-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEx1.agda
656 lines (496 loc) · 19.9 KB
/
Ex1.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
-- Examples: Direct Acyclic Graph
module Ex1 where
open import Data.Bool
open import Data.Char renaming (Char to BChar)
open import Data.Empty
open import Data.Fin as Fin
using (Fin; Fin′; zero; suc; #_; toℕ; _≟_)
open import Data.List as List using (List; []; _∷_)
open import Data.Maybe
open import Data.Nat as ℕ using (suc; ℕ; _∸_)
open import Data.Nat.Show renaming (show to ℕshow)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Data.String as S renaming (_++_ to _+++_)
open import Data.Vec as Vec using (Vec) renaming ([] to []v; _∷_ to _∷v_)
open import Data.Unit
open import ArgPrelude
open import AIF
open import LabelAlgebras
open import ArgSchemes
-- la = Pref
la = Łuk
import DAG; module DAGla = DAG la; open DAGla
node : ∀ {n} → ANode
→ (v : Float) → {0.0 [≤] v ≡ true} → {v [≤] 1.0 ≡ true}
→ Sucs n
→ AContext n
node nd v {p0} {p1} sucs = context (Ln nd (just (V v {p0} {p1}))) sucs
node0 : ∀ {n} → ANode → Sucs n → AContext n
node0 nd sucs = context (Ln nd nothing) sucs
T1 = mkFrag "St1"
T2 = mkFrag "St2"
T3 = mkFrag "St3"
T5 = mkFrag "St5"
T7 = mkFrag "St7"
St1 = record { sttext = just T1; stprop = mkProp (Fragment.ftext T1)}
St2 = record { sttext = just T2; stprop = mkProp (Fragment.ftext T2)}
St3 = record { sttext = nothing; stprop = mkProp (Fragment.ftext T3)}
¬St3 = record { sttext = nothing; stprop = NOT (mkProp (Fragment.ftext T3))}
St5 = record { sttext = just T5; stprop = mkProp (Fragment.ftext T5)}
St7 = record { sttext = just T7; stprop = mkProp (Fragment.ftext T7)}
SC = record {Conflicting = conflicting; Conflicted = conflicted}
-- Statements / I-nodes
I1 : ANode; I1 = Lni St1
I2 : ANode; I2 = Lni St2
I3 : ANode; I3 = Lni St3
¬I3 : ANode; ¬I3 = Lni ¬St3
I5 : ANode; I5 = Lni St5
I7 : ANode; I7 = Lni St7
-- Schemes / S-nodes
SR4 : ANode; SR4 = Lnr A-от-эксперта
SR6 : ANode; SR6 = Lnr A-абдукция
SR8 : ANode; SR8 = Lnr A-ad-populum
SC1 : ANode; SC1 = Lnc SC
SC2 : ANode; SC2 = Lnc SC
-- I1 ---+
-- \
-- SR4 ---> I3
-- /
-- I2 ---+
G1 : AGraph _
G1 =
node0 I3 ((поддержка , # 0) ∷ []) &
node SR4 0.5 {refl} {refl} ((эксперт , # 1) ∷ (говорит , # 0) ∷ []) & -- missed: область
node I2 1.0 {refl} {refl} [] &
node I1 0.7 {refl} {refl} [] &
∅
_ : nodes G1 ≡ (# 0 , (Ln I3 _)) ∷v (# 1 , (Ln SR4 _)) ∷v (# 2 , (Ln I2 _)) ∷v (# 3 , (Ln I1 _)) ∷v []v
_ = refl
_ : edges G1 ≡ (# 0 , поддержка , # 0) ∷ (# 1 , эксперт , # 1) ∷ (# 1 , говорит , # 0) ∷ []
_ = refl
_ : G1 [ # 3 ] ≡ (node I1 0.7 {refl} {refl} [] & ∅)
_ = refl
_ : G1 [ # 2 ] ≡ (node I2 1.0 {refl} {refl} [] & node I1 0.7 {refl} {refl} [] & ∅)
_ = refl
_ : G1 [ # 1 ] ≡ ( node SR4 0.5 {refl} {refl} ((эксперт , # 1) ∷ (говорит , # 0) ∷ []) &
node I2 1.0 {refl} {refl} [] & node I1 0.7 {refl} {refl} [] &
∅
)
_ = refl
_ : roots G1 ≡ (_ , (Ln I3 _)) ∷ []
_ = refl
_ : sucs G1 (# 1) ≡ (эксперт , # 1) ∷ (говорит , # 0) ∷ []
_ = refl
-- the same with implicit numbers
_ : sucs G1 (# 1) ≡ (эксперт , _) ∷ (говорит , _) ∷ []
_ = refl
-- and even this way !!
_ : sucs G1 (# 1) ≡ (_ , _) ∷ (_ , _) ∷ []
_ = refl
_ : sucs G1 (# 0) ≡ (поддержка , # 0) ∷ []
_ = refl
G10 = compute G1
G11 = steps 1 G1
G12 = steps 2 G1
G13 = steps 3 G1
G14 = steps 4 G1
G1lim = steps 100 G1
-- I2 ---- <SR4> ---∙
-- / \
-- I1 ----∙ I3
-- /
-- I5 ---- <SR6> ---∙
G2 : AGraph _
G2 =
node0 I3 ((объяснение , # 0) ∷ (поддержка , # 2) ∷ []) &
node SR6 0.4 {refl} {refl} ((факт , # 0) ∷ []) &
node I5 0.6 {refl} {refl} [] &
node SR4 0.5 {refl} {refl} ((эксперт , # 1) ∷ (говорит , # 0) ∷ []) & -- missed: область
node I2 1.0 {refl} {refl} [] &
node I1 0.7 {refl} {refl} [] &
∅
-- part of G2, actually
G3 : AGraph _
G3 =
node SR4 0.5 {refl} {refl} ((эксперт , # 1) ∷ (говорит , # 0) ∷ []) &
node I2 1.0 {refl} {refl} [] &
node I1 0.7 {refl} {refl} [] &
∅
_ : nodes G2 ≡ (# 0 , (Ln I3 _)) ∷v (# 1 , (Ln SR6 _)) ∷v (# 2 , (Ln I5 _)) ∷v (# 3 , (Ln SR4 _))
∷v (# 4 , (Ln I2 _)) ∷v (# 5 , (Ln I1 _)) ∷v []v
_ = refl
_ : edges G2 ≡ (# 0 , объяснение , # 0) ∷ (# 0 , поддержка , # 2)
∷ (# 1 , факт , # 0)
∷ (# 3 , эксперт , # 1) ∷ (# 3 , говорит , # 0)
∷ []
_ = refl
_ : preds G2 (# 0) ≡ []
_ = refl
_ : preds G2 (# 3) ≡ (# 0 , поддержка) ∷ []
_ = refl
_ : preds G2 (# 5) ≡ (# 3 , эксперт) ∷ []
_ = refl
_ : NArgs G2 (# 0) ≡ (record { Scheme = A-абдукция
; NPremises = just (Ln I5 _) ∷v []v
; NConclusion = just (Ln I3 _)
} , _) ∷
(record { Scheme = A-от-эксперта
; NPremises = just (Ln I1 _) ∷v just (Ln I2 _) ∷v nothing ∷v []v
; NConclusion = just (Ln I3 _)
} , _) ∷ []
_ = refl
_ : NArgs+ G2 (# 0) ≡ (поддержка , # 2) ∷ []
_ = refl
_ : NArgs- G2 (# 0) ≡ []
_ = refl
_ : NArgs G2 (# 4) ≡ []
_ = refl
_ : roots G2 ≡ (# 0 , (Ln I3 _)) ∷ []
_ = refl
_ : G2 [ (# 0) ] ≡ G2
_ = refl
_ : G2 [ ((# 0) ≻ (# 0)) ] ≡ G2 [ (# 1) ]
_ = refl
_ : theSame {5} (# 1) (# 0) (# 0) ≡ true
_ = refl
-- G3 is a part of G2
_ : G2 [ ((# 0) ≻ (# 2)) ] ≡ G3
_ = refl
-- не доказывается в общем виде
-- ppp : ∀ {n} (g : AGraph (suc n)) (i : Fin (suc n)) → tail (g [ i ]) ≡ g [ (Fin.lower₁ (suc i) _) ]
-- ppp {n} g i = ?
-- хотя частные случаи доказываются:
_ : tail (G2 [ (# 2) ]) ≡ G3
_ = refl
_ : G2 [ suc (# 2) ] ≡ G3
_ = refl
-- indexes
_ : G2 ! (# 0) ≡ context (Ln I3 nothing) ((объяснение , # 0) ∷ (поддержка , # 2) ∷ [])
_ = refl
_ : G2 ! (# 1) ≡ node SR6 0.4 {refl} {refl} ((факт , # 0) ∷ [])
_ = refl
_ : G2 ! (# 0) ≻ (# 0) ≡ node SR6 0.4 {refl} {refl} ((факт , # 0) ∷ [])
_ = refl
_ : G2 ! (# 1) ≻ (# 2) ≡ node I2 1.0 {refl} {refl} []
_ = refl
G20 = compute G2
G21 = steps 1 G2
G22 = steps 2 G2
G23 = steps 3 G2
G24 = steps 4 G2
G2lim = steps 100 G2
-- I2 ---- <N4> ---∙
-- / \
-- I1 ----∙ I3
-- /|
-- I5 ---- <N6> ---∙ |
-- |
-- I7 ---- <N8> -----∙
G4 : AGraph _
G4 =
node0 I3 ((объяснение , # 0) ∷ (поддержка , # 2) ∷ (поддержка , # 4) ∷ []) &
node SR8 0.9 {refl} {refl} ((все-признают , # 0) ∷ []) &
node I7 0.9 {refl} {refl} [] &
node SR6 0.4 {refl} {refl} ((факт , # 0) ∷ []) &
node I5 0.6 {refl} {refl} [] &
node SR4 0.5 {refl} {refl} ((эксперт , # 1) ∷ (говорит , # 0) ∷ []) &
node I2 1.0 {refl} {refl} [] &
node I1 0.7 {refl} {refl} [] &
∅
_ : nodes G4 ≡ (# 0 , (Ln I3 _)) ∷v (# 1 , (Ln SR8 _)) ∷v (# 2 , (Ln I7 _))
∷v (# 3 , (Ln SR6 _)) ∷v (# 4 , (Ln I5 _)) ∷v (# 5 , (Ln SR4 _))
∷v (# 6 , (Ln I2 _)) ∷v (# 7 , (Ln I1 _)) ∷v []v
_ = refl
_ : edges G4 ≡ (# 0 , объяснение , # 0)
∷ (# 0 , поддержка , # 2) ∷ (# 0 , поддержка , # 4)
∷ (# 1 , все-признают , _)
∷ (# 3 , факт , # 0)
∷ (# 5 , эксперт , # 1) ∷ (# 5 , говорит , # 0)
∷ []
_ = refl
_ : preds G4 (# 0) ≡ []
_ = refl
_ : preds G4 (# 3) ≡ (# 0 , поддержка) ∷ []
_ = refl
_ : preds G4 (# 1) ≡ (# 0 , объяснение) ∷ []
_ = refl
_ : preds G4 (# 7) ≡ (# 5 , эксперт) ∷ []
_ = refl
-- all inputs
_ : Arg G4 (# 0) (# 4) ≡ just (record { Scheme = A-от-эксперта
; NPremises = just (Ln I1 _) ∷v just (Ln I2 _) ∷v nothing ∷v []v
; NConclusion = just (Ln I3 _)
} , _)
_ = refl
_ : NArgs G4 (# 0) ≡ (record { Scheme = A-ad-populum
; NPremises = just (Ln I7 _) ∷v []v
; NConclusion = just (Ln I3 _)
} , _) ∷
(record { Scheme = A-абдукция
; NPremises = just (Ln I5 _) ∷v []v
; NConclusion = just (Ln I3 _)
} , _) ∷
(record { Scheme = A-от-эксперта
; NPremises = just (Ln I1 _) ∷v just (Ln I2 _) ∷v nothing ∷v []v
; NConclusion = just (Ln I3 _)
} , _) ∷ []
_ = refl
-- only attacks
_ : NArgs- G4 (# 0) ≡ []
_ = refl
-- only supports
_ : NArgs+ G4 (# 0) ≡ (поддержка , # 2) ∷ (поддержка , # 4) ∷ []
_ = refl
_ : NArgs G4 (# 4) ≡ []
_ = refl
_ : NArgs+ G4 (# 4) ≡ []
_ = refl
_ : NArgs- G4 (# 4) ≡ []
_ = refl
_ : roots G4 ≡ (# 0 , (Ln I3 _)) ∷ []
_ = refl
-- indexes
_ : G4 ! (# 0) ≡ context (Ln I3 nothing) ((объяснение , _) ∷ (поддержка , _) ∷ (поддержка , _) ∷ [])
_ = refl
_ : G4 ! (# 3) ≡ node SR6 0.4 ((факт , _) ∷ [])
_ = refl
_ : G4 ! (# 0) ≻ (# 2) ≡ node SR6 0.4 ((факт , _) ∷ [])
_ = refl
_ : G4 ! (# 3) ≻ (# 2) ≡ node I2 1.0 {refl} {refl} []
_ = refl
G40 = compute G4
G41 = steps 1 G4
G4lim = steps 100 G4
-- Graph with conflicts --------------------------------------------
-- I2 ---- <N4> ---∙
-- / \
-- I1 ----∙ I3 -∙
-- \ /| \
-- I5 ---- <N6> ---∙ CN1 CN2
-- | /
-- I7 ---- <N8> ----¬I3 -∙
G5 : AGraph _
G5 =
node SC1 1.0 {refl} {refl} ((conflicted , # 0) ∷ (conflicting , # 3) ∷ []) &
node0 ¬I3 ((поддержка , # 0) ∷ []) &
node SR8 0.9 {refl} {refl} ((все-признают , # 0) ∷ []) &
node I7 0.9 {refl} {refl} [] &
G2 -- missed область in A-от-эксперта !
G6 : AGraph _
G6 =
node SC2 1.0 {refl} {refl} ((conflicted , # 4) ∷ (conflicting , # 1) ∷ []) &
G5
_ : nodes G5 ≡ (# 0 , (Ln SC1 _)) ∷v (# 1 , (Ln ¬I3 _)) ∷v (# 2 , (Ln SR8 _)) ∷v (# 3 , (Ln I7 _))
∷v (# 4 , (Ln I3 _)) ∷v (# 5 , (Ln SR6 _)) ∷v (# 6 , (Ln I5 _)) ∷v (# 7 , (Ln SR4 _))
∷v (# 8 , (Ln I2 _)) ∷v (# 9 , (Ln I1 _)) ∷v []v
_ = refl
_ : roots G5 ≡ (# 0 , (Ln SC1 _)) ∷ []
_ = refl
_ : roots¬CA G5 ≡ (# 1 , (Ln ¬I3 _)) ∷ (# 4 , (Ln I3 _)) ∷ []
_ = refl
_ : theSame {10} (# 1) (# 0) (# 0) ≡ true
_ = refl
_ : theSame {10} (# 6) (# 2) (# 3) ≡ true
_ = refl
_ : _≻_ {10} (# 0) (# 0) ≡ (# 1)
_ = refl
_ : _≻_ {10} (# 2) (# 3) ≡ (# 6)
_ = refl
_ : _≻_ {10} (# 0) (# 3) ≡ (# 4)
_ = refl
_ : _≻_ {10} (# 4) (# 0) ≡ (# 5)
_ = refl
_ : c-ing G5 (# 0) ≡ just (# 3)
_ = refl
_ : c-ed G5 (# 0) ≡ just (# 0)
_ = refl
_ : c-ed G5 (# 1) ≡ nothing
_ = refl
_ : c-ed←CA G5 (# 0) (# 4) ≡ just (# 0)
_ = refl
_ : NConflicts G5 (# 0) ≡ []
_ = refl
-- _ : NConflicts G5 (# 1) ≡ []
-- _ = refl
_ : NConflicts G5 (# 2) ≡ []
_ = refl
-- _ : NConflicts G5 (# 4) ≡ ((# 1) , _) ∷ []
-- _ = refl
G50 = compute G5
G51 = steps 1 G5
G52 = steps 2 G5
G53 = steps 3 G5
G54 = steps 4 G5
G5100 = steps 100 G5
G5200 = steps 200 G5
G60 = compute G6
G61 = steps 1 G6
G62 = steps 2 G6
G63 = steps 3 G6
G64 = steps 4 G6
G6100 = steps 100 G6
G6200 = steps 200 G6
------------------------------------------------------------------------
open import ShowDAG la
open import IO
w = 110
ws = 90 -- "section" title width
printG1 : AGraph 4 → (∀ {n} → AGraph n → Fin n → MC) → String
printG1 g f = "\nI1 = " +++ pprint w (f g (# 3))
+++ " I2 = " +++ pprint w (f g (# 2))
+++ " I3 = " +++ pprint w (f g (# 0))
+++ " I4 = " +++ pprint w (f g (# 1))
printG2 : AGraph 6 → (∀ {n} → AGraph n → Fin n → MC) → String
printG2 g f = "\nI1 = " +++ pprint w (f g (# 5))
+++ " I2 = " +++ pprint w (f g (# 4))
+++ " I3 = " +++ pprint w (f g (# 0))
+++ " I4 = " +++ pprint w (f g (# 3))
+++ "\nI5 = " +++ pprint w (f g (# 2))
+++ " I6 = " +++ pprint w (f g (# 1))
printG4 : AGraph 8 → (∀ {n} → AGraph n → Fin n → MC) → String
printG4 g f = "\nI1 = " +++ pprint w (f g (# 7))
+++ " I2 = " +++ pprint w (f g (# 6))
+++ " I3 = " +++ pprint w (f g (# 0))
+++ " I4 = " +++ pprint w (f g (# 5))
+++ "\nI5 = " +++ pprint w (f g (# 4))
+++ " I6 = " +++ pprint w (f g (# 3))
+++ " I7 = " +++ pprint w (f g (# 2))
+++ " I8 = " +++ pprint w (f g (# 1))
printG5 : AGraph 10 → (∀ {n} → AGraph n → Fin n → MC) → String
printG5 g f = "\nI1 = " +++ pprint w (f g (# 9))
+++ " I2 = " +++ pprint w (f g (# 8))
+++ " I3 = " +++ pprint w (f g (# 4))
+++ " I4 = " +++ pprint w (f g (# 7))
+++ " I5 = " +++ pprint w (f g (# 6))
+++ "\nI6 = " +++ pprint w (f g (# 5))
+++ " I7 = " +++ pprint w (f g (# 3))
+++ " I8 = " +++ pprint w (f g (# 2))
+++ " -I3 = " +++ pprint w (f g (# 1))
+++ " CN1 = " +++ pprint w (f g (# 0))
printG6 : AGraph 11 → (∀ {n} → AGraph n → Fin n → MC) → String
printG6 g f = "\nI1 = " +++ pprint w (f g (# 10))
+++ " I2 = " +++ pprint w (f g (# 9))
+++ " I3 = " +++ pprint w (f g (# 5))
+++ " I4 = " +++ pprint w (f g (# 8))
+++ "\nI5 = " +++ pprint w (f g (# 7))
+++ " I6 = " +++ pprint w (f g (# 6))
+++ " I7 = " +++ pprint w (f g (# 4))
+++ " I8 = " +++ pprint w (f g (# 3))
+++ "\n-I3 = " +++ pprint w (f g (# 2))
+++ " CN1 = " +++ pprint w (f g (# 1))
+++ " CN2 = " +++ pprint w (f g (# 0))
main = run (putStrLn stringToPrint)
where
stringToPrint = S.replicate ws '-'
-- +++ ppretty ws (docSection ws "G1 orig")
-- +++ printG1 G1 val←i
-- +++ ppretty ws (docSection ws "G1 computed")
-- +++ printG1 G1 val
-- +++ ppretty ws (docSection ws "G10")
-- +++ printG1 G10 val←i
-- +++ ppretty ws (docSection ws "G11")
-- +++ printG1 G11 val←i
-- +++ ppretty ws (docSection ws "G12")
-- +++ printG1 G12 val←i
-- +++ ppretty ws (docSection ws "G13")
-- +++ printG1 G13 val←i
-- +++ ppretty ws (docSection ws "G14")
-- +++ printG1 G14 val←i
-- +++ ppretty ws (docSection ws "G1lim")
-- +++ printG1 G1lim val←i
-- +++ ppretty ws (docSection ws "G2 orig")
-- +++ printG2 G2 val←i
-- +++ ppretty ws (docSection ws "G2 computed")
-- +++ printG2 G2 val
-- +++ ppretty ws (docSection ws "G20")
-- +++ printG2 G20 val←i
-- -- +++ ppretty ws (docSection ws "G21")
-- -- +++ printG2 G21 val←i
-- -- +++ ppretty ws (docSection ws "G22")
-- -- +++ printG2 G22 val←i
-- -- +++ ppretty ws (docSection ws "G23")
-- -- +++ printG2 G23 val←i
-- -- +++ ppretty ws (docSection ws "G24")
-- -- +++ printG2 G24 val←i
-- +++ ppretty ws (docSection ws "G2lim")
-- +++ printG2 G2lim val←i
-- +++ pprint 110 G2
-- +++ ppretty ws (docSection ws "G4 orig")
-- +++ printG4 G4 val←i
-- +++ ppretty ws (docSection ws "G4 computed")
-- +++ printG4 G4 val
-- +++ ppretty ws (docSection ws "G40")
-- +++ printG4 G40 val←i
-- +++ ppretty ws (docSection ws "G41")
-- +++ printG4 G41 val←i
-- +++ ppretty ws (docSection ws "G4lim")
-- +++ printG4 G4lim val←i
-- +++ ppretty ws (docSection ws "G5 orig")
-- +++ printG5 G5 val←i
-- +++ ppretty ws (docSection ws "G5 computed")
-- +++ printG5 G5 val
-- +++ ppretty ws (docSection ws "G50")
-- +++ printG5 G50 val←i
-- +++ ppretty ws (docSection ws "G51")
-- +++ printG5 G51 val←i
-- +++ ppretty ws (docSection ws "G52")
-- +++ printG5 G52 val←i
-- +++ ppretty ws (docSection ws "G53")
-- +++ printG5 G53 val←i
-- +++ ppretty ws (docSection ws "G54")
-- +++ printG5 G54 val←i
-- +++ ppretty ws (docSection ws "G5100")
-- +++ printG5 G5100 val←i
-- +++ ppretty ws (docSection ws "G5200")
-- +++ printG5 G5200 val←i
-- +++ (pprint 110 G5)
+++ ppretty ws (docSection ws "G6 orig")
+++ printG6 G6 val←i
+++ ppretty ws (docSection ws "G6 computed")
+++ printG6 G6 valTree←i
+++ ppretty ws (docSection ws "G60")
+++ printG6 G60 val←i
+++ ppretty ws (docSection ws "G61")
+++ printG6 G61 val←i
+++ ppretty ws (docSection ws "G62")
+++ printG6 G62 val←i
+++ ppretty ws (docSection ws "G63")
+++ printG6 G63 val←i
+++ ppretty ws (docSection ws "G64")
+++ printG6 G64 val←i
+++ ppretty ws (docSection ws "G6100")
+++ printG6 G6100 val←i
+++ ppretty ws (docSection ws "G6200")
+++ printG6 G6200 val←i
-- +++ (pprint 110 G6)
-- +++ "\nI1+I2 = " +++ pprint w (val←Ctx G2 (# 5) ⟪ _⊕_ Pref ⟫ val←Ctx G2 (# 4))
-- +++ "\nI4+I6 = " +++ pprint w (val←Ctx G2 (# 3) ⟪ _⊕_ Pref ⟫ val←Ctx G2 (# 1))
-- +++ "\nI1+I5 = " +++ pprint w (val←Ctx G2 (# 5) ⟪ _⊕_ Pref ⟫ val←Ctx G2 (# 2))
-- +++ "\nI1.I2 = " +++ pprint w (val←Ctx G2 (# 5) ⟪ _⊙_ Pref ⟫ val←Ctx G2 (# 4))
-- +++ "\nI4.I6 = " +++ pprint w (val←Ctx G2 (# 3) ⟪ _⊙_ Pref ⟫ val←Ctx G2 (# 1))
-- +++ "\nI1.I5 = " +++ pprint w (val←Ctx G2 (# 5) ⟪ _⊙_ Pref ⟫ val←Ctx G2 (# 2))
-- -- +++ "\nNConflicts 0: " +++ "" +++ pprint w (NConflicts G5 (# 0))
-- -- +++ "\nNConflicts 1: " +++ "" +++ pprint w (NConflicts G5 (# 1))
-- -- +++ "\nNConflicts 2: " +++ "" +++ pprint w (NConflicts G5 (# 2))
-- -- +++ "\nNConflicts 3: " +++ "" +++ pprint w (NConflicts G5 (# 3))
-- -- +++ "\nNConflicts 4: " +++ "" +++ pprint w (NConflicts G5 (# 4))
-- +++ "\nG5repl0 ======================="
-- +++ "\nI1 = " +++ pprint w (val←i (replaceInGraph G5 (# 0) (just (LA⊤ Pref))) (# 7))
-- +++ "\nI2 = " +++ pprint w (val←i (replaceInGraph G5 (# 0) (just (LA⊤ Pref))) (# 6))
-- +++ "\nI3 = " +++ pprint w (val←i (replaceInGraph G5 (# 0) (just (LA⊤ Pref))) (# 0))
-- +++ "\nI4 = " +++ pprint w (val←i (replaceInGraph G5 (# 0) (just (LA⊤ Pref))) (# 5))
-- +++ "\nI5 = " +++ pprint w (val←i (replaceInGraph G5 (# 0) (just (LA⊤ Pref))) (# 4))
-- +++ "\nI6 = " +++ pprint w (val←i (replaceInGraph G5 (# 0) (just (LA⊤ Pref))) (# 3))
-- +++ "\nI7 = " +++ pprint w (val←i (replaceInGraph G5 (# 0) (just (LA⊤ Pref))) (# 2))
-- +++ "\nI8 = " +++ pprint w (val←i (replaceInGraph G5 (# 0) (just (LA⊤ Pref))) (# 1))
-- +++ "\nG5repl2 ======================="
-- +++ "\nI1 = " +++ pprint w (val←i (replaceInGraph G5 (# 2) (just (LA⊤ Pref))) (# 7))
-- +++ "\nI2 = " +++ pprint w (val←i (replaceInGraph G5 (# 2) (just (LA⊤ Pref))) (# 6))
-- +++ "\nI3 = " +++ pprint w (val←i (replaceInGraph G5 (# 2) (just (LA⊤ Pref))) (# 0))
-- +++ "\nI4 = " +++ pprint w (val←i (replaceInGraph G5 (# 2) (just (LA⊤ Pref))) (# 5))
-- +++ "\nI5 = " +++ pprint w (val←i (replaceInGraph G5 (# 2) (just (LA⊤ Pref))) (# 4))
-- +++ "\nI6 = " +++ pprint w (val←i (replaceInGraph G5 (# 2) (just (LA⊤ Pref))) (# 3))
-- +++ "\nI7 = " +++ pprint w (val←i (replaceInGraph G5 (# 2) (just (LA⊤ Pref))) (# 2))
-- +++ "\nI8 = " +++ pprint w (val←i (replaceInGraph G5 (# 2) (just (LA⊤ Pref))) (# 1))
-- +++ "\nG5repl7 ======================="
-- +++ "\nI1 = "