, arguments below had better remain unchanged;
# otherwise, you are more than welcome to modify them for something new
parser.add_argument('--epochs', type=int, default=420,
help='number of epochs')
parser.add_argument('--start-epoch', default=1, type=int,
help='manual start epoch number')
parser.add_argument('--lr', type=float, default=1.5e-4,
help='learning rate')
parser.add_argument('--step_size', type=int, default=60,
help='learning rate decay per step_size epochs')
parser.add_argument('--max_batch_size', type=int, default=64,
help='maximum training batch size')
parser.add_argument('--min_batch_size', type=int, default=8,
help='minimum training batch size')
parser.add_argument('--gamma', type=int, default=0.5,
help='learning rate decay factor for step decay')
parser.add_argument('--cuda', action='store_true', default=True,
help='use cuda')
parser.add_argument('--resume', default="", type=str,
help='path to checkpoint')
parser.add_argument('--pretrained', default="", type=str,
help='path to pretrained models')
parser.add_argument('--threads', type=int, default=8,
help='number of threads for data loading')
parser.add_argument('--max_patch_size', type=int, default=720,
help='maximum hr size')
parser.add_argument('--min_patch_size', type=int, default=192,
help='minimum hr size')
parser.add_argument('--seed', type=int, default=2,
help='random seed')
parser.add_argument('--tb_logger', action='store_true', default=False,
help='use tb_logger')
args = parser.parse_args()
print(args)
if args.tb_logger:
from torch.utils.tensorboard import SummaryWriter
tb_logger = SummaryWriter(log_dir='./tb_logger/' + args.exp_name)
# random seed
seed = args.seed
if seed is None:
seed = random.randint(1, 10000)
print('Seed: ', seed)
random.seed(seed)
torch.manual_seed(seed)
cuda = args.cuda
device = torch.device('cuda' if cuda else 'cpu')
print('===> Loading datasets')
trainset = DIV2KTrainDataset(args.scale, args.max_patch_size, args.root, args.ext)
testset = FolderDataset('benchmarks/Set5/', 'benchmarks/Set5_LR/x{}/'.format(args.scale), args.scale)
testing_data_loader = DataLoader(dataset=testset, num_workers=1, batch_size=1,
shuffle=False)
print('===> Building models')
args.is_train = True
model = HPINet(args.model, args.scale)
print('===> Setting GPU')
if cuda:
model = model.to(device)
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
if args.pretrained:
if os.path.isfile(args.pretrained):
pretrained = utils.load_state_dict(args.pretrained)
model.load_state_dict(pretrained, strict=False)
else:
print('=====> No pretrained models found at {}. Continue.'.format(args.pretrained))
print('===> Setting Optimizer')
optimizer = optim.Adam(model.parameters(), lr=args.lr)
def adjust_learning_rate(optimizer, epoch, step_size, lr_init, gamma):
factor = epoch // step_size
lr = lr_init * (gamma ** factor)
lr = max(lr, 1e-6)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_patch_size(min_patch_size, max_patch_size, scale, epoch, min_divider=8):
return min_patch_size // scale + \
int((epoch - 1) * min_divider / scale) % ((max_patch_size - min_patch_size) // scale)
def adjust_batch_size(min_batch_size, max_batch_size, patch_size, min_patch_size, scale):
return max(min_batch_size, int((max_batch_size / (
patch_size * scale / min_patch_size) // torch.cuda.device_count() * torch.cuda.device_count())))
def save_checkpoint(epoch):
ckpt_dir = '{}_checkpoint_x{}/'.format(args.exp_name, args.scale)
ckpt_path = os.path.join(ckpt_dir, 'epoch_{}.pth'.format(epoch))
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
torch.save(model.state_dict(), ckpt_path)
print('===> Checkpoint saved to {}'.format(ckpt_path))
def train_epoch(epoch):
model.train()
adjust_learning_rate(optimizer, epoch, args.step_size, args.lr, args.gamma)
ps_lr = adjust_patch_size(args.min_patch_size, args.max_patch_size, args.scale, epoch)
bs = adjust_batch_size(args.min_batch_size, args.max_batch_size, ps_lr,
args.min_patch_size, args.scale)
trainset.patch_size = ps_lr * args.scale
trainset.repeat = 1000 // (800 // bs)
training_data_loader = DataLoader(dataset=trainset, num_workers=args.threads, batch_size=bs,
shuffle=True, pin_memory=True, drop_last=True)
for iteration, (lr_tensor, hr_tensor) in enumerate(training_data_loader, 1):
if args.cuda:
lr_tensor = lr_tensor.to(device) # ranges from [0, 1]
hr_tensor = hr_tensor.to(device) # ranges from [0, 1]
optimizer.zero_grad()
loss_l1 = model(lr_tensor, hr_tensor)
loss_sr = loss_l1.mean()
loss_sr.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1, norm_type=2)
optimizer.step()
if iteration % args.log_interval == 0:
print('===> Epoch[{}]({}/{}): Loss_l1: {:.5f}'.format(epoch, iteration,
len(training_data_loader),
loss_sr.item()))
if args.tb_logger:
tb_logger.add_scalar('loss', loss_sr.item(),
(epoch - 1) * len(training_data_loader) + iteration)
def valid(epoch):
model.eval()
avg_psnr, avg_ssim = 0, 0
for batch in testing_data_loader:
lr_tensor, hr_tensor = batch[0], batch[1]
if args.cuda:
lr_tensor = lr_tensor.to(device)
hr_tensor = hr_tensor.to(device)
with torch.no_grad():
pre = model(lr_tensor)
sr_img = utils.tensor2np(pre.detach()[0])
gt_img = utils.tensor2np(hr_tensor.detach()[0])
crop_size = args.scale
cropped_sr_img = utils.shave(sr_img, crop_size)
cropped_gt_img = utils.shave(gt_img, crop_size)
if args.isY is True:
im_label = utils.quantize(sc.rgb2ycbcr(cropped_gt_img)[:, :, 0])
im_pre = utils.quantize(sc.rgb2ycbcr(cropped_sr_img)[:, :, 0])
else:
im_label = cropped_gt_img
im_pre = cropped_sr_img
avg_psnr += utils.compute_psnr(im_pre, im_label)
avg_ssim += utils.compute_ssim(im_pre, im_label)
avg_psnr = avg_psnr / len(testing_data_loader)
avg_ssim = avg_ssim / len(testing_data_loader)
print('===> Valid psnr: {:.4f}, ssim: {:.4f}'.format(avg_psnr, avg_ssim))
if args.tb_logger:
tb_logger.add_scalar('psnr', avg_psnr, (epoch - 1))
return avg_psnr
def train():
print('===> Training')
for epoch in range(args.start_epoch, args.epochs + 1):
train_epoch(epoch)
if epoch % args.test_interval == 0:
valid(epoch)
if epoch % args.save_interval == 0:
save_checkpoint(epoch)
if __name__ == '__main__':
train()