-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
307 lines (233 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import argparse
import os
import random
import yaml
import time
import logging
import pprint
import scipy.stats as stats
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torchvision.utils as vutils
import numpy as np
from tensorboardX import SummaryWriter
from torch.autograd import grad
from easydict import EasyDict
from data.train import CreateDataLoader as train_loader
from data.eval import CreateDataLoader as val_loader
from utils import create_logger, save_checkpoint, load_state, get_scheduler, AverageMeter, calculate_fid
from models.standard import *
parser = argparse.ArgumentParser(description='PyTorch Colorization Training')
parser.add_argument('--config', default='experiments/origin/config.yaml')
parser.add_argument('--resume', default='', type=str, help='path to checkpoint')
def calc_gradient_penalty(netD, real_data, fake_data, sketch_feat):
alpha = torch.rand(config.batch_size, 1, 1, 1, device=config.device)
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
interpolates.requires_grad = True
disc_interpolates = netD(interpolates, sketch_feat)
gradients = grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size(), device=config.device), create_graph=True,
retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * config.gpW
return gradient_penalty
def mask_gen():
maskS = config.image_size // 4
mask1 = torch.cat(
[torch.rand(1, 1, maskS, maskS).ge(X.rvs(1)[0]).float() for _ in range(config.batch_size // 2)], 0)
mask2 = torch.cat([torch.zeros(1, 1, maskS, maskS).float() for _ in range(config.batch_size // 2)], 0)
mask = torch.cat([mask1, mask2], 0)
return mask.to(config.device)
def main():
global args, config, X
args = parser.parse_args()
print(args)
with open(args.config) as f:
config = EasyDict(yaml.load(f))
config.save_path = os.path.dirname(args.config)
####### regular set up
assert torch.cuda.is_available()
device = torch.device("cuda")
config.device = device
# random seed setup
print("Random Seed: ", config.seed)
random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
cudnn.benchmark = True
####### regular set up end
netG = torch.nn.DataParallel(NetG(ngf=config.ngf))
netD = torch.nn.DataParallel(NetD(ndf=config.ndf))
netF = torch.nn.DataParallel(NetF())
netI = torch.nn.DataParallel(NetI()).eval()
for param in netF.parameters():
param.requires_grad = False
criterion_MSE = nn.MSELoss()
fixed_sketch = torch.tensor(0, device=device).float()
fixed_hint = torch.tensor(0, device=device).float()
fixed_sketch_feat = torch.tensor(0, device=device).float()
####################
netD = netD.to(device)
netG = netG.to(device)
netF = netF.to(device)
netI = netI.to(device)
criterion_MSE = criterion_MSE.to(device)
# setup optimizer
optimizerG = optim.Adam(netG.parameters(), lr=config.lr_scheduler.base_lr, betas=(0.5, 0.9))
optimizerD = optim.Adam(netD.parameters(), lr=config.lr_scheduler.base_lr, betas=(0.5, 0.9))
last_iter = -1
best_fid = 1e6
if args.resume:
best_fid, last_iter = load_state(args.resume, netG, netD, optimizerG, optimizerD)
config.lr_scheduler['last_iter'] = last_iter
config.lr_scheduler['optimizer'] = optimizerG
lr_schedulerG = get_scheduler(config.lr_scheduler)
config.lr_scheduler['optimizer'] = optimizerD
lr_schedulerD = get_scheduler(config.lr_scheduler)
tb_logger = SummaryWriter(config.save_path + '/events')
logger = create_logger('global_logger', config.save_path + '/log.txt')
logger.info(f'args: {pprint.pformat(args)}')
logger.info(f'config: {pprint.pformat(config)}')
batch_time = AverageMeter(config.print_freq)
data_time = AverageMeter(config.print_freq)
flag = 1
mu, sigma = 1, 0.005
X = stats.truncnorm((0 - mu) / sigma, (1 - mu) / sigma, loc=mu, scale=sigma)
i = 0
curr_iter = last_iter + 1
dataloader = train_loader(config)
data_iter = iter(dataloader)
end = time.time()
while i < len(dataloader):
lr_schedulerG.step(curr_iter)
lr_schedulerD.step(curr_iter)
current_lr = lr_schedulerG.get_lr()[0]
############################
# (1) Update D network
###########################
for p in netD.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in netG update
for p in netG.parameters():
p.requires_grad = False # to avoid computation ft_params
# train the discriminator Diters times
j = 0
while j < config.diters:
netD.zero_grad()
i += 1
j += 1
data_end = time.time()
real_cim, real_vim, real_sim = data_iter.next()
data_time.update(time.time() - data_end)
real_cim, real_vim, real_sim = real_cim.to(device), real_vim.to(device), real_sim.to(device)
mask = mask_gen()
hint = torch.cat((real_vim * mask, mask), 1)
# train with fake
with torch.no_grad():
feat_sim = netI(real_sim).detach()
fake_cim = netG(real_sim, hint, feat_sim).detach()
errD_fake = netD(fake_cim, feat_sim)
errD_fake = errD_fake.mean(0).view(1)
errD_fake.backward(retain_graph=True) # backward on score on real
errD_real = netD(real_cim, feat_sim)
errD_real = errD_real.mean(0).view(1)
errD = errD_real - errD_fake
errD_realer = -1 * errD_real + errD_real.pow(2) * config.drift
errD_realer.backward(retain_graph=True) # backward on score on real
gradient_penalty = calc_gradient_penalty(netD, real_cim, fake_cim, feat_sim)
gradient_penalty.backward()
optimizerD.step()
############################
# (2) Update G network
############################
for p in netD.parameters():
p.requires_grad = False # to avoid computation
for p in netG.parameters():
p.requires_grad = True
netG.zero_grad()
data = data_iter.next()
real_cim, real_vim, real_sim = data
i += 1
real_cim, real_vim, real_sim = real_cim.to(device), real_vim.to(device), real_sim.to(device)
if flag: # fix samples
mask = mask_gen()
hint = torch.cat((real_vim * mask, mask), 1)
with torch.no_grad():
feat_sim = netI(real_sim).detach()
tb_logger.add_image('target imgs', vutils.make_grid(real_cim.mul(0.5).add(0.5), nrow=4))
tb_logger.add_image('sketch imgs', vutils.make_grid(real_sim.mul(0.5).add(0.5), nrow=4))
tb_logger.add_image('hint', vutils.make_grid((real_vim * mask).mul(0.5).add(0.5), nrow=4))
fixed_sketch.resize_as_(real_sim).copy_(real_sim)
fixed_hint.resize_as_(hint).copy_(hint)
fixed_sketch_feat.resize_as_(feat_sim).copy_(feat_sim)
flag -= 1
mask = mask_gen()
hint = torch.cat((real_vim * mask, mask), 1)
with torch.no_grad():
feat_sim = netI(real_sim).detach()
fake = netG(real_sim, hint, feat_sim)
errd = netD(fake, feat_sim)
errG = errd.mean() * config.advW * -1
errG.backward(retain_graph=True)
feat1 = netF(fake)
with torch.no_grad():
feat2 = netF(real_cim)
contentLoss = criterion_MSE(feat1, feat2)
contentLoss.backward()
optimizerG.step()
batch_time.update(time.time() - end)
############################
# (3) Report & 100 Batch checkpoint
############################
curr_iter += 1
if curr_iter % config.print_freq == 0:
tb_logger.add_scalar('VGG MSE Loss', contentLoss.item(), curr_iter)
tb_logger.add_scalar('wasserstein distance', errD.item(), curr_iter)
tb_logger.add_scalar('errD_real', errD_real.item(), curr_iter)
tb_logger.add_scalar('errD_fake', errD_fake.item(), curr_iter)
tb_logger.add_scalar('Gnet loss toward real', errG.item(), curr_iter)
tb_logger.add_scalar('gradient_penalty', gradient_penalty.item(), curr_iter)
tb_logger.add_scalar('lr', current_lr, curr_iter)
logger.info(f'Iter: [{curr_iter}/{len(dataloader)//(config.diters+1)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
f'errG {errG.item():.4f}\t'
f'errD {errD.item():.4f}\t'
f'err_D_real {errD_real.item():.4f}\t'
f'err_D_fake {errD_fake.item():.4f}\t'
f'content loss {contentLoss.item():.4f}\t'
f'LR {current_lr:.4f}'
)
if curr_iter % config.print_img_freq == 0:
with torch.no_grad():
fake = netG(fixed_sketch, fixed_hint, fixed_sketch_feat)
tb_logger.add_image('colored imgs',
vutils.make_grid(fake.detach().mul(0.5).add(0.5), nrow=4),
curr_iter)
if curr_iter % config.val_freq == 0:
fid, var = validate(netG, netI)
tb_logger.add_scalar('fid_val', fid, curr_iter)
tb_logger.add_scalar('fid_variance', var, curr_iter)
logger.info(f'fid: {fid:.3f} ({var})\t')
# remember best fid and save checkpoint
is_best = fid < best_fid
best_fid = min(fid, best_fid)
save_checkpoint({
'step': curr_iter - 1,
'state_dictG': netG.state_dict(),
'state_dictD': netD.state_dict(),
'best_fid': best_fid,
'optimizerG': optimizerG.state_dict(),
'optimizerD': optimizerD.state_dict(),
}, is_best, config.save_path + '/ckpt')
end = time.time()
def validate(netG, netI):
fids = []
fid_value = 0
for _ in range(3):
fid = calculate_fid(netG, netI, val_loader(config), config, 2048)
print('FID: ', fid)
fid_value += fid
fids.append(fid)
fid_value /= 3
return fid_value, np.var(fids)
if __name__ == '__main__':
main()