-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatheamtical_description.lyx
567 lines (441 loc) · 15.2 KB
/
matheamtical_description.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
#LyX 2.2 created this file. For more info see http://www.lyx.org/
\lyxformat 508
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "md-charter" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family rmdefault
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_title "Temperature fluctuations on Pixel in FRLW"
\pdf_author "Renan Alves de Oliveira"
\pdf_bookmarks false
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle false
\papersize a4paper
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Temperature fluctuations on Pixel in FRLW
\end_layout
\begin_layout Author
Renan Alves de Oliveira
\begin_inset Newline newline
\end_inset
Thiago dos Santos Pereira
\end_layout
\begin_layout Date
\end_layout
\begin_layout Standard
\end_layout
\begin_layout Standard
For this work, we are interested in large scale effects which is dominated
by the Sachs Wolfe effect:
\begin_inset Formula
\begin{eqnarray*}
\frac{\Delta\mathrm{T}}{\mathrm{T}}\left(\mathbf{r}\right) & = & \frac{1}{3}\Phi\left(\mathbf{r}\right),
\end{eqnarray*}
\end_inset
where
\begin_inset Formula $\frac{\Delta\mathrm{T}}{\mathrm{T}}$
\end_inset
is the temperature fluctuations evaluated at
\begin_inset Formula $\mathbf{r}$
\end_inset
and
\begin_inset Formula $\Phi\left(\mathbf{r}\right)$
\end_inset
is the gravitational potential.
Using
\begin_inset Formula
\begin{eqnarray*}
\frac{\Delta\mathrm{T}}{\mathrm{T}}\left(\mathbf{r}\right) & = & \frac{1}{3\left(2\pi\right)^{3}}\int\mathrm{d^{3}}\mathbf{k}e^{i\mathbf{k}\cdot\mathbf{r}}\Phi\left(\mathbf{k}\right),
\end{eqnarray*}
\end_inset
let us suppose that this system is embedded in a box, with volume
\begin_inset Formula $V$
\end_inset
, side
\begin_inset Formula $L$
\end_inset
, and periodicity
\begin_inset Formula
\begin{eqnarray*}
\Phi\left(\mathbf{r}\right) & = & \Phi\left(\mathbf{r}+\mathbf{L}\right)=\Phi\left(\mathbf{r}+L\hat{\mathbf{x}}\right)=\Phi\left(\mathbf{r}+L\hat{\mathbf{y}}\right)=\Phi\left(\mathbf{r}+L\hat{\mathbf{z}}\right).
\end{eqnarray*}
\end_inset
Plugging this in the Fourier transform and comparing terms:
\begin_inset Formula
\begin{eqnarray*}
e^{i\mathbf{k}\cdot\mathbf{r}} & = & e^{i\mathbf{k}\cdot\left(\mathbf{r}+L\hat{\mathbf{x}}\right)}\Rightarrow e^{iL_{x}k_{x}}=1,
\end{eqnarray*}
\end_inset
and doing the same for
\begin_inset Formula $k_{y}$
\end_inset
and
\begin_inset Formula $k_{z}$
\end_inset
, we have
\begin_inset Formula
\begin{eqnarray*}
\mathbf{k} & = & \frac{2\pi}{L}\left(\mathbf{n}_{x}+\mathbf{n}_{y}+\mathbf{n}_{z}\right).
\end{eqnarray*}
\end_inset
We will use a discretization of the Fourier space.
Let us rewrite the Fourier transform as
\begin_inset Formula
\begin{eqnarray*}
\frac{\Delta\mathrm{T}}{\mathrm{T}}\left(\mathbf{r}\right) & = & \frac{1}{3V}\sum_{\mathbf{k}}e^{i\mathbf{k}\cdot\mathbf{r}}\Phi\left(\mathbf{k}\right)\Rightarrow\frac{\Delta\tilde{\mathrm{T}}}{\tilde{\mathrm{T}}}\left(\mathbf{r}\right)=\sum_{\mathbf{k}}e^{i\mathbf{k}\cdot\mathbf{r}}\Phi\left(\mathbf{k}\right).
\end{eqnarray*}
\end_inset
For a homogeneous distribution,
\begin_inset Formula
\begin{eqnarray*}
\left\langle \Phi\left(\mathbf{k}\right)\Phi^{*}\left(\mathbf{q}\right)\right\rangle & = & P\left(\mathbf{k}\right)\delta\left(\mathbf{k}-\mathbf{q}\right),
\end{eqnarray*}
\end_inset
however, for a Gaussian variables
\begin_inset Formula $\phi\left(\mathbf{k}\right)$
\end_inset
\begin_inset Formula
\begin{eqnarray*}
\left\langle \phi\left(\mathbf{k}\right)\phi^{*}\left(\mathbf{q}\right)\right\rangle & = & \delta\left(\mathbf{k}-\mathbf{q}\right).
\end{eqnarray*}
\end_inset
Let us assume that
\begin_inset Formula
\begin{eqnarray*}
\phi\left(\mathbf{k}\right) & \equiv & \frac{\Phi\left(\mathbf{k}\right)}{\sqrt{P\left(\mathbf{k}\right)}}\Rightarrow\Phi\left(\mathbf{k}\right)=\phi\left(\mathbf{k}\right)\sqrt{P\left(\mathbf{k}\right)}.
\end{eqnarray*}
\end_inset
The function
\begin_inset Formula $\Delta\mathrm{T}/\mathrm{T}$
\end_inset
is a real function, for our sum be a real function as well we should impose
that
\begin_inset Formula
\begin{eqnarray*}
\Phi\left(\mathbf{k}\right) & = & \Phi^{*}\left(-\mathbf{k}\right).
\end{eqnarray*}
\end_inset
Let us break our sum in two hemispheres using the parity condition above
using
\begin_inset Formula $\left(\theta_{k},\phi_{k}\right)\rightarrow\left(\pi-\theta_{k},\pi+\phi_{k}\right)$
\end_inset
as
\begin_inset Formula
\begin{eqnarray*}
\frac{\Delta\tilde{\mathrm{T}}}{\tilde{\mathrm{T}}}\left(\mathbf{r}\right) & = & \sum_{\mathbf{k}}e^{i\mathbf{k}\cdot\mathbf{r}}\Phi\left(\mathbf{k}\right)+\sum_{-\mathbf{k}}e^{-i\mathbf{k}\cdot\mathbf{r}}\Phi\left(-\mathbf{k}\right),\\
& = & \sum_{\mathbf{k}}e^{i\mathbf{k}\cdot\mathbf{r}}\Phi\left(\mathbf{k}\right)+\sum_{-\mathbf{k}}e^{-i\mathbf{k}\cdot\mathbf{r}}\Phi^{*}\left(\mathbf{k}\right),\\
& = & \sum_{\mathbf{k}}e^{i\mathbf{k}\cdot\mathbf{r}}\Phi\left(\mathbf{k}\right)+e^{-i\mathbf{k}\cdot\mathbf{r}}\Phi^{*}\left(\mathbf{k}\right).
\end{eqnarray*}
\end_inset
Using the redefinition of the Power Spectrum, and specifically for this
case,
\begin_inset Formula $P\left(\mathbf{k}\right)=P\left(k\right)$
\end_inset
leading that
\begin_inset Formula $\sqrt{P\left(\mathbf{k}\right)}$
\end_inset
is already a real function, however
\begin_inset Formula
\begin{eqnarray*}
\phi\left(\mathbf{k}\right) & = & \phi^{R}\left(\mathbf{k}\right)+i\phi^{I}\left(\mathbf{k}\right).
\end{eqnarray*}
\end_inset
Plugging the results above in the discretized Fourier transform:
\begin_inset Formula
\begin{eqnarray*}
\frac{\Delta\tilde{\mathrm{T}}}{\tilde{\mathrm{T}}}\left(\mathbf{r}\right) & = & \sum_{\mathbf{k}}\sqrt{P\left(\mathbf{k}\right)}\left\{ e^{i\mathbf{k}\cdot\mathbf{r}}\left[\phi^{R}\left(\mathbf{k}\right)+i\phi^{I}\left(\mathbf{k}\right)\right]+e^{-i\mathbf{k}\cdot\mathbf{r}}\left[\phi^{R}\left(\mathbf{k}\right)-i\phi^{I}\left(\mathbf{k}\right)\right]\right\} ,
\end{eqnarray*}
\end_inset
leading to
\begin_inset Formula
\[
\boxed{\frac{\Delta\tilde{\mathrm{T}}}{\tilde{\mathrm{T}}}\left(\mathbf{r}\right)=2\sum_{\mathbf{k}}\sqrt{P\left(\mathbf{k}\right)}\left[\cos\left(\mathbf{k}\cdot\mathbf{r}\right)\phi^{R}\left(\mathbf{k}\right)-\sin\left(\mathbf{k}\cdot\mathbf{r}\right)\phi^{I}\left(\mathbf{k}\right)\right].}
\]
\end_inset
Using
\begin_inset Formula ${\bf k}$
\end_inset
, and defining
\begin_inset Formula
\begin{eqnarray*}
\mathbf{n} & \equiv & \mathbf{n}_{x}+\mathbf{n}_{y}+\mathbf{n}_{z},
\end{eqnarray*}
\end_inset
where
\begin_inset Formula $\mathbf{n}\in\mathbb{Z}$
\end_inset
, and
\begin_inset Formula
\begin{eqnarray*}
\mathbf{k} & = & \frac{2\pi}{L}\mathbf{n}\Rightarrow k=\frac{2\pi}{L}n.
\end{eqnarray*}
\end_inset
Let
\begin_inset Formula
\begin{eqnarray*}
\mathbf{r} & = & R\left(\sin\theta\cos\phi\hat{\mathbf{x}}+\sin\theta\sin\phi\hat{\mathbf{y}}+\cos\theta\hat{\mathbf{z}}\right),
\end{eqnarray*}
\end_inset
and
\begin_inset Formula $\mathbf{n}=n\left(\sin\theta_{n}\cos\phi_{n}\hat{\mathbf{x}}+\sin\theta_{n}\sin\phi_{n}\hat{\mathbf{y}}+\cos\theta_{n}\hat{\mathbf{z}}\right)$
\end_inset
,
\begin_inset Formula
\begin{eqnarray*}
\mathbf{k}\cdot\mathbf{r} & = & 2\pi n\frac{R}{L}\cos\gamma,
\end{eqnarray*}
\end_inset
where
\begin_inset Formula
\begin{eqnarray*}
\cos\gamma & = & \cos\theta\cos\theta_{n}+\sin\theta\sin\theta_{n}\cos\left(\phi-\phi_{n}\right),
\end{eqnarray*}
\end_inset
and
\begin_inset Formula
\begin{eqnarray*}
\theta_{n} & = & \arccos\left(\frac{n_{z}}{n}\right),\qquad\phi_{n}=\arctan\left(\frac{n_{y}}{n_{x}}\right).
\end{eqnarray*}
\end_inset
We can rewrite the equation for the variation of the temperature as
\begin_inset Formula
\begin{eqnarray*}
\frac{\Delta\tilde{\mathrm{T}}}{\tilde{\mathrm{T}}}\left(\mathbf{r}\right) & = & 2\sum_{\mathbf{k}}\sqrt{P\left(\mathbf{k}\right)}\left[\cos\left(2\pi n\frac{R}{L}\cos\gamma\right)\phi^{R}\left(\mathbf{k}\right)-\sin\left(2\pi n\frac{R}{L}\cos\gamma\right)\phi^{I}\left(\mathbf{k}\right)\right].
\end{eqnarray*}
\end_inset
To speed up this numerical code, we can evaluate all possible norms in terms
of the first octant, and we do not take care of the terms of the south
hemisphere below
\begin_inset Formula $k_{z}$
\end_inset
since we'd used the parity relation.
Also, we can map all the other points using only the first octant:
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="5" columns="3">
<features tabularvalignment="middle">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Ocatant
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Relationship
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\cos\gamma$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
I
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\left(\theta,\phi\right)$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\ensuremath{\cos\theta\cos\theta_{k}+\sin\theta\sin\theta_{k}\cos\left(\phi-\phi_{k}\right)}$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
II
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\ensuremath{\left(\theta,\pi-\phi\right)}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\ensuremath{\cos\theta\cos\theta_{k}-\sin\theta\sin\theta_{k}\cos\left(\phi+\phi_{k}\right)}$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
III
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\ensuremath{\left(\theta,\pi+\phi\right)}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\ensuremath{\cos\theta\cos\theta_{k}-\sin\theta\sin\theta_{k}\cos\left(\phi-\phi_{k}\right)}$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
IV
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\ensuremath{\left(\theta,-\phi\right)}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\ensuremath{\cos\theta\cos\theta_{k}+\sin\theta\sin\theta_{k}\cos\left(\phi+\phi_{k}\right)}$
\end_inset
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Standard
This implies that
\begin_inset Formula
\begin{eqnarray*}
\frac{\Delta\tilde{\mathrm{T}}}{\tilde{\mathrm{T}}}\left(\mathbf{r}\right) & = & 2\sum_{\mathbf{k}}\sqrt{P\left(\mathbf{k}\right)}\left\{ \phi_{1}^{R}\left(\mathbf{k}\right)\cos\left(2\pi n\frac{R}{L}\cos\gamma_{I}\right)-\phi_{1}^{I}\left(\mathbf{k}\right)\sin\left(2\pi n\frac{R}{L}\cos\gamma_{I}\right)\right.\\
& & +\phi_{2}^{R}\left(\mathbf{k}\right)\cos\left(2\pi n\frac{R}{L}\cos\gamma_{II}\right)-\phi_{2}^{I}\left(\mathbf{k}\right)\sin\left(2\pi n\frac{R}{L}\cos\gamma_{II}\right)\\
& & +\phi_{3}^{R}\left(\mathbf{k}\right)\cos\left(2\pi n\frac{R}{L}\cos\gamma_{III}\right)-\phi_{3}^{I}\left(\mathbf{k}\right)\sin\left(2\pi n\frac{R}{L}\cos\gamma_{III}\right)\\
& & \left.+\phi_{4}^{R}\left(\mathbf{k}\right)\cos\left(2\pi n\frac{R}{L}\cos\gamma_{IV}\right)-\phi_{4}^{I}\left(\mathbf{k}\right)\sin\left(2\pi n\frac{R}{L}\cos\gamma_{IV}\right)\right\} .
\end{eqnarray*}
\end_inset
We will start first with the invariant scale Harrison-Zel'dovich power spectrum:
\begin_inset Formula
\begin{eqnarray*}
\mathcal{P}(k) & = & Ak^{-3},
\end{eqnarray*}
\end_inset
and later, for other geometries.
\end_layout
\end_body
\end_document