forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwandb.py
319 lines (270 loc) · 12.6 KB
/
wandb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Weights and Biases Logger
-------------------------
"""
import operator
import os
from argparse import Namespace
from pathlib import Path
from typing import Any, Dict, Optional, Union
from weakref import ReferenceType
import torch.nn as nn
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
from pytorch_lightning.utilities import _module_available, rank_zero_only
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _compare_version
from pytorch_lightning.utilities.warnings import rank_zero_warn
_WANDB_AVAILABLE = _module_available("wandb")
_WANDB_GREATER_EQUAL_0_10_22 = _compare_version("wandb", operator.ge, "0.10.22")
try:
import wandb
from wandb.wandb_run import Run
except ImportError:
# needed for test mocks, these tests shall be updated
wandb, Run = None, None
class WandbLogger(LightningLoggerBase):
r"""
Log using `Weights and Biases <https://docs.wandb.ai/integrations/lightning>`_.
Install it with pip:
.. code-block:: bash
pip install wandb
Args:
name: Display name for the run.
save_dir: Path where data is saved (wandb dir by default).
offline: Run offline (data can be streamed later to wandb servers).
id: Sets the version, mainly used to resume a previous run.
version: Same as id.
anonymous: Enables or explicitly disables anonymous logging.
project: The name of the project to which this run will belong.
log_model: Log checkpoints created by :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint`
as W&B artifacts.
* if ``log_model == 'all'``, checkpoints are logged during training.
* if ``log_model == 'best_and_last'``, checkpoints are logged during training and only the best and the
last checkpoints (according to ModelCheckpoint) are kept as wandb artifacts. Previous versions are automatically deleted.
* if ``log_model == True``, checkpoints are logged at the end of training, except when
:paramref:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint.save_top_k` ``== -1``
which also logs every checkpoint during training.
* if ``log_model == False`` (default), no checkpoint is logged.
prefix: A string to put at the beginning of metric keys.
experiment: WandB experiment object. Automatically set when creating a run.
\**kwargs: Arguments passed to :func:`wandb.init` like `entity`, `group`, `tags`, etc.
Raises:
ImportError:
If required WandB package is not installed on the device.
MisconfigurationException:
If both ``log_model`` and ``offline``is set to ``True``.
Example::
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning import Trainer
# instrument experiment with W&B
wandb_logger = WandbLogger(project='MNIST', log_model='all')
trainer = Trainer(logger=wandb_logger)
# log gradients and model topology
wandb_logger.watch(model)
See Also:
- `Demo in Google Colab <http://wandb.me/lightning>`__ with model logging
- `W&B Documentation <https://docs.wandb.ai/integrations/lightning>`__
"""
LOGGER_JOIN_CHAR = "-"
def __init__(
self,
name: Optional[str] = None,
save_dir: Optional[str] = None,
offline: Optional[bool] = False,
id: Optional[str] = None,
anonymous: Optional[bool] = None,
version: Optional[str] = None,
project: Optional[str] = None,
log_model: Optional[bool] = False,
experiment=None,
prefix: Optional[str] = "",
**kwargs,
):
if wandb is None:
raise ImportError(
"You want to use `wandb` logger which is not installed yet,"
" install it with `pip install wandb`." # pragma: no-cover
)
if offline and log_model:
raise MisconfigurationException(
f"Providing log_model={log_model} and offline={offline} is an invalid configuration"
" since model checkpoints cannot be uploaded in offline mode.\n"
"Hint: Set `offline=False` to log your model."
)
if log_model and not _WANDB_GREATER_EQUAL_0_10_22:
rank_zero_warn(
f"Providing log_model={log_model} requires wandb version >= 0.10.22"
" for logging associated model metadata.\n"
"Hint: Upgrade with `pip install --ugrade wandb`."
)
super().__init__()
self._offline = offline
self._log_model = log_model
self._prefix = prefix
self._experiment = experiment
self._logged_model_time = {}
self._checkpoint_callback = None
# set wandb init arguments
anonymous_lut = {True: "allow", False: None}
self._wandb_init = dict(
name=name,
project=project,
id=version or id,
dir=save_dir,
resume="allow",
anonymous=anonymous_lut.get(anonymous, anonymous),
)
self._wandb_init.update(**kwargs)
# extract parameters
self._save_dir = self._wandb_init.get("dir")
self._name = self._wandb_init.get("name")
self._id = self._wandb_init.get("id")
def __getstate__(self):
state = self.__dict__.copy()
# args needed to reload correct experiment
state["_id"] = self._experiment.id if self._experiment is not None else None
# cannot be pickled
state["_experiment"] = None
return state
@property
@rank_zero_experiment
def experiment(self) -> Run:
r"""
Actual wandb object. To use wandb features in your
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
Example::
self.logger.experiment.some_wandb_function()
"""
if self._experiment is None:
if self._offline:
os.environ["WANDB_MODE"] = "dryrun"
if wandb.run is None:
self._experiment = wandb.init(**self._wandb_init)
else:
rank_zero_warn(
"There is a wandb run already in progress and newly created instances of `WandbLogger` will reuse"
" this run. If this is not desired, call `wandb.finish()` before instantiating `WandbLogger`."
)
self._experiment = wandb.run
# define default x-axis (for latest wandb versions)
if getattr(self._experiment, "define_metric", None):
self._experiment.define_metric("trainer/global_step")
self._experiment.define_metric("*", step_metric="trainer/global_step", step_sync=True)
return self._experiment
def watch(self, model: nn.Module, log: str = "gradients", log_freq: int = 100, log_graph: bool = True):
self.experiment.watch(model, log=log, log_freq=log_freq, log_graph=log_graph)
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
params = self._convert_params(params)
params = self._flatten_dict(params)
params = self._sanitize_callable_params(params)
self.experiment.config.update(params, allow_val_change=True)
@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0"
metrics = self._add_prefix(metrics)
if step is not None:
self.experiment.log({**metrics, "trainer/global_step": step})
else:
self.experiment.log(metrics)
@property
def save_dir(self) -> Optional[str]:
"""Gets the save directory.
Returns:
The path to the save directory.
"""
return self._save_dir
@property
def name(self) -> Optional[str]:
"""Gets the name of the experiment.
Returns:
The name of the experiment if the experiment exists else the name given to the constructor.
"""
# don't create an experiment if we don't have one
return self._experiment.project_name() if self._experiment else self._name
@property
def version(self) -> Optional[str]:
"""Gets the id of the experiment.
Returns:
The id of the experiment if the experiment exists else the id given to the constructor.
"""
# don't create an experiment if we don't have one
return self._experiment.id if self._experiment else self._id
def after_save_checkpoint(self, checkpoint_callback: "ReferenceType[ModelCheckpoint]") -> None:
# log checkpoints as artifacts
if (
self._log_model == "all"
or (self._log_model is True and checkpoint_callback.save_top_k == -1)
or self._log_model == "best_and_last"
):
self._scan_and_log_checkpoints(checkpoint_callback)
elif self._log_model is True:
self._checkpoint_callback = checkpoint_callback
@rank_zero_only
def finalize(self, status: str) -> None:
# log checkpoints as artifacts
if self._checkpoint_callback:
self._scan_and_log_checkpoints(self._checkpoint_callback)
def _scan_and_log_checkpoints(self, checkpoint_callback: "ReferenceType[ModelCheckpoint]") -> None:
# get checkpoints to be saved with associated score
checkpoints = {
checkpoint_callback.last_model_path: checkpoint_callback.current_score,
checkpoint_callback.best_model_path: checkpoint_callback.best_model_score,
**checkpoint_callback.best_k_models,
}
checkpoints = sorted((Path(p).stat().st_mtime, p, s) for p, s in checkpoints.items() if Path(p).is_file())
checkpoints = [
c for c in checkpoints if c[1] not in self._logged_model_time.keys() or self._logged_model_time[c[1]] < c[0]
]
# log iteratively all new checkpoints
for t, p, s in checkpoints:
metadata = (
{
"score": s,
"original_filename": Path(p).name,
"ModelCheckpoint": {
k: getattr(checkpoint_callback, k)
for k in [
"monitor",
"mode",
"save_last",
"save_top_k",
"save_weights_only",
"_every_n_train_steps",
"_every_n_val_epochs",
]
# ensure it does not break if `ModelCheckpoint` args change
if hasattr(checkpoint_callback, k)
},
}
if _WANDB_GREATER_EQUAL_0_10_22
else None
)
artifact = wandb.Artifact(name=f"model-{self.experiment.id}", type="model", metadata=metadata)
artifact.add_file(p, name="model.ckpt")
aliases = ["latest", "best"] if p == checkpoint_callback.best_model_path else ["latest"]
self.experiment.log_artifact(artifact, aliases=aliases)
# remember logged models - timestamp needed in case filename didn't change (lastkckpt or custom name)
self._logged_model_time[p] = t
if self._log_model == "best_and_last":
# Clean up previous artifacts.
# Adapted from https://gitbook-docs.wandb.ai/guides/artifacts/api#cleaning-up-unused-versions
api = wandb.Api(overrides={"project": self.experiment.project})
for version in api.artifact_versions(f"model-{self.experiment.id}", "model"):
# Clean up all versions that don't have an alias such as 'latest'.
if len(version.aliases) == 0:
version.delete()