-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathbeit.py
532 lines (481 loc) · 21.4 KB
/
beit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.drop import build_dropout
from mmcv.cnn.bricks.transformer import FFN
from mmcv.cnn.utils.weight_init import (constant_init, kaiming_init,
trunc_normal_)
from mmcv.runner import BaseModule, ModuleList, _load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm
from torch.nn.modules.utils import _pair as to_2tuple
from mmseg.utils import get_root_logger
from ..builder import BACKBONES
from ..utils import PatchEmbed
try:
from scipy import interpolate
except ImportError:
interpolate = None
class BEiTAttention(BaseModule):
"""Window based multi-head self-attention (W-MSA) module with relative
position bias.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int]): The height and width of the window.
qv_bias (bool): If True, add a learnable bias to q, v.
Default: True.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop_rate (float): Dropout ratio of attention weight.
Default: 0.0
proj_drop_rate (float): Dropout ratio of output. Default: 0.
init_cfg (dict | None, optional): The Config for initialization.
Default: None.
"""
def __init__(self,
embed_dims,
num_heads,
window_size,
qv_bias=True,
qk_scale=None,
attn_drop_rate=0.,
proj_drop_rate=0.,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.embed_dims = embed_dims
self.num_heads = num_heads
head_embed_dims = embed_dims // num_heads
self.scale = qk_scale or head_embed_dims**-0.5
if qv_bias:
self.q_bias = nn.Parameter(torch.zeros(embed_dims))
self.v_bias = nn.Parameter(torch.zeros(embed_dims))
else:
self.q_bias = None
self.v_bias = None
self.window_size = window_size
# cls to token & token 2 cls & cls to cls
self.num_relative_distance = (2 * window_size[0] -
1) * (2 * window_size[1] - 1) + 3
# relative_position_bias_table shape is (2*Wh-1 * 2*Ww-1 + 3, nH)
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads))
# get pair-wise relative position index for
# each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
# coords shape is (2, Wh, Ww)
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
# coords_flatten shape is (2, Wh*Ww)
coords_flatten = torch.flatten(coords, 1)
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :])
# relative_coords shape is (Wh*Ww, Wh*Ww, 2)
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
# shift to start from 0
relative_coords[:, :, 0] += window_size[0] - 1
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1, ) * 2,
dtype=relative_coords.dtype)
# relative_position_index shape is (Wh*Ww, Wh*Ww)
relative_position_index[1:, 1:] = relative_coords.sum(-1)
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer('relative_position_index',
relative_position_index)
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=False)
self.attn_drop = nn.Dropout(attn_drop_rate)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop_rate)
def init_weights(self):
trunc_normal_(self.relative_position_bias_table, std=0.02)
def forward(self, x):
"""
Args:
x (tensor): input features with shape of (num_windows*B, N, C).
"""
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
k_bias = torch.zeros_like(self.v_bias, requires_grad=False)
qkv_bias = torch.cat((self.q_bias, k_bias, self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.relative_position_bias_table is not None:
Wh = self.window_size[0]
Ww = self.window_size[1]
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
Wh * Ww + 1, Wh * Ww + 1, -1)
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class TransformerEncoderLayer(BaseModule):
"""Implements one encoder layer in Vision Transformer.
Args:
embed_dims (int): The feature dimension.
num_heads (int): Parallel attention heads.
feedforward_channels (int): The hidden dimension for FFNs.
attn_drop_rate (float): The drop out rate for attention layer.
Default: 0.0.
drop_path_rate (float): Stochastic depth rate. Default 0.0.
num_fcs (int): The number of fully-connected layers for FFNs.
Default: 2.
qv_bias (bool): Enable bias for qv if True. Default: True
act_cfg (dict): The activation config for FFNs.
Default: dict(type='GELU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN').
window_size (tuple[int], optional): The height and width of the window.
Default: None.
init_values (float, optional): Initialize the values of BEiTAttention
and FFN with learnable scaling. Default: None.
"""
def __init__(self,
embed_dims,
num_heads,
feedforward_channels,
attn_drop_rate=0.,
drop_path_rate=0.,
num_fcs=2,
qv_bias=True,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
window_size=None,
init_values=None):
super(TransformerEncoderLayer, self).__init__()
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, embed_dims, postfix=1)
self.add_module(self.norm1_name, norm1)
self.attn = BEiTAttention(
embed_dims=embed_dims,
num_heads=num_heads,
window_size=window_size,
qv_bias=qv_bias,
qk_scale=None,
attn_drop_rate=attn_drop_rate,
proj_drop_rate=0.,
init_cfg=None)
self.ffn = FFN(
embed_dims=embed_dims,
feedforward_channels=feedforward_channels,
num_fcs=num_fcs,
ffn_drop=0.,
dropout_layer=None,
act_cfg=act_cfg,
add_identity=False)
self.norm2_name, norm2 = build_norm_layer(
norm_cfg, embed_dims, postfix=2)
self.add_module(self.norm2_name, norm2)
# NOTE: drop path for stochastic depth, we shall see if
# this is better than dropout here
dropout_layer = dict(type='DropPath', drop_prob=drop_path_rate)
self.drop_path = build_dropout(
dropout_layer) if dropout_layer else nn.Identity()
self.gamma_1 = nn.Parameter(
init_values * torch.ones((embed_dims)), requires_grad=True)
self.gamma_2 = nn.Parameter(
init_values * torch.ones((embed_dims)), requires_grad=True)
@property
def norm1(self):
return getattr(self, self.norm1_name)
@property
def norm2(self):
return getattr(self, self.norm2_name)
def forward(self, x):
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.ffn(self.norm2(x)))
return x
@BACKBONES.register_module()
class BEiT(BaseModule):
"""BERT Pre-Training of Image Transformers.
Args:
img_size (int | tuple): Input image size. Default: 224.
patch_size (int): The patch size. Default: 16.
in_channels (int): Number of input channels. Default: 3.
embed_dims (int): Embedding dimension. Default: 768.
num_layers (int): Depth of transformer. Default: 12.
num_heads (int): Number of attention heads. Default: 12.
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim.
Default: 4.
out_indices (list | tuple | int): Output from which stages.
Default: -1.
qv_bias (bool): Enable bias for qv if True. Default: True.
attn_drop_rate (float): The drop out rate for attention layer.
Default 0.0
drop_path_rate (float): Stochastic depth rate. Default 0.0.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN')
act_cfg (dict): The activation config for FFNs.
Default: dict(type='GELU').
patch_norm (bool): Whether to add a norm in PatchEmbed Block.
Default: False.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Default: False.
num_fcs (int): The number of fully-connected layers for FFNs.
Default: 2.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
pretrained (str, optional): Model pretrained path. Default: None.
init_values (float): Initialize the values of BEiTAttention and FFN
with learnable scaling.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
img_size=224,
patch_size=16,
in_channels=3,
embed_dims=768,
num_layers=12,
num_heads=12,
mlp_ratio=4,
out_indices=-1,
qv_bias=True,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_cfg=dict(type='LN'),
act_cfg=dict(type='GELU'),
patch_norm=False,
final_norm=False,
num_fcs=2,
norm_eval=False,
pretrained=None,
init_values=0.1,
init_cfg=None):
super(BEiT, self).__init__(init_cfg=init_cfg)
if isinstance(img_size, int):
img_size = to_2tuple(img_size)
elif isinstance(img_size, tuple):
if len(img_size) == 1:
img_size = to_2tuple(img_size[0])
assert len(img_size) == 2, \
f'The size of image should have length 1 or 2, ' \
f'but got {len(img_size)}'
assert not (init_cfg and pretrained), \
'init_cfg and pretrained cannot be set at the same time'
if isinstance(pretrained, str):
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
elif pretrained is not None:
raise TypeError('pretrained must be a str or None')
self.img_size = img_size
self.patch_size = patch_size
self.norm_eval = norm_eval
self.pretrained = pretrained
self.patch_embed = PatchEmbed(
in_channels=in_channels,
embed_dims=embed_dims,
conv_type='Conv2d',
kernel_size=patch_size,
stride=patch_size,
padding=0,
norm_cfg=norm_cfg if patch_norm else None,
init_cfg=None)
window_size = (img_size[0] // patch_size, img_size[1] // patch_size)
self.patch_shape = window_size
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims))
if isinstance(out_indices, int):
if out_indices == -1:
out_indices = num_layers - 1
self.out_indices = [out_indices]
elif isinstance(out_indices, list) or isinstance(out_indices, tuple):
self.out_indices = out_indices
else:
raise TypeError('out_indices must be type of int, list or tuple')
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_layers)]
self.layers = ModuleList()
for i in range(num_layers):
self.layers.append(
TransformerEncoderLayer(
embed_dims=embed_dims,
num_heads=num_heads,
feedforward_channels=mlp_ratio * embed_dims,
attn_drop_rate=attn_drop_rate,
drop_path_rate=dpr[i],
num_fcs=num_fcs,
qv_bias=qv_bias,
act_cfg=act_cfg,
norm_cfg=norm_cfg,
window_size=window_size,
init_values=init_values))
self.final_norm = final_norm
if final_norm:
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, embed_dims, postfix=1)
self.add_module(self.norm1_name, norm1)
@property
def norm1(self):
return getattr(self, self.norm1_name)
def _geometric_sequence_interpolation(self, src_size, dst_size, sequence,
num):
"""Get new sequence via geometric sequence interpolation.
Args:
src_size (int): Pos_embedding size in pre-trained model.
dst_size (int): Pos_embedding size in the current model.
sequence (tensor): The relative position bias of the pretrain
model after removing the extra tokens.
num (int): Number of attention heads.
Returns:
new_sequence (tensor): Geometric sequence interpolate the
pre-trained relative position bias to the size of
the current model.
"""
def geometric_progression(a, r, n):
return a * (1.0 - r**n) / (1.0 - r)
# Here is a binary function.
left, right = 1.01, 1.5
while right - left > 1e-6:
q = (left + right) / 2.0
gp = geometric_progression(1, q, src_size // 2)
if gp > dst_size // 2:
right = q
else:
left = q
# The position of each interpolated point is determined
# by the ratio obtained by dichotomy.
dis = []
cur = 1
for i in range(src_size // 2):
dis.append(cur)
cur += q**(i + 1)
r_ids = [-_ for _ in reversed(dis)]
x = r_ids + [0] + dis
y = r_ids + [0] + dis
t = dst_size // 2.0
dx = np.arange(-t, t + 0.1, 1.0)
dy = np.arange(-t, t + 0.1, 1.0)
# Interpolation functions are being executed and called.
new_sequence = []
for i in range(num):
z = sequence[:, i].view(src_size, src_size).float().numpy()
f = interpolate.interp2d(x, y, z, kind='cubic')
new_sequence.append(
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(sequence))
new_sequence = torch.cat(new_sequence, dim=-1)
return new_sequence
def resize_rel_pos_embed(self, checkpoint):
"""Resize relative pos_embed weights.
This function is modified from
https://github.com/microsoft/unilm/blob/master/beit/semantic_segmentation/mmcv_custom/checkpoint.py. # noqa: E501
Copyright (c) Microsoft Corporation
Licensed under the MIT License
Args:
checkpoint (dict): Key and value of the pretrain model.
Returns:
state_dict (dict): Interpolate the relative pos_embed weights
in the pre-train model to the current model size.
"""
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
all_keys = list(state_dict.keys())
for key in all_keys:
if 'relative_position_index' in key:
state_dict.pop(key)
# In order to keep the center of pos_bias as consistent as
# possible after interpolation, and vice versa in the edge
# area, the geometric sequence interpolation method is adopted.
if 'relative_position_bias_table' in key:
rel_pos_bias = state_dict[key]
src_num_pos, num_attn_heads = rel_pos_bias.size()
dst_num_pos, _ = self.state_dict()[key].size()
dst_patch_shape = self.patch_shape
if dst_patch_shape[0] != dst_patch_shape[1]:
raise NotImplementedError()
# Count the number of extra tokens.
num_extra_tokens = dst_num_pos - (
dst_patch_shape[0] * 2 - 1) * (
dst_patch_shape[1] * 2 - 1)
src_size = int((src_num_pos - num_extra_tokens)**0.5)
dst_size = int((dst_num_pos - num_extra_tokens)**0.5)
if src_size != dst_size:
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
new_rel_pos_bias = self._geometric_sequence_interpolation(
src_size, dst_size, rel_pos_bias, num_attn_heads)
new_rel_pos_bias = torch.cat(
(new_rel_pos_bias, extra_tokens), dim=0)
state_dict[key] = new_rel_pos_bias
return state_dict
def init_weights(self):
def _init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
self.apply(_init_weights)
if (isinstance(self.init_cfg, dict)
and self.init_cfg.get('type') == 'Pretrained'):
logger = get_root_logger()
checkpoint = _load_checkpoint(
self.init_cfg['checkpoint'], logger=logger, map_location='cpu')
state_dict = self.resize_rel_pos_embed(checkpoint)
self.load_state_dict(state_dict, False)
elif self.init_cfg is not None:
super(BEiT, self).init_weights()
else:
# We only implement the 'jax_impl' initialization implemented at
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501
# Copyright 2019 Ross Wightman
# Licensed under the Apache License, Version 2.0 (the "License")
trunc_normal_(self.cls_token, std=.02)
for n, m in self.named_modules():
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
if 'ffn' in n:
nn.init.normal_(m.bias, mean=0., std=1e-6)
else:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
kaiming_init(m, mode='fan_in', bias=0.)
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
constant_init(m, val=1.0, bias=0.)
def forward(self, inputs):
B = inputs.shape[0]
x, hw_shape = self.patch_embed(inputs)
# stole cls_tokens impl from Phil Wang, thanks
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
outs = []
for i, layer in enumerate(self.layers):
x = layer(x)
if i == len(self.layers) - 1:
if self.final_norm:
x = self.norm1(x)
if i in self.out_indices:
# Remove class token and reshape token for decoder head
out = x[:, 1:]
B, _, C = out.shape
out = out.reshape(B, hw_shape[0], hw_shape[1],
C).permute(0, 3, 1, 2).contiguous()
outs.append(out)
return tuple(outs)
def train(self, mode=True):
super(BEiT, self).train(mode)
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, nn.LayerNorm):
m.eval()