You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Variably-spaced timestamps are not handled well, if the variation is caused by DST. The result of i[1] + i.freq is Timestamp('2020-03-30 01:00:00+0200', tz='Europe/Berlin', freq='D'), whereas Timestamp('2020-03-30 00:00:00+0200', tz='Europe/Berlin', freq='D') was expected.
This is in contrast to timestamps where the variation is caused by e.g. months being different lengths, which are handled correctly.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.8.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en
LOCALE : de_DE.cp1252
Ya generally Timestamps + offsets with DST is generally still not well supported
jbrockmendel
changed the title
BUG: timezone-aware DatetimeIndex doesn't handle offsets very well
BUG: pd.date_range with DST-crossing has incorrect freq attribute
Aug 5, 2020
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
Problem description
Variably-spaced timestamps are not handled well, if the variation is caused by DST. The result of
i[1] + i.freq
isTimestamp('2020-03-30 01:00:00+0200', tz='Europe/Berlin', freq='D')
, whereasTimestamp('2020-03-30 00:00:00+0200', tz='Europe/Berlin', freq='D')
was expected.This is in contrast to timestamps where the variation is caused by e.g. months being different lengths, which are handled correctly.
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.8.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en
LOCALE : de_DE.cp1252
pandas : 1.0.5
numpy : 1.18.5
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 49.2.0.post20200714
Cython : None
pytest : 5.4.3
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.16.1
pandas_datareader: None
bs4 : 4.9.1
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.2.2
numexpr : None
odfpy : None
openpyxl : 3.0.4
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.4.3
pyxlsb : None
s3fs : None
scipy : 1.5.0
sqlalchemy : 1.3.18
tables : None
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : None
xlsxwriter : None
numba : None
The text was updated successfully, but these errors were encountered: