We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
# Your code here import pandas._testing as tm idx_unique = tm.makeIntervalIndex(k=5) idx_non_unique = idx_unique[[0, 0, 1, 2, 3, 4]] assert idx_unique.intersection(idx_non_unique).equals(idx_non_unique) assert idx_non_unique.intersection(idx_unique).equals(idx_non_unique) # As an implementation note: assert idx_non_unique._intersection_non_unique(idx_unique).equals(idx_non_unique)
All of these should probably fail
Intersections on IntervalIndexes should not repeat duplicated elements, similar to all other Index types.
IntervalIndexes
Index
I came across this while writing tests for #38654
For example, if we defined a test:
def check_intersection_commutative(left, right): assert left.intersection(right).equals(right.intersection(left)) @pytest.mark.parametrize("index_maker", tm.index_subclass_makers_generator()) def test_intersection_uniqueness(index_maker): if index_make is tm.makeMultiIndex: pytest.pass() # This index maker is bugged ind_unique = index_maker(k=5) ind_non_unique = idx_unique[[0, 0, 1, 2, 3, 4]] check_intersection_commutative(ind_unique, ind_non_unique) assert idx_unique.intersection(idx_non_unique).is_unique
Only IntervalIndex would fail (not including the bugged makeMultiIndex).
IntervalIndex
makeMultiIndex
All of the assertions in the original example should fail.
pd.show_versions()
INSTALLED VERSIONS ------------------ commit : 9f1a41dee0e9167361d9f435b4c3d499d01e415a python : 3.8.5.final.0 python-bits : 64 OS : Darwin OS-release : 19.6.0 Version : Darwin Kernel Version 19.6.0: Tue Nov 10 00:10:30 PST 2020; root:xnu-6153.141.10~1/RELEASE_X86_64 machine : x86_64 processor : i386 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 1.3.0.dev0+210.g9f1a41dee0.dirty numpy : 1.18.5 pytz : 2020.1 dateutil : 2.8.1 pip : 20.1.1 setuptools : 49.2.0.post20200712 Cython : 0.29.21 pytest : 5.4.3 hypothesis : 5.20.3 sphinx : 3.1.1 blosc : None feather : None xlsxwriter : 1.2.9 lxml.etree : 4.5.2 html5lib : 1.1 pymysql : None psycopg2 : None jinja2 : 2.11.2 IPython : 7.16.1 pandas_datareader: None bs4 : 4.9.1 bottleneck : 1.3.2 fsspec : 0.7.4 fastparquet : 0.4.1 gcsfs : 0.6.2 matplotlib : 3.2.2 numexpr : 2.7.1 odfpy : None openpyxl : 3.0.4 pandas_gbq : None pyarrow : 0.17.1 pyxlsb : None s3fs : 0.4.2 scipy : 1.5.1 sqlalchemy : 1.3.18 tables : 3.6.1 tabulate : 0.8.7 xarray : 0.16.0 xlrd : 1.2.0 xlwt : 1.3.0 numba : 0.50.1
INSTALLED VERSIONS ------------------ commit : b5958ee1999e9aead1938c0bba2b674378807b3d python : 3.8.6.final.0 python-bits : 64 OS : Darwin OS-release : 19.6.0 Version : Darwin Kernel Version 19.6.0: Tue Nov 10 00:10:30 PST 2020; root:xnu-6153.141.10~1/RELEASE_X86_64 machine : x86_64 processor : i386 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 1.1.5 numpy : 1.19.4 pytz : 2020.1 dateutil : 2.8.1 pip : 20.3.3 setuptools : 51.0.0 Cython : 0.29.21 pytest : 6.2.1 hypothesis : None sphinx : 3.3.1 blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : 2.11.2 IPython : 7.19.0 pandas_datareader: None bs4 : None bottleneck : None fsspec : 0.8.5 fastparquet : 0.4.1 gcsfs : None matplotlib : 3.3.3 numexpr : 2.7.1 odfpy : None openpyxl : None pandas_gbq : None pyarrow : 2.0.0 pytables : None pyxlsb : None s3fs : 0.4.2 scipy : 1.5.4 sqlalchemy : 1.3.18 tables : 3.6.1 tabulate : 0.8.7 xarray : 0.16.2 xlrd : 1.2.0 xlwt : None numba : 0.52.0
The text was updated successfully, but these errors were encountered:
Successfully merging a pull request may close this issue.
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
All of these should probably fail
Problem description
Intersections on
IntervalIndexes
should not repeat duplicated elements, similar to all otherIndex
types.I came across this while writing tests for #38654
For example, if we defined a test:
Only
IntervalIndex
would fail (not including the buggedmakeMultiIndex
).Expected Output
All of the assertions in the original example should fail.
Output of
pd.show_versions()
dev environment
1.1.5
The text was updated successfully, but these errors were encountered: