diff --git a/comps/embeddings/tei/langchain/README.md b/comps/embeddings/tei/langchain/README.md index 2bbf30cc6c..e3cdf98d40 100644 --- a/comps/embeddings/tei/langchain/README.md +++ b/comps/embeddings/tei/langchain/README.md @@ -42,7 +42,7 @@ curl localhost:$your_port/v1/embeddings \ Start the embedding service with the TEI_EMBEDDING_ENDPOINT. ```bash -export TEI_EMBEDDING_ENDPOINT="http://localhost:$yourport/v1/embeddings" +export TEI_EMBEDDING_ENDPOINT="http://localhost:$yourport" export TEI_EMBEDDING_MODEL_NAME="BAAI/bge-large-en-v1.5" python embedding_tei.py ``` @@ -71,7 +71,7 @@ curl localhost:$your_port/embed/v1/embeddings \ Export the `TEI_EMBEDDING_ENDPOINT` for later usage: ```bash -export TEI_EMBEDDING_ENDPOINT="http://localhost:$yourport/v1/embeddings" +export TEI_EMBEDDING_ENDPOINT="http://localhost:$yourport" export TEI_EMBEDDING_MODEL_NAME="BAAI/bge-large-en-v1.5" ``` diff --git a/comps/embeddings/tei/langchain/embedding_tei.py b/comps/embeddings/tei/langchain/embedding_tei.py index e3b58e376e..5bd6bfab78 100644 --- a/comps/embeddings/tei/langchain/embedding_tei.py +++ b/comps/embeddings/tei/langchain/embedding_tei.py @@ -74,7 +74,9 @@ async def aembed_query(request: Dict, async_client: AsyncInferenceClient) -> Uni def get_async_inference_client(access_token: str) -> AsyncInferenceClient: headers = {"Authorization": f"Bearer {access_token}"} if access_token else {} - return AsyncInferenceClient(model=TEI_EMBEDDING_ENDPOINT, token=HUGGINGFACEHUB_API_TOKEN, headers=headers) + return AsyncInferenceClient( + model=f"{TEI_EMBEDDING_ENDPOINT}/v1/embeddings", token=HUGGINGFACEHUB_API_TOKEN, headers=headers + ) if __name__ == "__main__": diff --git a/tests/embeddings/test_embeddings_tei_langchain.sh b/tests/embeddings/test_embeddings_tei_langchain.sh index 7c58deadd3..df2642cf12 100644 --- a/tests/embeddings/test_embeddings_tei_langchain.sh +++ b/tests/embeddings/test_embeddings_tei_langchain.sh @@ -24,7 +24,7 @@ function start_service() { model="BAAI/bge-base-en-v1.5" unset http_proxy docker run -d --name="test-comps-embedding-tei-endpoint" -p $tei_endpoint:80 -v ./data:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-1.5 --model-id $model - export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:${tei_endpoint}/v1/embeddings" + export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:${tei_endpoint}" tei_service_port=5002 docker run -d --name="test-comps-embedding-tei-server" -e LOGFLAG=True -e http_proxy=$http_proxy -e https_proxy=$https_proxy -p ${tei_service_port}:6000 --ipc=host -e TEI_EMBEDDING_ENDPOINT=$TEI_EMBEDDING_ENDPOINT opea/embedding-tei:comps sleep 3m