-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrun.py
170 lines (140 loc) · 5.16 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import numpy as np
import tensorflow as tf
import random
import argparse
import gpflow
from methods.oei import OEI
from methods.random import Random
import time
import pickle
from benchmark_functions import scale_function, hart6
import copy
algorithms = {
'OEI': OEI,
'Random': Random
}
class SafeMatern32(gpflow.kernels.Matern32):
# See https://github.com/GPflow/GPflow/pull/727
def euclid_dist(self, X, X2):
r2 = self.square_dist(X, X2)
return tf.sqrt(tf.maximum(r2, 1e-40))
def run(options, seed, robust=False, save=False):
'''
Runs bayesian optimization on the setup defined in the options dictionary
starting from a predefined seed. Saves results on the folder named 'out' while logging
is saved on the folder 'log'.
'''
options['seed'] = seed
# Set random seed: Numpy, Tensorflow, Python
tf.reset_default_graph()
tf.set_random_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Create bo object which will be called later to perform Bayesian Optimization.
bo = algorithms[options['algorithm']](options)
try:
start = time.time()
# Run BO
X, Y = bo.bayesian_optimization()
end = time.time()
print('Done with:', bo.options['job_name'], 'seed:', seed,
'Time:', '%.2f' % ((end - start)/60), 'min')
except KeyboardInterrupt:
print("Caught KeyboardInterrupt, stopping.")
raise
except:
print('Experiment of', bo.options['job_name'],
'with seed', seed, 'failed')
X, Y = None, None
if not robust:
raise
if save:
save_folder = 'out/' + bo.options['job_name'] + '/'
filepath = save_folder + str(seed) + '.npz'
try:
os.makedirs(save_folder)
except OSError:
pass
try:
os.remove(filepath)
except OSError:
pass
np.savez(filepath, X=X, Y=Y)
def create_options(args):
functions = {
'hart6': hart6()
}
kernels_gpflow = {
'RBF': gpflow.kernels.RBF,
'Matern32': SafeMatern32,
}
options = vars(copy.copy(args))
options['objective'] = functions[options['function']]
options['objective'].bounds = np.asarray(options['objective'].bounds)
# This scales the input domain of the function to [-0.5, 0.5]^n. It's different to the
# normalize option, which scales the output of the function.
options['objective'] = scale_function(options['objective'])
input_dim = options['objective'].bounds.shape[0]
if options['algorithm'] != 'LP_EI':
k = kernels_gpflow[options['kernel']](
input_dim=input_dim, ARD=options['ard'])
if options['priors']:
k.lengthscales.prior = gpflow.priors.Gamma(shape=2, scale=0.5)
k.variance.prior = gpflow.priors.Gaussian(mu=1, var=2)
options['kernel'] = k
options['job_name'] = options['function'] + '_' + options['algorithm']
return options
def main(args):
options = create_options(args)
save_folder = 'out/' + options['job_name'] + '/'
filepath = save_folder + 'arguments.pkl'
try:
os.makedirs(save_folder)
except OSError:
pass
try:
os.remove(filepath)
except OSError:
pass
try:
with open(filepath, 'wb') as file:
pickle.dump(args, file, pickle.HIGHEST_PROTOCOL)
except OSError:
pass
filepath = save_folder + 'fmin.txt'
try:
fmin = options['objective'].fmin
except AttributeError:
fmin = 0
np.savetxt(filepath, np.array([fmin]))
for seed in range(args.seed, args.seed + args.num_seeds):
run(options, seed=seed, save=options['save'])
def create_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--function', default='hart6')
parser.add_argument('--algorithm', default='OEI')
parser.add_argument('--seed', type=int, default=123)
parser.add_argument('--num_seeds', type=int, default=1)
parser.add_argument('--save', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=5)
parser.add_argument('--iterations', type=int, default=10)
parser.add_argument('--initial_size', type=int, default=10)
parser.add_argument('--model_restarts', type=int, default=20,
help='Random restarts when optimizing the Likelihood of the GP.')
parser.add_argument('--opt_restarts', type=int, default=20,
help='Random restarts when optimizing the acquisition function.')
parser.add_argument('--normalize_Y', type=int, default=1,
help='If set to 1, then the outputs of the function under optimization is normalized to have variance 1 and mean 0')
parser.add_argument('--noise', type=float,
help='Used to set the likelihood to a fixed value')
parser.add_argument('--kernel', default='Matern32')
parser.add_argument('--ard', type=int, default=0)
parser.add_argument('--nl_solver', default='knitro')
parser.add_argument('--hessian', type=int, default=1)
parser.add_argument('--priors', type=int, default=0)
return parser
if __name__ == '__main__':
parser = create_parser()
args = parser.parse_args()
main(args)