-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathmain.py
112 lines (99 loc) · 2.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import argparse
import random
from src.model import RatingModel
from src.utils import *
from src.info_extractor import InfoExtractor
RANDOM_INT_STR = str(random.randint(100000, 1000000))
parser = argparse.ArgumentParser(description="Train or test documents on models")
### GENERAL
parser.add_argument(
"--type",
dest="type",
type=str,
default="fixed",
nargs="?",
help="the type of model to use",
)
### FOR TEST
parser.add_argument(
"path_to_resume",
metavar="path_to_resume",
nargs="?",
default=None,
help="the path to a resume",
)
parser.add_argument(
"--model_path",
dest="model_path",
type=str,
default=None, # since there are two
nargs="?",
help="the pre-trained model to use",
)
parser.add_argument(
"--no_info",
dest="no_info",
action="store_true",
help="don't show extracted info and don't open document"
)
### FOR TRAIN
parser.add_argument(
"--train",
dest="train",
type=str,
default=None,
nargs="?",
help="the training directory for training",
)
parser.add_argument(
"--model_name",
dest="model_name",
type=str,
default="model_" + RANDOM_INT_STR,
nargs="?",
help="the model name to save as",
)
parser.add_argument(
"--keywords",
dest="keywords",
type=str,
nargs="*",
help="keywords to use for training a fixed model",
)
args = vars(parser.parse_args())
class MainArgParseException(Exception):
pass
# Testing--
_type = args["type"]
if _type not in ("fixed", "lda"):
raise MainArgParseException("--type should be either 'fixed' or 'lda'")
if args["train"] is None:
path_to_resume = args["path_to_resume"]
if path_to_resume is None:
raise MainArgParseException("No path/to/resume provided")
train_type = args["type"]
model_path = args["model_path"]
# if no model path specified, use model name to derive it instead
if model_path is None:
model_name = args["model_name"]
dirname = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(
dirname, "src/models/model_" + _type, model_name + ".json"
)
r = RatingModel(_type, model_path)
if args["no_info"]:
infoExtractor = None
else:
infoExtractor = InfoExtractor(r.nlp, r.parser)
r.test(path_to_resume, infoExtractor)
else:
training_dir = args["train"]
model_name = args["model_name"]
keywords = args["keywords"]
r = RatingModel()
if _type == "fixed":
if len(keywords) < 1:
raise MainArgParseException("No keywords supplied in --keywords")
r.train(training_dir, _type, model_name, keywords)
else:
r.train(training_dir, _type, model_name)