-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathhyperparams.py
751 lines (662 loc) · 28.6 KB
/
hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
import os
HPARAMS_REGISTRY = {}
DEFAULT_OUT_DIR = os.path.expandvars('$HOME/dist-aug')
class Hyperparams(dict):
def __getattr__(self, attr):
try:
return self[attr]
except KeyError:
return None
def __setattr__(self, attr, value):
self[attr] = value
good_baseline_sm = Hyperparams()
good_baseline_sm.float16 = True
good_baseline_sm.fp16_mean_var = True
good_baseline_sm.fp16_allreduce = True
good_baseline_sm.no_vocab_rounding = False
good_baseline_sm.skip_initial_evals = True
good_baseline_sm.n_ctx = 2048
good_baseline_sm.n_layer = 32
good_baseline_sm.n_head = 4
good_baseline_sm.n_batch = 16
good_baseline_sm.n_embd = 256
good_baseline_sm.activation = 'quick_gelu'
good_baseline_sm.optimizer = 'bs_adam'
good_baseline_sm.blocksparse_op = True
good_baseline_sm.recompute = True
good_baseline_sm.resid_pdrop = 0.05
good_baseline_sm.warmup_iters = 7500
good_baseline_sm.embd_pdrop = 0.05
good_baseline_sm.lr = 0.0007
good_baseline_sm.total_epochs = 120
good_baseline_sm.pos_embd_std = 0.007
good_baseline_sm.w_embd_std = 0.013
good_baseline_sm.fp16_loss_scale = 2.0**16
good_baseline_sm.merge_layer_allreduce = 1
good_baseline_sm.max_grad_norm = 1.0
good_baseline_sm.blocksize = 64
good_baseline_sm.attention_layers = 'a'
good_baseline_sm.mlp_w1 = 0.125
good_baseline_sm.qk_w = 0.125
good_baseline_sm.v_w = 0.125
good_baseline_sm.post_w = 0.125
good_baseline_sm.mlp_w2 = 0.5
good_baseline_sm.mlp_multiple = 4.0
good_baseline_sm.qk_ratio = 1.0
HPARAMS_REGISTRY['good_base_sm'] = good_baseline_sm
good_baseline_med = Hyperparams()
good_baseline_med.n_layer = 64
good_baseline_med.lr = 0.0005
good_baseline_med.n_batch = 4
HPARAMS_REGISTRY['good_base_med'] = good_baseline_med
good_baseline_large = Hyperparams()
good_baseline_large.n_layer = 64
good_baseline_large.n_head = 16
good_baseline_large.n_embd = 512
good_baseline_large.n_batch = 1
HPARAMS_REGISTRY['good_base_lg'] = good_baseline_large
sample_during_eval_8gpu = Hyperparams()
sample_during_eval_8gpu.sample_during_eval = True
sample_during_eval_8gpu.samples_to_generate = 1
sample_during_eval_8gpu.sample_batch = 1
sample_during_eval_8gpu.sample_grid_dim = 4
HPARAMS_REGISTRY['sample-during-eval-8gpu'] = sample_during_eval_8gpu
c10 = Hyperparams()
c10.n_ctx = 3072
c10.dataset = 'cifar10'
c10.mlp_multiple = 2.0
c10.qk_ratio = 0.5
c10.n_embd = 256
HPARAMS_REGISTRY['cifar10'] = c10
c10_dense = Hyperparams()
c10_dense.update(good_baseline_sm)
c10_dense.update(sample_during_eval_8gpu)
c10_dense.update(c10)
c10_dense.lr = 0.00035
c10_dense.dynamic_loss_scaling = True
c10_dense.warmup_iters = 15000
c10_dense.max_grad_norm = 1.0
c10_dense.resid_pdrop = 0.25
c10_dense.embd_pdrop = 0.0
c10_dense.n_batch = 2
c10_dense.n_layer = 128
c10_dense.merge_layer_allreduce = 4
c10_dense.n_head = 2
c10_dense.total_epochs = 140
c10_dense.qk_w = 0.125
c10_dense.mlp_w1 = 0.125
c10_dense.mlp_w2 = 0.125
c10_dense.post_w = 0.125
c10_dense.logits_w = 0.0
c10_dense.pos_embd_std = 0.01
c10_dense.w_embd_std = 0.01
c10_dense.blocksize = 32
c10_dense.l2_loss = 0.01
HPARAMS_REGISTRY['c10-dense'] = c10_dense
c10_sparse = Hyperparams()
c10_sparse.update(c10_dense)
c10_sparse.blocksize = 32
c10_sparse.local_attn_ctx = 96
c10_sparse.attention_layers = 'bT,b,b,b'
c10_sparse.test_size = 2000
c10_sparse.datapoints = 48000
HPARAMS_REGISTRY['c10-gemnet'] = c10_sparse
c10_58m = Hyperparams()
c10_58m.update(c10_sparse)
HPARAMS_REGISTRY['c10-58m'] = c10_58m
c10_58m_rot = Hyperparams()
c10_58m_rot.update(c10_58m)
c10_58m_rot.use_rotation = True
c10_58m_rot.total_epochs = 10000
c10_58m_rot.resid_pdrop = 0.01
HPARAMS_REGISTRY['c10-58m-rot'] = c10_58m_rot
c10_58m_rot_tr = Hyperparams()
c10_58m_rot_tr.update(c10_58m)
c10_58m_rot_tr.use_rotation = True
c10_58m_rot_tr.use_transposition = True
c10_58m_rot_tr.total_epochs = 10000
c10_58m_rot_tr.resid_pdrop = 0.01
HPARAMS_REGISTRY['c10-58m-rot-tr'] = c10_58m_rot_tr
c10_15m_dense = Hyperparams()
c10_15m_dense.update(c10_dense)
c10_15m_dense.n_layer = 32
c10_15m_dense.n_batch = 16
c10_15m_dense.resid_pdrop = 0.005
c10_15m_dense.total_epochs = 10000
c10_15m_dense.test_size = 2000
c10_15m_dense.datapoints = 48000
HPARAMS_REGISTRY['c10_15m_dense'] = c10_15m_dense
c10_15m = Hyperparams()
c10_15m.update(c10_sparse)
c10_15m.n_layer = 32
c10_15m.n_batch = 16
c10_15m.resid_pdrop = 0.005
c10_15m.total_epochs = 10000
HPARAMS_REGISTRY['c10_15m'] = c10_15m
c10_15m_rot = Hyperparams()
c10_15m_rot.update(c10_15m)
c10_15m_rot.use_rotation = True
HPARAMS_REGISTRY['c10_15m_rot'] = c10_15m_rot
c10_15m_rot_tr = Hyperparams()
c10_15m_rot_tr.update(c10_15m)
c10_15m_rot_tr.use_rotation = True
c10_15m_rot_tr.use_transposition = True
HPARAMS_REGISTRY['c10_15m_rot_tr'] = c10_15m_rot_tr
c10_15m_tr = Hyperparams()
c10_15m_tr.update(c10_15m)
c10_15m_tr.use_transposition = True
HPARAMS_REGISTRY['c10_15m_tr'] = c10_15m_tr
c10_15m_rev = Hyperparams()
c10_15m_rev.update(c10_15m)
c10_15m_rev.use_reverse = True
HPARAMS_REGISTRY['c10_15m_rev'] = c10_15m_rev
c10_15m_c = Hyperparams()
c10_15m_c.update(c10_15m)
c10_15m_c.use_color = True
HPARAMS_REGISTRY['c10_15m_c'] = c10_15m_c
c10_15m_js = Hyperparams()
c10_15m_js.update(c10_15m)
c10_15m_js.use_jigsaw = True
c10_15m_js.jigsaw_grid_size = 2
HPARAMS_REGISTRY['c10_15m_js'] = c10_15m_js
c10_15m_lr = Hyperparams()
c10_15m_lr.update(c10_15m)
c10_15m_lr.aug = True
HPARAMS_REGISTRY['c10_15m_lr'] = c10_15m_lr
c10_15m_ra_n2_m3 = Hyperparams()
c10_15m_ra_n2_m3.update(c10_15m)
c10_15m_ra_n2_m3.rand_augment = True
c10_15m_ra_n2_m3.rand_augment_conditioning = True
c10_15m_ra_n2_m3.rand_augment_n = 2
c10_15m_ra_n2_m3.rand_augment_m = 3
HPARAMS_REGISTRY['c10_15m_ra_n2_m3'] = c10_15m_ra_n2_m3
c10_15m_ra_n1_m2 = Hyperparams()
c10_15m_ra_n1_m2.update(c10_15m)
c10_15m_ra_n1_m2.rand_augment = True
c10_15m_ra_n1_m2.rand_augment_conditioning = True
c10_15m_ra_n1_m2.rand_augment_n = 1
c10_15m_ra_n1_m2.rand_augment_m = 2
HPARAMS_REGISTRY['c10_15m_ra_n1_m2'] = c10_15m_ra_n1_m2
c10_15m_i32_nocond = Hyperparams()
c10_15m_i32_nocond.update(c10_15m)
c10_15m_i32_nocond.dataset = 'imagenet32cifar'
c10_15m_i32_nocond.use_imagenet_fraction = 1.0
c10_15m_i32_nocond.eval_after_n_examples = 48000
c10_15m_i32_nocond.use_dataset_conditioning = True
c10_15m_i32_nocond.use_unconditional_augmentation = True
HPARAMS_REGISTRY['c10_15m_i32_nocond'] = c10_15m_i32_nocond
c10_15m_i32_cond = Hyperparams()
c10_15m_i32_cond.update(c10_15m)
c10_15m_i32_cond.dataset = 'imagenet32cifar'
c10_15m_i32_cond.use_imagenet_fraction = 1.0
c10_15m_i32_cond.eval_after_n_examples = 48000
c10_15m_i32_cond.use_dataset_conditioning = True
HPARAMS_REGISTRY['c10_15m_i32_cond'] = c10_15m_i32_cond
c10_15m_ss_i32_nocond = Hyperparams()
c10_15m_ss_i32_nocond.update(c10_15m)
c10_15m_ss_i32_nocond.auxiliary_dataset = 'imagenet32'
c10_15m_ss_i32_nocond.auxiliary_dataset_fraction = 0.5
c10_15m_ss_i32_nocond.use_dataset_conditioning = True
c10_15m_ss_i32_nocond.use_unconditional_augmentation = True
HPARAMS_REGISTRY['c10_15m_ss_i32_nocond'] = c10_15m_ss_i32_nocond
c10_15m_ss_i32_cond = Hyperparams()
c10_15m_ss_i32_cond.update(c10_15m)
c10_15m_ss_i32_cond.auxiliary_dataset = 'imagenet32'
c10_15m_ss_i32_cond.auxiliary_dataset_fraction = 0.5
c10_15m_ss_i32_cond.use_dataset_conditioning = True
HPARAMS_REGISTRY['c10_15m_ss_i32_cond'] = c10_15m_ss_i32_cond
c10_15m_dense_rd = Hyperparams()
c10_15m_dense_rd.update(c10_15m_dense)
c10_15m_dense_rd.use_randomly_determined_order = True
c10_15m_dense_rd.randomly_determined_order_num_perms = 3
c10_15m_dense_rd.randomly_determined_order_seed = 42
HPARAMS_REGISTRY['c10_15m_dense_rd'] = c10_15m_dense_rd
c10_15m_rd = Hyperparams()
c10_15m_rd.update(c10_15m)
c10_15m_rd.use_randomly_determined_order = True
c10_15m_rd.randomly_determined_order_num_perms = 3
c10_15m_rd.randomly_determined_order_seed = 42
HPARAMS_REGISTRY['c10_15m_rd'] = c10_15m_rd
c10_15m_rd_s314 = Hyperparams()
c10_15m_rd_s314.update(c10_15m)
c10_15m_rd_s314.use_randomly_determined_order = True
c10_15m_rd_s314.randomly_determined_order_num_perms = 3
c10_15m_rd_s314.randomly_determined_order_seed = 314
HPARAMS_REGISTRY['c10_15m_rd_s314'] = c10_15m_rd_s314
c10_15m_rd_s2718 = Hyperparams()
c10_15m_rd_s2718.update(c10_15m)
c10_15m_rd_s2718.use_randomly_determined_order = True
c10_15m_rd_s2718.randomly_determined_order_num_perms = 3
c10_15m_rd_s2718.randomly_determined_order_seed = 2718
HPARAMS_REGISTRY['c10_15m_rd_s2718'] = c10_15m_rd_s2718
c10_15m_rd_s1618 = Hyperparams()
c10_15m_rd_s1618.update(c10_15m)
c10_15m_rd_s1618.use_randomly_determined_order = True
c10_15m_rd_s1618.randomly_determined_order_num_perms = 3
c10_15m_rd_s1618.randomly_determined_order_seed = 1618
HPARAMS_REGISTRY['c10_15m_rd_s1618'] = c10_15m_rd_s1618
imagenet64_8gpu = Hyperparams()
imagenet64_8gpu.update(c10_sparse)
imagenet64_8gpu.n_batch = 16
imagenet64_8gpu.n_embd = 512
imagenet64_8gpu.n_layer = 28
imagenet64_8gpu.n_head = 4
imagenet64_8gpu.dataset = 'imagenet64'
imagenet64_8gpu.blocksize = 64
imagenet64_8gpu.local_attn_ctx = 128
imagenet64_8gpu.lr = 0.00025
imagenet64_8gpu.n_ctx = 8192
imagenet64_8gpu.resid_pdrop = 0.01
imagenet64_8gpu.embd_pdrop = 0.01
imagenet64_8gpu.total_epochs = 50
imagenet64_8gpu.mlp_w1 = 0.125
imagenet64_8gpu.qk_w = 0.125
imagenet64_8gpu.v_w = 0.125
imagenet64_8gpu.post_w = 0.125
imagenet64_8gpu.mlp_w2 = 0.5
imagenet64_8gpu.mlp_multiple = 4.0
imagenet64_8gpu.qk_ratio = 1.0
HPARAMS_REGISTRY['imagenet64-8gpu'] = imagenet64_8gpu
c10_150m_baseline = Hyperparams()
c10_150m_baseline.update(imagenet64_8gpu)
c10_150m_baseline.blocksize = 32
c10_150m_baseline.local_attn_ctx = 96
c10_150m_baseline.n_batch = 2
c10_150m_baseline.lr = 0.00015
c10_150m_baseline.merge_layer_allreduce = 4
c10_150m_baseline.n_layer = 48
c10_150m_baseline.resid_pdrop = 0.005
c10_150m_baseline.pos_embd_std = 0.01
c10_150m_baseline.w_embd_std = 0.01
c10_150m_baseline.dynamic_loss_scaling = True
c10_150m_baseline.embd_pdrop = 0.0
c10_150m_baseline.mlp_w2 = 0.125
c10_150m_baseline.n_ctx = 3072
c10_150m_baseline.n_head = 16
c10_150m_baseline.attention_layers = 'b,bT,b,b'
c10_150m_baseline.dataset = 'cifar10'
c10_150m_baseline.total_epochs = 10000
c10_150m_baseline.test_size = 2000
c10_150m_baseline.datapoints = 48000
HPARAMS_REGISTRY['c10_150m_baseline'] = c10_150m_baseline
c10_150m_pgd1 = Hyperparams()
c10_150m_pgd1.update(c10_150m_baseline)
c10_150m_pgd1.use_linf_pgd = True
c10_150m_pgd1.linf_pgd_epsilon = 1.0
c10_150m_pgd1.linf_pgd_n = 1
c10_150m_pgd1.linf_pgd_a = 1.0
HPARAMS_REGISTRY['c10_150m_pgd1'] = c10_150m_pgd1
c10_150m_pgd3 = Hyperparams()
c10_150m_pgd3.update(c10_150m_baseline)
c10_150m_pgd3.use_linf_pgd = True
c10_150m_pgd3.linf_pgd_epsilon = 2.0
c10_150m_pgd3.linf_pgd_n = 3
c10_150m_pgd3.linf_pgd_a = 1.0
HPARAMS_REGISTRY['c10_150m_pgd3'] = c10_150m_pgd3
c10_150m_pgd4 = Hyperparams()
c10_150m_pgd4.update(c10_150m_baseline)
c10_150m_pgd4.use_linf_pgd = True
c10_150m_pgd4.linf_pgd_epsilon = 3.0
c10_150m_pgd4.linf_pgd_n = 4
c10_150m_pgd4.linf_pgd_a = 1.0
HPARAMS_REGISTRY['c10_150m_pgd4'] = c10_150m_pgd4
c10_150m_pgd5 = Hyperparams()
c10_150m_pgd5.update(c10_150m_baseline)
c10_150m_pgd5.use_linf_pgd = True
c10_150m_pgd5.linf_pgd_epsilon = 4.0
c10_150m_pgd5.linf_pgd_n = 5
c10_150m_pgd5.linf_pgd_a = 1.0
HPARAMS_REGISTRY['c10_150m_pgd5'] = c10_150m_pgd5
c10_150m_rot = Hyperparams()
c10_150m_rot.update(c10_150m_baseline)
c10_150m_rot.use_rotation = True
HPARAMS_REGISTRY['c10_150m_rot'] = c10_150m_rot
c10_150m_tr = Hyperparams()
c10_150m_tr.update(c10_150m_baseline)
c10_150m_tr.use_transposition = True
HPARAMS_REGISTRY['c10_150m_tr'] = c10_150m_tr
c10_150m_js = Hyperparams()
c10_150m_js.update(c10_150m_baseline)
c10_150m_js.use_jigsaw = True
c10_150m_js.jigsaw_grid_size = 2
HPARAMS_REGISTRY['c10_150m_js'] = c10_150m_js
c10_150m_color = Hyperparams()
c10_150m_color.update(c10_150m_baseline)
c10_150m_color.use_color = True
HPARAMS_REGISTRY['c10_150m_color'] = c10_150m_color
c10_150m_tr = Hyperparams()
c10_150m_tr.update(c10_150m_baseline)
c10_150m_tr.use_transposition = True
HPARAMS_REGISTRY['c10_150m_tr'] = c10_150m_tr
c10_150m_rot_tr = Hyperparams()
c10_150m_rot_tr.update(c10_150m_baseline)
c10_150m_rot_tr.use_rotation = True
c10_150m_rot_tr.use_transposition = True
HPARAMS_REGISTRY['c10_150m_rot_tr'] = c10_150m_rot_tr
c10_150m_rot_js = Hyperparams()
c10_150m_rot_js.update(c10_150m_baseline)
c10_150m_rot_js.use_rotation = True
c10_150m_rot_js.use_jigsaw = True
c10_150m_rot_js.jigsaw_grid_size = 2
HPARAMS_REGISTRY['c10_150m_rot_js'] = c10_150m_rot_js
c10_150m_rot_js_tr = Hyperparams()
c10_150m_rot_js_tr.update(c10_150m_baseline)
c10_150m_rot_js_tr.use_rotation = True
c10_150m_rot_js_tr.use_jigsaw = True
c10_150m_rot_js_tr.jigsaw_grid_size = 2
c10_150m_rot_js_tr.use_transposition = True
HPARAMS_REGISTRY['c10_150m_rot_js_tr'] = c10_150m_rot_js_tr
c10_150m_rot_js_tr_c = Hyperparams()
c10_150m_rot_js_tr_c.update(c10_150m_baseline)
c10_150m_rot_js_tr_c.use_rotation = True
c10_150m_rot_js_tr_c.use_jigsaw = True
c10_150m_rot_js_tr_c.jigsaw_grid_size = 2
c10_150m_rot_js_tr_c.use_transposition = True
c10_150m_rot_js_tr_c.use_color = True
HPARAMS_REGISTRY['c10_150m_rot_js_tr_c'] = c10_150m_rot_js_tr_c
c10_150m_imagenet = Hyperparams()
c10_150m_imagenet.update(c10_150m_baseline)
c10_150m_imagenet.dataset = 'imagenet32cifar'
c10_150m_imagenet.use_imagenet_fraction = 1.0
c10_150m_imagenet.eval_after_n_examples = 48000
c10_150m_imagenet.use_dataset_conditioning = True
HPARAMS_REGISTRY['c10_150m_imagenet'] = c10_150m_imagenet
c10_150m_aug = Hyperparams()
c10_150m_aug.update(c10_150m_baseline)
c10_150m_aug.aug = True
c10_150m_aug.resid_pdrop = 0.40
HPARAMS_REGISTRY['c10_150m_aug'] = c10_150m_aug
c10_150m_randaugment_dataaug = Hyperparams()
c10_150m_randaugment_dataaug.update(c10_150m_baseline)
c10_150m_randaugment_dataaug.rand_augment = True
c10_150m_randaugment_dataaug.rand_augment_n = 2
c10_150m_randaugment_dataaug.rand_augment_m = 3
HPARAMS_REGISTRY['c10_150m_randaugment_dataaug'] = c10_150m_randaugment_dataaug
c10_150m_randaugment_distaug = Hyperparams()
c10_150m_randaugment_distaug.update(c10_150m_baseline)
c10_150m_randaugment_distaug.rand_augment = True
c10_150m_randaugment_distaug.rand_augment_conditioning = True
c10_150m_randaugment_distaug.rand_augment_n = 2
c10_150m_randaugment_distaug.rand_augment_m = 3
HPARAMS_REGISTRY['c10_150m_randaugment_distaug'] = c10_150m_randaugment_distaug
c10_150m_rot = Hyperparams()
c10_150m_rot.update(c10_150m_baseline)
c10_150m_rot.use_rotation = True
HPARAMS_REGISTRY['c10-150m-rot'] = c10_150m_rot
c10_150m_rot_c_tr = Hyperparams()
c10_150m_rot_c_tr.update(c10_150m_baseline)
c10_150m_rot_c_tr.use_rotation = True
c10_150m_rot_c_tr.use_color = True
c10_150m_rot_c_tr.use_transposition = True
HPARAMS_REGISTRY['c10-150m-rot-c-tr'] = c10_150m_rot_c_tr
c10_150m_rot_c_tr_js = Hyperparams()
c10_150m_rot_c_tr_js.update(c10_150m_baseline)
c10_150m_rot_c_tr_js.use_rotation = True
c10_150m_rot_c_tr_js.use_color = True
c10_150m_rot_c_tr_js.use_transposition = True
c10_150m_rot_c_tr_js.use_jigsaw = True
c10_150m_rot_c_tr_js.jigsaw_grid_size = 2
HPARAMS_REGISTRY['c10-150m-rot-c-tr-js'] = c10_150m_rot_c_tr_js
c10_150m_rot_tr_js = Hyperparams()
c10_150m_rot_tr_js.update(c10_150m_baseline)
c10_150m_rot_tr_js.use_rotation = True
c10_150m_rot_tr_js.use_transposition = True
c10_150m_rot_tr_js.use_jigsaw = True
c10_150m_rot_tr_js.jigsaw_grid_size = 2
HPARAMS_REGISTRY['c10-150m-rot-tr-js'] = c10_150m_rot_tr_js
c10_150m_rot_c = Hyperparams()
c10_150m_rot_c.update(c10_150m_baseline)
c10_150m_rot_c.use_rotation = True
c10_150m_rot_c.use_color = True
HPARAMS_REGISTRY['c10-150m-rot-c'] = c10_150m_rot_c
c10_150m_rot_tr = Hyperparams()
c10_150m_rot_tr.update(c10_150m_baseline)
c10_150m_rot_tr.use_rotation = True
c10_150m_rot_tr.use_transposition = True
HPARAMS_REGISTRY['c10-150m-rot-tr'] = c10_150m_rot_tr
c10_150m_rot_tr_ra_n2_m3 = Hyperparams()
c10_150m_rot_tr_ra_n2_m3.update(c10_150m_baseline)
c10_150m_rot_tr_ra_n2_m3.use_rotation = True
c10_150m_rot_tr_ra_n2_m3.use_transposition = True
c10_150m_rot_tr_ra_n2_m3.rand_augment = True
c10_150m_rot_tr_ra_n2_m3.rand_augment_n = 2
c10_150m_rot_tr_ra_n2_m3.rand_augment_m = 3
c10_150m_rot_tr_ra_n2_m3.rand_augment_conditioning = True
c10_150m_rot_tr_ra_n2_m3.rand_augment_rate = 0.5
HPARAMS_REGISTRY['c10-150m-rot-tr-ra-n2-m3'] = c10_150m_rot_tr_ra_n2_m3
c10_150m_rot_tr_ra_n1_m2 = Hyperparams()
c10_150m_rot_tr_ra_n1_m2.update(c10_150m_baseline)
c10_150m_rot_tr_ra_n1_m2.use_rotation = True
c10_150m_rot_tr_ra_n1_m2.use_transposition = True
c10_150m_rot_tr_ra_n1_m2.rand_augment = True
c10_150m_rot_tr_ra_n1_m2.rand_augment_n = 1
c10_150m_rot_tr_ra_n1_m2.rand_augment_m = 2
c10_150m_rot_tr_ra_n1_m2.rand_augment_conditioning = True
c10_150m_rot_tr_ra_n1_m2.rand_augment_rate = 0.5
HPARAMS_REGISTRY['c10-150m-rot-tr-ra-n1-m2'] = c10_150m_rot_tr_ra_n1_m2
c10_150m_rot_c_tr_js_ra_n1_m2 = Hyperparams()
c10_150m_rot_c_tr_js_ra_n1_m2.update(c10_150m_baseline)
c10_150m_rot_c_tr_js_ra_n1_m2.use_rotation = True
c10_150m_rot_c_tr_js_ra_n1_m2.use_color = True
c10_150m_rot_c_tr_js_ra_n1_m2.use_transposition = True
c10_150m_rot_c_tr_js_ra_n1_m2.use_jigsaw = True
c10_150m_rot_c_tr_js_ra_n1_m2.jigsaw_grid_size = 2
c10_150m_rot_c_tr_js_ra_n1_m2.rand_augment = True
c10_150m_rot_c_tr_js_ra_n1_m2.rand_augment_n = 1
c10_150m_rot_c_tr_js_ra_n1_m2.rand_augment_m = 2
c10_150m_rot_c_tr_js_ra_n1_m2.rand_augment_conditioning = True
c10_150m_rot_c_tr_js_ra_n1_m2.rand_augment_rate = 0.5
HPARAMS_REGISTRY['c10-150m-rot-c-tr-js-ra-n1-m2'] = c10_150m_rot_c_tr_js_ra_n1_m2
c10_150m_c_tr = Hyperparams()
c10_150m_c_tr.update(c10_150m_baseline)
c10_150m_c_tr.use_color = True
c10_150m_c_tr.use_transposition = True
HPARAMS_REGISTRY['c10-150m-c-tr'] = c10_150m_c_tr
c10_10m_baseline = Hyperparams()
c10_10m_baseline.update(c10_150m_baseline)
c10_10m_baseline.n_embd = 128
c10_10m_baseline.n_batch = 16
HPARAMS_REGISTRY['c10_10m_baseline'] = c10_10m_baseline
c10_10m_rot = Hyperparams()
c10_10m_rot.update(c10_10m_baseline)
c10_10m_rot.use_rotation = True
HPARAMS_REGISTRY['c10_10m_rot'] = c10_10m_rot
c10_2m_baseline = Hyperparams()
c10_2m_baseline.update(c10_150m_baseline)
c10_2m_baseline.n_embd = 64
c10_2m_baseline.n_batch = 16
c10_2m_baseline.n_head = 8
HPARAMS_REGISTRY['c10_2m_baseline'] = c10_2m_baseline
c10_2m_rot = Hyperparams()
c10_2m_rot.update(c10_2m_baseline)
c10_2m_rot.use_rotation = True
HPARAMS_REGISTRY['c10_2m_rot'] = c10_2m_rot
i64_150m_32gpu = Hyperparams()
i64_150m_32gpu.update(imagenet64_8gpu)
i64_150m_32gpu.n_batch = 4
i64_150m_32gpu.lr = 0.00015
i64_150m_32gpu.l2_loss = 0.001
i64_150m_32gpu.total_epochs = 10000
i64_150m_32gpu.merge_layer_allreduce = 4
i64_150m_32gpu.n_layer = 48
i64_150m_32gpu.resid_pdrop = 0.005
i64_150m_32gpu.blocksize = 32
i64_150m_32gpu.pos_embd_std = 0.01
i64_150m_32gpu.w_embd_std = 0.01
i64_150m_32gpu.dropout_broadcast_dims = None
i64_150m_32gpu.dynamic_loss_scaling = True
i64_150m_32gpu.embd_pdrop = 0.0
i64_150m_32gpu.mlp_w2 = 0.125
i64_150m_32gpu.n_ctx = 12288
i64_150m_32gpu.n_head = 16
i64_150m_32gpu.attention_layers = 'b,bT,b,b'
HPARAMS_REGISTRY['i64_150m_32gpu'] = i64_150m_32gpu
i64_150m_32gpu_rot = Hyperparams()
i64_150m_32gpu_rot.update(i64_150m_32gpu)
i64_150m_32gpu_rot.use_rotation = True
HPARAMS_REGISTRY['i64_150m_32gpu_rot_32gpu'] = i64_150m_32gpu_rot
i64_150m_32gpu_rot_tr = Hyperparams()
i64_150m_32gpu_rot_tr.update(i64_150m_32gpu)
i64_150m_32gpu_rot_tr.use_rotation = True
i64_150m_32gpu_rot_tr.use_transposition = True
HPARAMS_REGISTRY['i64_150m_32gpu_rot_tr_32gpu'] = i64_150m_32gpu_rot_tr
i64_300m_64gpu = Hyperparams()
i64_300m_64gpu.update(i64_150m_32gpu)
i64_300m_64gpu.n_layer = 96
i64_300m_64gpu.n_batch = 2
HPARAMS_REGISTRY['i64_300m_64gpu'] = i64_300m_64gpu
i64_300m_64gpu_rot = Hyperparams()
i64_300m_64gpu_rot.update(i64_300m_64gpu)
i64_300m_64gpu_rot.use_rotation = True
HPARAMS_REGISTRY['i64_300m_64gpu_rot'] = i64_300m_64gpu_rot
i64_300m_64gpu_rot_tr = Hyperparams()
i64_300m_64gpu_rot_tr.update(i64_300m_64gpu)
i64_300m_64gpu_rot_tr.use_rotation = True
i64_300m_64gpu_rot_tr.use_transposition = True
HPARAMS_REGISTRY['i64_300m_64gpu_rot_tr'] = i64_300m_64gpu_rot_tr
i64_300m_64gpu_rot_c_tr = Hyperparams()
i64_300m_64gpu_rot_c_tr.update(i64_300m_64gpu)
i64_300m_64gpu_rot_c_tr.use_rotation = True
i64_300m_64gpu_rot_c_tr.use_color = True
i64_300m_64gpu_rot_c_tr.use_transposition = True
HPARAMS_REGISTRY['i64_300m_64gpu_rot_c_tr'] = i64_300m_64gpu_rot_c_tr
def parse_args_and_update_hparams(H, parser, s=None):
args = parser.parse_args(s)
valid_args = set(args.__dict__.keys())
hparam_sets = [x for x in args.hparam_sets.split(',') if x]
for hp_set in hparam_sets:
hps = HPARAMS_REGISTRY[hp_set]
for k in hps:
if k not in valid_args:
raise ValueError(f"{k} not in default args")
parser.set_defaults(**hps)
H.update(parser.parse_args().__dict__)
# H is updated in place, so return nothing.
def add_arguments(parser):
parser.add_argument('--out_dir', type=str, default=DEFAULT_OUT_DIR)
parser.add_argument('--desc', type=str, default='test')
parser.add_argument('--print_params', action="store_true")
parser.add_argument('--hparam_sets', '--hps', type=str, default='')
# dataset params
parser.add_argument('--dataset', type=str, default="cifar10")
parser.add_argument('--auxiliary_dataset', type=str, default=None)
parser.add_argument('--auxiliary_dataset_fraction', type=float, default=0.5)
parser.add_argument('--auxiliary_dataset_subset_size', type=int, default=None)
parser.add_argument('--auxiliary_dataset_seed', type=int, default=42)
# Training params
parser.add_argument('--n_batch', type=int, default=128)
parser.add_argument('--max_grad_norm', type=float, default=1.0)
# Transformer architectural parameters
parser.add_argument('--n_embd', type=int, default=512)
parser.add_argument('--n_ctx', type=int, default=256)
parser.add_argument('--n_head', type=int, default=8)
parser.add_argument('--n_layer', type=int, default=6)
parser.add_argument('--dropout_broadcast_dims', type=str, default=None)
parser.add_argument('--embd_pdrop', type=float, default=0.1)
parser.add_argument('--resid_pdrop', type=float, default=0.1)
parser.add_argument('--mlp_multiple', type=float, default=4.0)
parser.add_argument('--qk_ratio', type=float, default=1.0)
parser.add_argument('--attention_layers', type=str, default='a')
parser.add_argument('--local_attn_ctx', type=int, default=64)
parser.add_argument('--pos_embd_std', type=float, default=0.007)
parser.add_argument('--w_embd_std', type=float, default=0.013)
parser.add_argument('--mlp_w1', type=float, default=0.125)
parser.add_argument('--mlp_w2', type=float, default=0.125)
parser.add_argument('--qk_w', type=float, default=0.125)
parser.add_argument('--v_w', type=float, default=0.125)
parser.add_argument('--post_w', type=float, default=0.125)
parser.add_argument('--logits_w', type=float, default=0.125)
parser.add_argument('--preconv_w', type=float, default=0.125)
# rand augment params
# https://arxiv.org/pdf/1909.13719.pdf
parser.add_argument('--rand_augment', action="store_true")
parser.add_argument('--rand_augment_conditioning', action="store_true")
parser.add_argument('--rand_augment_rate', type=float, default=0.95)
parser.add_argument('--rand_augment_n', type=int, default=1) # Number of sequential perturbations -- range [1, 3]
parser.add_argument('--rand_augment_m', type=int, default=2) # Magnitude of pertubations -- range [2, 30]
# Distr Aug Params
parser.add_argument('--aug', action='store_true')
parser.add_argument('--permute_embeddings', dest='permute_embeddings', action="store_true")
parser.add_argument('--no_permute_embeddings', dest='permute_embeddings', action="store_false")
parser.set_defaults(permute_embeddings=True)
parser.add_argument('--use_imagenet_fraction', type=float, default=1.0)
parser.add_argument('--unaugmented_data_rate', type=float, default=None)
parser.add_argument('--use_rotation', action="store_true")
parser.add_argument('--use_dataset_conditioning', action="store_true")
parser.add_argument('--no_dataset_conditioning', action="store_false", dest="use_dataset_conditioning")
parser.add_argument('--use_color', action="store_true")
parser.add_argument('--use_transposition', action="store_true")
parser.add_argument('--use_randomly_determined_order', action="store_true")
parser.add_argument('--randomly_determined_order_num_perms', type=int, default=3)
parser.add_argument('--randomly_determined_order_seed', type=int, default=42)
parser.add_argument('--randomly_determined_order_use_lookahead', action="store_true")
parser.add_argument('--use_reverse', action="store_true")
parser.add_argument('--use_linf_pgd', action="store_true")
parser.add_argument('--use_jigsaw', action="store_true")
parser.add_argument('--jigsaw_grid_size', type=int, default=2)
parser.add_argument('--use_unconditional_augmentation', action='store_true')
parser.add_argument('--datapoints', type=int, default=None)
parser.add_argument('--test_size', type=int, default=None)
# Training params
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--aug_seed', type=int, default=314)
parser.add_argument('--optimizer', type=str, default='bs_adam')
parser.add_argument('--activation', type=str, default='quick_gelu')
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--l2_loss', type=float, default=0.0)
parser.add_argument('--recompute', action="store_true", dest="recompute")
parser.add_argument('--no_recompute', action="store_false", dest="recompute")
parser.add_argument('--float16', action="store_true")
parser.add_argument('--no_float16', action="store_false", dest='float16')
parser.add_argument('--blocksparse_op', action="store_true")
parser.add_argument('--no_blocksparse_op', action="store_false", dest="blocksparse_op")
parser.add_argument('--blocksize', type=int, default=64)
parser.add_argument('--fp16_allreduce', action="store_true")
parser.add_argument('--no_fp16_allreduce', action="store_false", dest='fp16_allreduce')
parser.add_argument('--merge_layer_allreduce', default=0, type=int)
parser.add_argument('--fp32_gains_biases', action="store_true")
parser.add_argument('--fp16_loss_scale', type=float, default=2.0**16)
parser.add_argument('--min_loss_scale', type=float, default=2.0**10)
parser.add_argument('--fp16_loss_freq', type=int, default=1000)
parser.add_argument('--fp16_mean_var', action='store_true')
parser.add_argument('--no_fp16_mean_var', action='store_false',
dest='fp16_mean_var')
parser.add_argument('--dynamic_loss_scaling', action='store_true')
parser.add_argument('--no_dynamic_loss_scaling', action='store_false',
dest='dynamic_loss_scaling')
parser.add_argument('--lr', type=float, default=0.0005)
parser.add_argument('--lr_offset', type=int, default=0)
parser.add_argument('--decay_lr_linearly', action="store_true")
parser.add_argument('--no_vocab_rounding', action="store_true")
parser.add_argument('--disable_ema_vars', action="store_true")
parser.add_argument('--total_epochs', type=int, default=100)
parser.add_argument('--exit_after_n_epochs', type=int, default=None)
parser.add_argument('--warmup_iters', type=int, default=5000)
parser.add_argument('--weights_beta', type=float, default=0.999)
parser.add_argument('--iters_per_log', type=int, default=500)
parser.add_argument('--aug_eval', type=str, default=None)
parser.add_argument('--aug_eval_n_examples', type=int, default=None)
parser.add_argument('--eval_after_n_examples', type=int, default=None)
parser.add_argument('--epochs_per_save', type=int, default=1)
parser.add_argument('--epochs_per_backup', type=int, default=1)
parser.add_argument('--epochs_per_eval', type=int, default=1)
# eval stuff
parser.add_argument('--skip_initial_evals', action="store_true")
parser.add_argument('--eval_and_exit', action="store_true")
parser.add_argument('--no_skip_initial_evals', action="store_false",
dest='skip_initial_evals')
parser.add_argument('--eval_test', action="store_true")
parser.add_argument('--eval_start_idx', type=int, default=0)
parser.add_argument('--eval_n_examples', type=int, default=100000)
# Generating unconditional samples
parser.add_argument('--sample_batch', type=int, default=4)
parser.add_argument('--samples_to_generate', type=int, default=4)
parser.add_argument('--sample_grid_dim', type=int, default=4)
parser.add_argument('--sample_and_exit', action="store_true")
parser.add_argument('--sample_during_eval', action="store_true")
parser.add_argument('--sample_f16', action="store_true")
parser.add_argument('--temperature', type=float, default=1.0)
parser.add_argument('--no_sample_during_eval', action="store_false", dest='sample_during_eval')
# Restoring jobs
parser.add_argument('--restore_path', type=str, default='')
return parser