You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
File "<stdin>", line 1, in <module>
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/generic.py", line 11230, in shift
return self._shift_with_freq(periods, axis, freq)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/generic.py", line 11263, in _shift_with_freq
new_ax = index.shift(periods, freq)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/indexes/datetimelike.py", line 503, in shift
return self + offset
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/ops/common.py", line 76, in new_method
return method(self, other)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/arraylike.py", line 186, in __add__
return self._arith_method(other, operator.add)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/indexes/base.py", line 7238, in _arith_method
return super()._arith_method(other, op)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/base.py", line 1382, in _arith_method
result = ops.arithmetic_op(lvalues, rvalues, op)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/ops/array_ops.py", line 273, in arithmetic_op
res_values = op(left, right)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/ops/common.py", line 76, in new_method
return method(self, other)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/arrays/datetimelike.py", line 1372, in __add__
result = self._add_offset(other)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/arrays/datetimes.py", line 828, in _add_offset
result = result.tz_localize(self.tz)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/arrays/_mixins.py", line 81, in method
return meth(self, *args, **kwargs)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/pandas/core/arrays/datetimes.py", line 1088, in tz_localize
new_dates = tzconversion.tz_localize_to_utc(
File "tzconversion.pyx", line 431, in pandas._libs.tslibs.tzconversion.tz_localize_to_utc
Expected Behavior
This would be the desired ouput:
A B
2024-03-31 01:00:00+01:00 0 NaN
2024-03-31 03:00:00+02:00 1 NaN
2024-03-31 04:00:00+02:00 2 1
2024-03-31 05:00:00+02:00 3 2
2024-03-31 06:00:00+02:00 4 3
2024-03-31 07:00:00+02:00 5 4
2024-03-31 08:00:00+02:00 6 5
2024-03-31 09:00:00+02:00 7 6
The point of converting a UTC timeseries to Europe/Amsterdam time is that I want to look up behaviour of people, which stays consistent to their timezone. E.g. if someone goes to work every day at 08:00, that remains at 08:00 in their timezone, even after the daylight savings shift. In UTC, that person appears to leave one hour earlier (at 07:00). By converting to Europe/Amsterdam time, then shifting, this should be handled correctly.
Installed Versions
commit : bdc79c1
python : 3.10.11.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-1040-azure
Version : #47~20.04.1-Ubuntu SMP Fri Jun 2 21:38:08 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
I think the best solution would be to add the options 'nonexistent' and 'ambiguous' to pd.DateOffset (similar as we have for e.g. the floor method), such that one can do:
A B
2024-03-30 07:00:00+01:00 0 NaN
2024-03-30 08:00:00+01:00 1 NaN
2024-03-30 09:00:00+01:00 2 NaN
2024-03-30 10:00:00+01:00 3 NaN
2024-03-30 11:00:00+01:00 4 NaN
... ... ...
2024-04-06 04:00:00+02:00 164 NaN
2024-04-06 05:00:00+02:00 165 NaN
2024-04-06 06:00:00+02:00 166 NaN
2024-04-06 07:00:00+02:00 167 NaN
2024-04-06 08:00:00+02:00 168 0.0
[169 rows x 2 columns]
Even though I would expect:
A B
2024-03-30 07:00:00+01:00 0 NaN
2024-03-30 08:00:00+01:00 1 NaN
2024-03-30 09:00:00+01:00 2 NaN
2024-03-30 10:00:00+01:00 3 NaN
2024-03-30 11:00:00+01:00 4 NaN
... ... ...
2024-04-06 04:00:00+02:00 164 NaN
2024-04-06 05:00:00+02:00 165 NaN
2024-04-06 06:00:00+02:00 166 NaN
2024-04-06 07:00:00+02:00 167 0.0
2024-04-06 08:00:00+02:00 168 1.0
[169 rows x 2 columns]
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
This last line gives an error:
pytz.exceptions.NonExistentTimeError: 2024-03-31 02:00:00
With full traceback:
Expected Behavior
This would be the desired ouput:
The point of converting a UTC timeseries to Europe/Amsterdam time is that I want to look up behaviour of people, which stays consistent to their timezone. E.g. if someone goes to work every day at 08:00, that remains at 08:00 in their timezone, even after the daylight savings shift. In UTC, that person appears to leave one hour earlier (at 07:00). By converting to Europe/Amsterdam time, then shifting, this should be handled correctly.
Installed Versions
commit : bdc79c1
python : 3.10.11.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-1040-azure
Version : #47~20.04.1-Ubuntu SMP Fri Jun 2 21:38:08 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.1
numpy : 1.25.0
pytz : 2024.1
dateutil : 2.8.2
setuptools : 67.8.0
pip : 23.1.2
Cython : 0.29.35
pytest : 8.1.1
hypothesis : 6.99.5
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.14.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2023.6.0
gcsfs : None
matplotlib : 3.7.1
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 15.0.1
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.10.1
sqlalchemy : 2.0.16
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: