-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathutils.py
151 lines (127 loc) · 5.45 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Loading Plotting Utilities
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
import os
import imageio
import shutil
def plot_xor():
xx, yy = np.meshgrid(np.linspace(-3, 3, 50), np.linspace(-3, 3, 50))
rng = np.random.RandomState(0)
X = rng.randn(300, 2)
y = np.array(np.logical_xor(X[:, 0] > 0, X[:, 1] > 0), dtype=int)
gs = gridspec.GridSpec(2, 2)
fig = plt.figure(figsize=(10, 8))
ax = plt.subplot(gs[0, 0])
plt.plot(X[np.where(y == 0), 0], X[np.where(y == 0), 1], 'ro')
plt.plot(X[np.where(y == 1), 0], X[np.where(y == 1), 1], 'bo')
plt.title('XOR')
plt.show()
def plot_decision_boundary(X, y_actual, inference, save_filepath=None, text=None):
# Set min and max values and give it some padding
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole gid
zz = inference(np.c_[xx.ravel(), yy.ravel()])
zz = zz.reshape(xx.shape)
# Plot the contour and training examples
plt.figure()
plt.contourf(xx, yy, zz, cmap=plt.cm.Paired)
plt.scatter(X[:, 0], X[:, 1], c=y_actual, cmap=plt.cm.Spectral)
plt.xlabel('X[0]')
plt.ylabel('X[1]')
if text:
#plt.xlim(2, 2)
#plt.ylim(0, 4)
plt.text(-3.2, 3.3, text, fontsize=14)
if save_filepath == None:
plt.show()
else:
plt.savefig(save_filepath)
plt.close()
def plot_function(losses, save_filepath=None, ylabel=None, title=None):
plt.figure()
t = [x[0] for x in losses]
loss = [x[1] for x in losses]
plt.figure()
plt.plot(t, loss, 'b')
plt.xlabel('Batch #')
plt.ylabel(ylabel if ylabel else '')
if title:
plt.title(title)
if save_filepath == None:
plt.show()
else:
plt.savefig(save_filepath)
plt.close()
def make_gif(input_folder, save_filepath):
episode_frames = []
time_per_step = 0.25
for root, _, files in os.walk(input_folder):
file_paths = [os.path.join(root, file) for file in files]
#sorted by modified time
file_paths = sorted(file_paths, key=lambda x: os.path.getmtime(x))
episode_frames = [imageio.imread(file_path) for file_path in file_paths if file_path.endswith('.png')]
episode_frames = np.array(episode_frames)
imageio.mimsave(save_filepath, episode_frames, duration=time_per_step)
def make_all_gif(input_folder, save_filepath):
time_per_step = 0.25
for root, _, files in os.walk(os.path.join(input_folder, 'accuracy')):
file_paths = [os.path.join(root, file) for file in files]
#sorted by modified time
file_paths = sorted(file_paths, key=lambda x: os.path.getmtime(x))
file_names = [os.path.basename(file) for file in file_paths]
episode_frames_accuracy = [imageio.imread(os.path.join(input_folder, 'accuracy',file_name)) for file_name in
file_names if file_name.endswith('.png')]
episode_frames_boundary = [imageio.imread(os.path.join(input_folder, 'boundary', file_name)) for file_name in
file_names if file_name.endswith('.png')]
episode_frames_loss = [imageio.imread(os.path.join(input_folder, 'loss', file_name)) for file_name in
file_names if file_name.endswith('.png')]
assert(len(episode_frames_accuracy)==len(episode_frames_boundary)==len(episode_frames_loss))
episode_frames = []
for i in range(len(episode_frames_accuracy)):
plt.figure()
fig, axes = plt.subplots(1, 3, figsize=(20,5))
#fig.subplots_adjust(hspace=1, wspace=1)
ax = axes.flat[0]
ax.imshow(episode_frames_accuracy[i], interpolation='none')
ax.set_axis_off()
ax.set_aspect('equal')
ax = axes.flat[1]
ax.imshow(episode_frames_boundary[i], interpolation='none')
ax.set_axis_off()
ax.set_aspect('equal')
ax = axes.flat[2]
ax.imshow(episode_frames_loss[i], interpolation='none')
ax.set_axis_off()
ax.set_aspect('equal')
fig.tight_layout()
plt.suptitle('Step = %d' %i, fontsize=18)
plt.axis('off')
plt.savefig(os.path.join(input_folder, 'all', 'image_%d.png'%i), dpi = 200)
plt.close()
image = imageio.imread(os.path.join(input_folder, 'all', 'image_%d.png'%i))
episode_frames.append(image)
episode_frames = np.array(episode_frames)
imageio.mimsave(save_filepath, episode_frames, duration=time_per_step)
def reset_folders():
folders = [os.path.join('./scratch_mlp/plots', f) for f in ['accuracy', 'boundary', 'loss']]
if not os.path.exists('./scratch_mlp/plots'):
os.mkdir('./scratch_mlp/plots')
for f in folders:
if os.path.exists(f):
shutil.rmtree(f)
os.mkdir(f)
if __name__ == '__main__':
#save_filepath = './scratch_mlp/plots/gif/boundary.gif'
#make_gif('./scratch_mlp/plots/boundary/', save_filepath)
#save_filepath = './scratch_mlp/plots/gif/loss.gif'
#make_gif('./scratch_mlp/plots/loss/', save_filepath)
#save_filepath = './scratch_mlp/plots/gif/accuracy.gif'
#make_gif('./scratch_mlp/plots/accuracy/', save_filepath)
input_folder = './scratch_mlp/plots/'
save_filepath = './scratch_mlp/plots/gif/all.gif'
make_all_gif(input_folder, save_filepath)