diff --git a/docs/doxygen/ie_docs.xml b/docs/doxygen/ie_docs.xml
index 9ef9073e409a1e..133562d135b24d 100644
--- a/docs/doxygen/ie_docs.xml
+++ b/docs/doxygen/ie_docs.xml
@@ -135,6 +135,11 @@ limitations under the License.
+
+
+
+
+
diff --git a/docs/ops/detection/ExperimentalDetectronDetectionOutput_6.md b/docs/ops/detection/ExperimentalDetectronDetectionOutput_6.md
new file mode 100644
index 00000000000000..cc0a026734feee
--- /dev/null
+++ b/docs/ops/detection/ExperimentalDetectronDetectionOutput_6.md
@@ -0,0 +1,193 @@
+## ExperimentalDetectronDetectionOutput {#openvino_docs_ops_detection_ExperimentalDetectronDetectionOutput_6}
+
+**Versioned name**: *ExperimentalDetectronDetectionOutput-6*
+
+**Category**: Object detection
+
+**Short description**: The *ExperimentalDetectronDetectionOutput* operation performs non-maximum suppression to generate
+the detection output using information on location and score predictions.
+
+**Detailed description**: The operation performs the following steps:
+
+1. Applies deltas to boxes sizes [x1, y1, x2, y2] and takes coordinates of
+refined boxes according to the formulas:
+
+`x1_new = ctr_x + (dx - 0.5 * exp(min(d_log_w, max_delta_log_wh))) * box_w`
+
+`y0_new = ctr_y + (dy - 0.5 * exp(min(d_log_h, max_delta_log_wh))) * box_h`
+
+`x1_new = ctr_x + (dx + 0.5 * exp(min(d_log_w, max_delta_log_wh))) * box_w - 1.0`
+
+`y1_new = ctr_y + (dy + 0.5 * exp(min(d_log_h, max_delta_log_wh))) * box_h - 1.0`
+
+* `box_w` and `box_h` are width and height of box, respectively:
+
+`box_w = x1 - x0 + 1.0`
+
+`box_h = y1 - y0 + 1.0`
+
+* `ctr_x` and `ctr_y` are center location of a box:
+
+`ctr_x = x0 + 0.5f * box_w`
+
+`ctr_y = y0 + 0.5f * box_h`
+
+* `dx`, `dy`, `d_log_w` and `d_log_h` are deltas calculated according to the formulas below, and `deltas_tensor` is a
+second input:
+
+`dx = deltas_tensor[roi_idx, 4 * class_idx + 0] / deltas_weights[0]`
+
+`dy = deltas_tensor[roi_idx, 4 * class_idx + 1] / deltas_weights[1]`
+
+`d_log_w = deltas_tensor[roi_idx, 4 * class_idx + 2] / deltas_weights[2]`
+
+`d_log_h = deltas_tensor[roi_idx, 4 * class_idx + 3] / deltas_weights[3]`
+
+2. If *class_agnostic_box_regression* is `true` removes predictions for background classes.
+3. Clips boxes to the image.
+4. Applies *score_threshold* on detection scores.
+5. Applies non-maximum suppression class-wise with *nms_threshold* and returns *post_nms_count* or less detections per
+class.
+6. Returns *max_detections_per_image* detections if total number of detections is more than *max_detections_per_image*;
+otherwise, returns total number of detections and the output tensor is filled with undefined values for rest output
+tensor elements.
+
+**Attributes**:
+
+* *score_threshold*
+
+ * **Description**: The *score_threshold* attribute specifies a threshold to consider only detections whose score are
+ larger than the threshold.
+ * **Range of values**: non-negative floating point number
+ * **Type**: float
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *nms_threshold*
+
+ * **Description**: The *nms_threshold* attribute specifies a threshold to be used in the NMS stage.
+ * **Range of values**: non-negative floating point number
+ * **Type**: float
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *num_classes*
+
+ * **Description**: The *num_classes* attribute specifies the number of detected classes.
+ * **Range of values**: non-negative integer number
+ * **Type**: int
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *post_nms_count*
+
+ * **Description**: The *post_nms_count* attribute specifies the maximal number of detections per class.
+ * **Range of values**: non-negative integer number
+ * **Type**: int
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *max_detections_per_image*
+
+ * **Description**: The *max_detections_per_image* attribute specifies maximal number of detections per image.
+ * **Range of values**: non-negative integer number
+ * **Type**: int
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *class_agnostic_box_regression*
+
+ * **Description**: *class_agnostic_box_regression* attribute ia a flag specifies whether to delete background
+ classes or not.
+ * **Range of values**:
+ * `true` means background classes should be deleted
+ * `false` means background classes should not be deleted
+ * **Type**: boolean
+ * **Default value**: false
+ * **Required**: *no*
+
+* *max_delta_log_wh*
+
+ * **Description**: The *max_delta_log_wh* attribute specifies maximal delta of logarithms for width and height.
+ * **Range of values**: floating point number
+ * **Type**: float
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *deltas_weights*
+
+ * **Description**: The *deltas_weights* attribute specifies weights for bounding boxes sizes deltas.
+ * **Range of values**: a list of non-negative floating point numbers
+ * **Type**: float[]
+ * **Default value**: None
+ * **Required**: *yes*
+
+**Inputs**
+
+* **1**: A 2D tensor of type *T* with input ROIs, with shape `[number_of_ROIs, 4]` providing the ROIs as 4-tuples:
+[x1, y1, x2, y2]. The batch dimension of first, second, and third inputs
+should be the same. **Required.**
+
+* **2**: A 2D tensor of type *T* with shape `[number_of_ROIs, num_classes * 4]` providing deltas for input boxes.
+ **Required.**
+
+* **3**: A 2D tensor of type *T* with shape `[number_of_ROIs, num_classes]` providing detections scores. **Required.**
+
+* **4**: A 2D tensor of type *T* with shape `[1, 3]` contains three elements
+ `[image_height, image_width, scale_height_and_width]` providing input image size info. **Required.**
+
+**Outputs**
+
+* **1**: A 2D tensor of type *T* with shape `[max_detections_per_image, 4]` providing boxes indices.
+
+* **2**: A 1D tensor of type *T_IND* with shape `[max_detections_per_image]` providing classes indices.
+
+* **3**: A 1D tensor of type *T* with shape `[max_detections_per_image]` providing scores indices.
+
+**Types**
+
+* *T*: any supported floating point type.
+
+* *T_IND*: `int64` or `int32`.
+
+
+**Example**
+
+```xml
+
+
+
+
+ 1000
+ 4
+
+
+ 1000
+ 324
+
+
+ 1000
+ 81
+
+
+ 1
+ 3
+
+
+
+
+```
diff --git a/docs/ops/detection/ExperimentalDetectronGenerateProposalsSingleImage_6.md b/docs/ops/detection/ExperimentalDetectronGenerateProposalsSingleImage_6.md
new file mode 100644
index 00000000000000..7cfacbeed58ff0
--- /dev/null
+++ b/docs/ops/detection/ExperimentalDetectronGenerateProposalsSingleImage_6.md
@@ -0,0 +1,112 @@
+## ExperimentalDetectronGenerateProposalsSingleImage {#openvino_docs_ops_detection_ExperimentalDetectronGenerateProposalsSingleImage_6}
+
+**Versioned name**: *ExperimentalDetectronGenerateProposalsSingleImage-6*
+
+**Category**: Object detection
+
+**Short description**: The *ExperimentalDetectronGenerateProposalsSingleImage* operation computes ROIs and their scores
+based on input data.
+
+**Detailed description**: The operation performs the following steps:
+
+1. Transposes and reshapes predicted bounding boxes deltas and scores to get them into the same order as the anchors.
+2. Transforms anchors into proposals using deltas and clips proposals to an image.
+3. Removes predicted boxes with either height or width < *min_size*.
+4. Sorts all `(proposal, score)` pairs by score from highest to lowest; order of pairs with equal scores is undefined.
+5. Takes top *pre_nms_count* proposals, if total number of proposals is less than *pre_nms_count* takes all proposals.
+6. Applies non-maximum suppression with *nms_threshold*.
+7. Takes top *post_nms_count* proposals and returns these top proposals and their scores. If total number of proposals
+is less than *post_nms_count* returns output tensors filled with zeroes.
+
+**Attributes**:
+
+* *min_size*
+
+ * **Description**: The *min_size* attribute specifies minimum box width and height.
+ * **Range of values**: non-negative floating point number
+ * **Type**: float
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *nms_threshold*
+
+ * **Description**: The *nms_threshold* attribute specifies threshold to be used in the NMS stage.
+ * **Range of values**: non-negative floating point number
+ * **Type**: float
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *pre_nms_count*
+
+ * **Description**: The *pre_nms_count* attribute specifies number of top-n proposals before NMS.
+ * **Range of values**: non-negative integer number
+ * **Type**: int
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *post_nms_count*
+
+ * **Description**: The *post_nms_count* attribute specifies number of top-n proposals after NMS.
+ * **Range of values**: non-negative integer number
+ * **Type**: int
+ * **Default value**: None
+ * **Required**: *yes*
+
+**Inputs**
+
+* **1**: A 1D tensor of type *T* with 3 elements `[image_height, image_width, scale_height_and_width]` providing input
+image size info. **Required.**
+
+* **2**: A 2D tensor of type *T* with shape `[height * width * number_of_channels, 4]` providing anchors. **Required.**
+
+* **3**: A 3D tensor of type *T* with shape `[number_of_channels * 4, height, width]` providing deltas for anchors.
+Height and width for third and fourth inputs should be equal. **Required.**
+
+* **4**: A 3D tensor of type *T* with shape `[number_of_channels, height, width]` providing proposals scores.
+**Required.**
+
+**Outputs**
+
+* **1**: A 2D tensor of type *T* with shape `[post_nms_count, 4]` providing ROIs.
+
+* **2**: A 1D tensor of type *T* with shape `[post_nms_count]` providing ROIs scores.
+
+**Types**
+
+* *T*: any supported floating point type.
+
+**Example**
+
+```xml
+
+
+
+
+ 3
+
+
+ 12600
+ 4
+
+
+ 12
+ 50
+ 84
+
+
+ 3
+ 50
+ 84
+
+
+
+
+```
diff --git a/docs/ops/detection/ExperimentalDetectronPriorGridGenerator_6.md b/docs/ops/detection/ExperimentalDetectronPriorGridGenerator_6.md
new file mode 100644
index 00000000000000..54a684d98bb7af
--- /dev/null
+++ b/docs/ops/detection/ExperimentalDetectronPriorGridGenerator_6.md
@@ -0,0 +1,116 @@
+## ExperimentalDetectronPriorGridGenerator {#openvino_docs_ops_detection_ExperimentalDetectronPriorGridGenerator_6}
+
+**Versioned name**: *ExperimentalDetectronPriorGridGenerator-6*
+
+**Category**: Object detection
+
+**Short description**: The *ExperimentalDetectronPriorGridGenerator* operation generates prior grids of specified sizes.
+
+**Detailed description**: The operation takes coordinates of centres of boxes and adds strides with offset `0.5` to them to
+calculate coordinates of prior grids.
+
+Numbers of generated cells is `featmap_height` and `featmap_width` if *h* and *w* are zeroes; otherwise, *h* and *w*,
+respectively. Steps of generated grid are `image_height` / `layer_height` and `image_width` / `layer_width` if
+*stride_h* and *stride_w* are zeroes; otherwise, *stride_h* and *stride_w*, respectively.
+
+`featmap_height`, `featmap_width`, `image_height` and `image_width` are spatial dimensions values from second and third
+inputs, respectively.
+
+**Attributes**:
+
+* *flatten*
+
+ * **Description**: The *flatten* attribute specifies whether the output tensor should be 2D or 4D.
+ * **Range of values**:
+ * `true` - the output tensor should be a 2D tensor
+ * `false` - the output tensor should be a 4D tensor
+ * **Type**: boolean
+ * **Default value**: true
+ * **Required**: *no*
+
+* *h*
+
+ * **Description**: The *h* attribute specifies number of cells of the generated grid with respect to height.
+ * **Range of values**: non-negative integer number less or equal than `featmap_height`
+ * **Type**: int
+ * **Default value**: 0
+ * **Required**: *no*
+
+* *w*
+
+ * **Description**: The *w* attribute specifies number of cells of the generated grid with respect to width.
+ * **Range of values**: non-negative integer number less or equal than `featmap_width`
+ * **Type**: int
+ * **Default value**: 0
+ * **Required**: *no*
+
+* *stride_x*
+
+ * **Description**: The *stride_x* attribute specifies the step of generated grid with respect to x coordinate.
+ * **Range of values**: non-negative float number
+ * **Type**: float
+ * **Default value**: 0.0
+ * **Required**: *no*
+
+* *stride_y*
+
+ * **Description**: The *stride_y* attribute specifies the step of generated grid with respect to y coordinate.
+ * **Range of values**: non-negative float number
+ * **Type**: float
+ * **Default value**: 0.0
+ * **Required**: *no*
+
+**Inputs**
+
+* **1**: A 2D tensor of type *T* with shape `[number_of_priors, 4]` contains priors. **Required.**
+
+* **2**: A 4D tensor of type *T* with input feature map `[1, number_of_channels, featmap_height, featmap_width]`. This
+operation uses only sizes of this input tensor, not its data.**Required.**
+
+* **3**: A 4D tensor of type *T* with input image `[1, number_of_channels, image_height, image_width]`. The number of
+channels of both feature map and input image tensors must match. This operation uses only sizes of this input tensor,
+not its data. **Required.**
+
+**Outputs**
+
+* **1**: A tensor of type *T* with priors grid with shape `[featmap_height * featmap_width * number_of_priors, 4]`
+if flatten is `true` or `[featmap_height, featmap_width, number_of_priors, 4]`, otherwise.
+If 0 < *h* < `featmap_height` and/or 0 < *w* < `featmap_width` the output data size is less than
+`featmap_height` * `featmap_width` * `number_of_priors` * 4 and the output tensor is filled with undefined values for
+rest output tensor elements.
+
+**Types**
+
+* *T*: any supported floating point type.
+
+**Example**
+
+```xml
+
+
+
+
+ 3
+ 4
+
+
+ 1
+ 256
+ 25
+ 42
+
+
+ 1
+ 3
+ 800
+ 1344
+
+
+
+
+```
diff --git a/docs/ops/detection/ExperimentalDetectronROIFeatureExtractor_6.md b/docs/ops/detection/ExperimentalDetectronROIFeatureExtractor_6.md
new file mode 100644
index 00000000000000..a44411bc9c4cbb
--- /dev/null
+++ b/docs/ops/detection/ExperimentalDetectronROIFeatureExtractor_6.md
@@ -0,0 +1,139 @@
+## ExperimentalDetectronROIFeatureExtractor {#openvino_docs_ops_detection_ExperimentalDetectronROIFeatureExtractor_6}
+
+**Versioned name**: *ExperimentalDetectronROIFeatureExtractor-6*
+
+**Category**: Object detection
+
+**Short description**: *ExperimentalDetectronROIFeatureExtractor* is the [ROIAlign](ROIAlign_3.md) operation applied
+over a feature pyramid.
+
+**Detailed description**: *ExperimentalDetectronROIFeatureExtractor* maps input ROIs to the levels of the pyramid
+depending on the sizes of ROIs and parameters of the operation, and then extracts features via ROIAlign from
+corresponding pyramid levels.
+
+Operation applies the *ROIAlign* algorithm to the pyramid layers:
+
+`output[i, :, :, :] = ROIAlign(inputPyramid[j], rois[i])`
+
+`j = PyramidLevelMapper(rois[i])`
+
+PyramidLevelMapper maps the ROI to the pyramid level using the following formula:
+
+`j = floor(2 + log2(sqrt(w * h) / 224)`
+
+Here 224 is the canonical ImageNet pre-training size, 2 is the pyramid starting level, and `w`, `h` are the ROI width and height.
+
+For more details please see the following source:
+[Feature Pyramid Networks for Object Detection](https://arxiv.org/pdf/1612.03144.pdf).
+
+**Attributes**:
+
+* *output_size*
+
+ * **Description**: The *output_size* attribute specifies the width and height of the output tensor.
+ * **Range of values**: a positive integer number
+ * **Type**: int
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *sampling_ratio*
+
+ * **Description**: The *sampling_ratio* attribute specifies the number of sampling points per the output value. If 0,
+ then use adaptive number computed as `ceil(roi_width / output_width)`, and likewise for height.
+ * **Range of values**: a non-negative integer number
+ * **Type**: int
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *pyramid_scales*
+
+ * **Description**: The *pyramid_scales* enlists `image_size / layer_size[l]` ratios for pyramid layers `l=1,...,L`,
+ where `L` is the number of pyramid layers, and `image_size` refers to network's input image. Note that pyramid's
+ largest layer may have smaller size than input image, e.g. `image_size` is `800 x 1344` in the XML example below.
+ * **Range of values**: a list of positive integer numbers
+ * **Type**: int[]
+ * **Default value**: None
+ * **Required**: *yes*
+
+* *aligned*
+
+ * **Description**: The *aligned* attribute specifies add offset (`-0.5`) to ROIs sizes or not.
+ * **Range of values**:
+ * `true` - add offset to ROIs sizes
+ * `false` - do not add offset to ROIs sizes
+ * **Type**: boolean
+ * **Default value**: false
+ * **Required**: *no*
+
+**Inputs**:
+
+* **1**: 2D input tensor of type *T* with shape `[number_of_ROIs, 4]` providing the ROIs as 4-tuples:
+[x1, y1, x2, y2]. Coordinates *x* and *y* are refer to the network's input
+*image_size*. **Required**.
+
+* **2**, ..., **L**: Pyramid of 4D input tensors with feature maps. Shape must be
+`[1, number_of_channels, layer_size[l], layer_size[l]]`. The number of channels must be the same for all layers of the
+pyramid. The layer width and height must equal to the `layer_size[l] = image_size / pyramid_scales[l]`. **Required**.
+
+**Outputs**:
+
+* **1**: 4D output tensor of type *T* with ROIs features. Shape must be
+`[number_of_ROIs, number_of_channels, output_size, output_size]`. Channels number is the same as for all images in the
+input pyramid.
+
+* **2**: 2D output tensor of type *T* with reordered ROIs according to their mapping to the pyramid levels. Shape
+must be the same as for 1 input: `[number_of_ROIs, 4]`.
+
+**Types**
+
+* *T*: any supported floating point type.
+
+**Example**
+
+```xml
+
+
+
+
+ 1000
+ 4
+
+
+ 1
+ 256
+ 200
+ 336
+
+
+ 1
+ 256
+ 100
+ 168
+
+
+ 1
+ 256
+ 50
+ 84
+
+
+ 1
+ 256
+ 25
+ 42
+
+
+
+
+```
diff --git a/docs/ops/opset6.md b/docs/ops/opset6.md
index bf25a29a4d4291..dbe17d468611d2 100644
--- a/docs/ops/opset6.md
+++ b/docs/ops/opset6.md
@@ -50,6 +50,11 @@ declared in `namespace opset6`.
* [Equal](comparison/Equal_1.md)
* [Erf](arithmetic/Erf_1.md)
* [Exp](activation/Exp_1.md)
+* [ExperimentalDetectronDetectionOutput_6](detection/ExperimentalDetectronDetectionOutput_6.md)
+* [ExperimentalDetectronGenerateProposalsSingleImage_6](detection/ExperimentalDetectronGenerateProposalsSingleImage_6.md)
+* [ExperimentalDetectronPriorGridGenerator_6](detection/ExperimentalDetectronPriorGridGenerator_6.md)
+* [ExperimentalDetectronROIFeatureExtractor_6](detection/ExperimentalDetectronROIFeatureExtractor_6.md)
+* [ExperimentalDetectronTopKROIs_6](sort/ExperimentalDetectronTopKROIs_6.md)
* [ExtractImagePatches](movement/ExtractImagePatches_3.md)
* [FakeQuantize](quantization/FakeQuantize_1.md)
* [Floor](arithmetic/Floor_1.md)
diff --git a/docs/ops/sort/ExperimentalDetectronTopKROIs_6.md b/docs/ops/sort/ExperimentalDetectronTopKROIs_6.md
new file mode 100644
index 00000000000000..107f6311c53c3e
--- /dev/null
+++ b/docs/ops/sort/ExperimentalDetectronTopKROIs_6.md
@@ -0,0 +1,61 @@
+## ExperimentalDetectronTopKROIs {#openvino_docs_ops_sort_ExperimentalDetectronTopKROIs_6}
+
+**Versioned name**: *ExperimentalDetectronTopKROIs-6*
+
+**Category**: Sort
+
+**Short description**: The *ExperimentalDetectronTopKROIs* operation is TopK operation applied to probabilities of input
+ROIs.
+
+**Detailed description**: The operation performs probabilities descending sorting for input ROIs and returns *max_rois*
+number of ROIs. Order of sorted ROIs with equal probabilities is undefined. If the number of ROIs is less than *max_rois*
+then operation returns all ROIs descended sorted and the output tensor is filled with undefined values for the rest of
+output tensor elements.
+
+**Attributes**:
+
+* *max_rois*
+
+ * **Description**: The *max_rois* attribute specifies maximal numbers of output ROIs.
+ * **Range of values**: non-negative integer number
+ * **Type**: int
+ * **Default value**: 0
+ * **Required**: *no*
+
+**Inputs**
+
+* **1**: A 2D tensor of type *T* with shape `[number_of_ROIs, 4]` describing the ROIs as 4-tuples:
+[x1, y1, x2, y2]. **Required.**
+
+* **2**: A 1D tensor of type *T* with shape `[number_of_input_ROIs]` contains probabilities for input ROIs. **Required.**
+
+**Outputs**
+
+* **1**: A 2D tensor of type *T* with shape `[max_rois, 4]` describing *max_rois* ROIs with highest probabilities.
+
+**Types**
+
+* *T*: any supported floating point type.
+
+**Example**
+
+```xml
+
+
+
+
+ 5000
+ 4
+
+
+ 5000
+
+
+
+
+```