-
Notifications
You must be signed in to change notification settings - Fork 268
/
Copy pathtrace.proto
251 lines (211 loc) · 10.3 KB
/
trace.proto
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright 2019, OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package opentelemetry.proto.trace.v1;
import "opentelemetry/proto/common/v1/common.proto";
import "opentelemetry/proto/resource/v1/resource.proto";
option java_multiple_files = true;
option java_package = "io.opentelemetry.proto.trace.v1";
option java_outer_classname = "TraceProto";
option go_package = "github.com/open-telemetry/opentelemetry-proto/gen/go/trace/v1";
// A collection of spans from a Resource.
message ResourceSpans {
// The resource for the spans in this message.
// If this field is not set then no resource info is known.
opentelemetry.proto.resource.v1.Resource resource = 1;
// A list of Spans that originate from a resource.
repeated Span spans = 2;
}
// Span represents a single operation within a trace. Spans can be
// nested to form a trace tree. Spans may also be linked to other spans
// from the same or different trace and form graphs. Often, a trace
// contains a root span that describes the end-to-end latency, and one
// or more subspans for its sub-operations. A trace can also contain
// multiple root spans, or none at all. Spans do not need to be
// contiguous - there may be gaps or overlaps between spans in a trace.
//
// The next available field id is 17.
message Span {
// A unique identifier for a trace. All spans from the same trace share
// the same `trace_id`. The ID is a 16-byte array. An ID with all zeroes
// is considered invalid.
//
// This field is semantically required. Receiver should generate new
// random trace_id if empty or invalid trace_id was received.
//
// This field is required.
bytes trace_id = 1;
// A unique identifier for a span within a trace, assigned when the span
// is created. The ID is an 8-byte array. An ID with all zeroes is considered
// invalid.
//
// This field is semantically required. Receiver should generate new
// random span_id if empty or invalid span_id was received.
//
// This field is required.
bytes span_id = 2;
// tracestate conveys information about request position in multiple distributed tracing graphs.
// It is a tracestate in w3c-trace-context format: https://www.w3.org/TR/trace-context/#tracestate-header
// See also https://github.com/w3c/distributed-tracing for more details about this field.
string tracestate = 3;
// The `span_id` of this span's parent span. If this is a root span, then this
// field must be empty. The ID is an 8-byte array.
bytes parent_span_id = 4;
// A description of the span's operation.
//
// For example, the name can be a qualified method name or a file name
// and a line number where the operation is called. A best practice is to use
// the same display name at the same call point in an application.
// This makes it easier to correlate spans in different traces.
//
// This field is semantically required to be set to non-empty string.
// When null or empty string received - receiver may use string "name"
// as a replacement. There might be smarted algorithms implemented by
// receiver to fix the empty span name.
//
// This field is required.
string name = 5;
// SpanKind is the type of span. Can be used to specify additional relationships between spans
// in addition to a parent/child relationship.
enum SpanKind {
// Unspecified. Do NOT use as default.
// Implementations MAY assume SpanKind to be INTERNAL when receiving UNSPECIFIED.
SPAN_KIND_UNSPECIFIED = 0;
// Indicates that the span represents an internal operation within an application,
// as opposed to an operations happening at the boundaries. Default value.
INTERNAL = 1;
// Indicates that the span covers server-side handling of an RPC or other
// remote network request.
SERVER = 2;
// Indicates that the span describes a request to some remote service.
CLIENT = 3;
// Indicates that the span describes a producer sending a message to a broker.
// Unlike CLIENT and SERVER, there is often no direct critical path latency relationship
// between producer and consumer spans. A PRODUCER span ends when the message was accepted
// by the broker while the logical processing of the message might span a much longer time.
PRODUCER = 4;
// Indicates that the span describes consumer receiving a message from a broker.
// Like the PRODUCER kind, there is often no direct critical path latency relationship
// between producer and consumer spans.
CONSUMER = 5;
}
// Distinguishes between spans generated in a particular context. For example,
// two spans with the same name may be distinguished using `CLIENT` (caller)
// and `SERVER` (callee) to identify queueing latency associated with the span.
SpanKind kind = 6;
// start_time_unixnano is the start time of the span. On the client side, this is the time
// kept by the local machine where the span execution starts. On the server side, this
// is the time when the server's application handler starts running.
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
//
// This field is semantically required and it is expected that end_time >= start_time.
fixed64 start_time_unixnano = 7;
// end_time_unixnano is the end time of the span. On the client side, this is the time
// kept by the local machine where the span execution ends. On the server side, this
// is the time when the server application handler stops running.
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
//
// This field is semantically required and it is expected that end_time >= start_time.
fixed64 end_time_unixnano = 8;
// attributes is a collection of key/value pairs. The value can be a string,
// an integer, a double or the Boolean values `true` or `false`. Note, global attributes
// like server name can be set using the resource API. Examples of attributes:
//
// "/http/user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36"
// "/http/server_latency": 300
// "abc.com/myattribute": true
// "abc.com/score": 10.239
repeated opentelemetry.proto.common.v1.AttributeKeyValue attributes = 9;
// dropped_attributes_count is the number of attributes that were discarded. Attributes
// can be discarded because their keys are too long or because there are too many
// attributes. If this value is 0, then no attributes were dropped.
uint32 dropped_attributes_count = 10;
// Event is a time-stamped annotation of the span, consisting of user-supplied
// text description and key-value pairs.
message Event {
// time_unixnano is the time the event occurred.
fixed64 time_unixnano = 1;
// name of the event.
// This field is semantically required to be set to non-empty string.
string name = 2;
// attributes is a collection of attribute key/value pairs on the event.
repeated opentelemetry.proto.common.v1.AttributeKeyValue attributes = 3;
// dropped_attributes_count is the number of dropped attributes. If the value is 0,
// then no attributes were dropped.
uint32 dropped_attributes_count = 4;
}
// events is a collection of Event items.
repeated Event events = 11;
// dropped_events_count is the number of dropped events. If the value is 0, then no
// events were dropped.
uint32 dropped_events_count = 12;
// A pointer from the current span to another span in the same trace or in a
// different trace. For example, this can be used in batching operations,
// where a single batch handler processes multiple requests from different
// traces or when the handler receives a request from a different project.
message Link {
// A unique identifier of a trace that this linked span is part of. The ID is a
// 16-byte array.
bytes trace_id = 1;
// A unique identifier for the linked span. The ID is an 8-byte array.
bytes span_id = 2;
// The tracestate associated with the link.
string tracestate = 3;
// attributes is a collection of attribute key/value pairs on the link.
repeated opentelemetry.proto.common.v1.AttributeKeyValue attributes = 4;
// dropped_attributes_count is the number of dropped attributes. If the value is 0,
// then no attributes were dropped.
uint32 dropped_attributes_count = 5;
}
// links is a collection of Links, which are references from this span to a span
// in the same or different trace.
repeated Link links = 13;
// dropped_links_count is the number of dropped links after the maximum size was
// enforced. If this value is 0, then no links were dropped.
uint32 dropped_links_count = 14;
// An optional final status for this span. Semantically when Status
// wasn't set it is means span ended without errors and assume
// Status.Ok (code = 0).
Status status = 15;
}
// The Status type defines a logical error model that is suitable for different
// programming environments, including REST APIs and RPC APIs.
message Status {
// StatusCode mirrors the codes defined at
// https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/api-tracing.md#statuscanonicalcode
enum StatusCode {
Ok = 0;
Cancelled = 1;
UnknownError = 2;
InvalidArgument = 3;
DeadlineExceeded = 4;
NotFound = 5;
AlreadyExists = 6;
PermissionDenied = 7;
ResourceExhausted = 8;
FailedPrecondition = 9;
Aborted = 10;
OutOfRange = 11;
Unimplemented = 12;
InternalError = 13;
Unavailable = 14;
DataLoss = 15;
Unauthenticated = 16;
};
// The status code. This is optional field. It is safe to assume 0 (OK)
// when not set.
StatusCode code = 1;
// A developer-facing human readable error message.
string message = 2;
}