-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_finetune_with_lisa.sh
executable file
·114 lines (108 loc) · 2.94 KB
/
run_finetune_with_lisa.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/bin/bash
# Please run this script under ${project_id} in project directory of
# https://github.com/shizhediao/llm-ft
# COMMIT: d5fecf30ba8011067b10cf51fede53a5ab6574e4
# Parses arguments
model_name_or_path=meta-llama/Llama-2-7b-hf
dataset_path=data/train
output_dir=output_models/finetune_lisa
lisa_activated_layers=1
lisa_interval_steps=20
# Other optional arguments that can improve memory saving
gradient_checkpointing=True
use_flash_attention=0
gradient_accumulation_steps=1
block_size=256
per_device_train_batch_size=1
# Enable model parallelism for multiple gpus, modify this if you prefer
# customized deepspeed zero-redundancy optimization settings
num_gpu=$(python -c "import torch; print(torch.cuda.device_count())")
ds_config_file=configs/ds_config_zero0_no_offload.json
if [ ${num_gpu} -ge 2 ]; then
ds_config_file=configs/ds_config_zero2_no_offload.json
fi
while [[ $# -ge 1 ]]; do
key="$1"
case ${key} in
-m|--model_name_or_path)
model_name_or_path="$2"
shift
;;
-d|--dataset_path)
dataset_path="$2"
shift
;;
-o|--output_model_path)
output_dir="$2"
shift
;;
--lisa_activated_layers)
lisa_activated_layers="$2"
shift
;;
--lisa_interval_steps)
lisa_interval_steps="$2"
shift
;;
--gradient_checkpointing)
gradient_checkpointing="$2"
shift
;;
--deepspeed)
ds_config_file="$2"
shift
;;
--use_flash_attention)
use_flash_attention="$2"
shift
;;
--gradient_accumulation_steps)
gradient_accumulation_steps="$2"
shift
;;
--block_size)
block_size="$2"
shift
;;
--per_device_train_batch_size|--batch_size)
per_device_train_batch_size="$2"
shift
;;
*)
echo "error: unknown option \"${key}\"" 1>&2
exit 1
esac
shift
done
# Finetune
exp_id=finetune
project_dir=$(cd "$(dirname $0)"/..; pwd)
log_dir=${project_dir}/log/${exp_id}
mkdir -p ${output_dir} ${log_dir}
python finetune.py \
--model_name_or_path ${model_name_or_path} \
--dataset_path ${dataset_path} \
--output_dir ${output_dir} --overwrite_output_dir \
--num_train_epochs 1 \
--learning_rate 2e-5 \
--disable_group_texts 1 \
--block_size ${block_size} \
--per_device_train_batch_size ${per_device_train_batch_size} \
--bf16 \
--torch_dtype bfloat16 \
--run_name finetune \
--optim paged_adamw_32bit \
--validation_split_percentage 0 \
--logging_steps 20 \
--do_train \
--ddp_timeout 72000 \
--save_steps 5000 \
--dataloader_num_workers 1 \
--gradient_checkpointing ${gradient_checkpointing} \
--use_flash_attention ${use_flash_attention} \
--gradient_accumulation_steps ${gradient_accumulation_steps} \
--use_lisa 1 \
--lisa_activated_layers ${lisa_activated_layers} \
--lisa_interval_steps ${lisa_interval_steps} \
| tee ${log_dir}/train.log \
2> ${log_dir}/train.err