-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDAG.agda
497 lines (391 loc) · 17.3 KB
/
DAG.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
-- Direct Acyclic Graph -- with conflicts handling
open import LabelAlgebra renaming (⊤ to LA⊤; ⊥ to LA⊥; _∧_ to _LA∧_; _∨_ to _LA∨_)
module DAG {c ℓ₁ ℓ₂} (la : LabelAlgebra c ℓ₁ ℓ₂) where
open import Data.Bool
open import Data.Empty using (⊥)
open import Data.Fin as Fin
using (Fin; Fin′; zero; suc; #_; fromℕ; toℕ; inject₁; inject≤; fold′; _≟_)
renaming (_ℕ-ℕ_ to _-_)
open import Data.Fin.Properties as Finₚ using (toℕ-inject₁)
open import Data.Graph.Acyclic as Ac hiding (node) public
open import Data.List as List using (List; []; _∷_)
open import Data.Maybe
open import Data.Nat as ℕ renaming (zero to ℕzero; suc to ℕsuc)
open import Data.Nat.Properties
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Data.String as S renaming (_++_ to _+++_)
open import Data.Vec as Vec renaming ([] to []v; _∷_ to _∷v_) hiding ([_]; foldr)
open import Data.Unit using (⊤)
open import Function using (_∘_; _$_; id)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; cong)
open import Relation.Nullary using (yes; no)
-- for debugging
-- open import Debug.Trace
-- open import Data.Nat.Show renaming (show to ℕshow)
open import ArgPrelude hiding (fromℕ)
open import AIF
MC = Maybe (Carrier la)
MC⊥ = just (LA⊥ la)
MC⊤ = just (LA⊤ la)
ANode = Node -- node
ALNode = LNode MC -- labeled node
AContext = Context ALNode Role -- argumentation context
AGraph = Graph ALNode Role -- argumentation graph
ATree = Ac.Tree ALNode Role -- argumentation tree
ALNode3 = LNode (MC × MC × MC)
ATree3 = Ac.Tree ALNode3 Role
Sucs : ℕ → Set
Sucs n = List (Role × Fin n)
-- applying a binary operation to the Maybe label (TODO: rewrite with >>=)
_⟪_⟫_ : MC → ((Carrier la) → (Carrier la) → (Carrier la)) → MC → MC
just v1 ⟪ op ⟫ just v2 = just (op v1 v2)
_ ⟪ _ ⟫ _ = nothing
-- the "or" version of ⟪∙⟫
_⟪_⟫⁺_ : MC → ((Carrier la) → (Carrier la) → (Carrier la)) → MC → MC
just v1 ⟪ op ⟫⁺ just v2 = just (op v1 v2)
nothing ⟪ op ⟫⁺ just v2 = just v2
just v1 ⟪ op ⟫⁺ nothing = just v1
nothing ⟪ op ⟫⁺ nothing = nothing
-- same for a unary operation
infixr 10 ⟪_⟫_
⟪_⟫_ : ((Carrier la) → (Carrier la)) → MC → MC
⟪ op ⟫ (just v) = just (op v)
⟪ _ ⟫ nothing = nothing
infixl 10 _⟪⨂⟫_ _⟪⨁⟫⁺_
_⟪⨂⟫_ : MC → MC → MC
x ⟪⨂⟫ y = x ⟪ _⊗_ la ⟫ y
_⟪⨁⟫⁺_ : MC → MC → MC
x ⟪⨁⟫⁺ y = x ⟪ _⊕_ la ⟫⁺ y
⟪neg⟫ = ⟪ ⊘ la ⟫_
⟪mean⟫ : MC → MC → ℕ → MC
⟪mean⟫ x y n = x ⟪ (λ x y → mean la x y n) ⟫ y
⟪adiff⟫ = _⟪ adiff la ⟫_
-- δi-th graph relative to i
_[_≻_] : ∀ {n} → AGraph (ℕsuc n)
→ (i : Fin (ℕsuc n))
→ (δi : Fin (n - i))
→ AGraph _
g [ i ≻ δi ] = Ac.tail (g [ i ]) [ δi ]
-- i-th context
_!_ : ∀ {n} → AGraph n → (i : Fin n) → AContext (n - suc i)
g ! i = Ac.head (g [ i ])
-- δi-th context relative to i
_!_≻_ : ∀ {n} → AGraph (ℕsuc n)
→ (i : Fin (ℕsuc n))
→ (δi : Fin (n - i))
→ AContext _
g ! i ≻ δi = Ac.head (g [ i ≻ δi ]) --(Ac.tail (g [ i ]) [ δi ])
-- Auxiliary statements
p1 : ∀ n i → (n - suc i) ℕ.≤ n
p1 (ℕsuc n) zero = ≤-step ≤-refl
p1 (ℕsuc n) (suc i) = ≤-step (p1 n i)
p2 : ∀ n i → ℕsuc ((toℕ i) + (ℕsuc n - i)) ℕ.≤ ℕsuc (ℕsuc n)
p2 0 zero = s≤s (s≤s z≤n)
p2 0 (suc zero) = ≤-reflexive refl
p2 (ℕsuc n) zero = s≤s (s≤s (s≤s ≤-refl))
p2 (ℕsuc n) (suc i) = s≤s (s≤s (≤-reflexive (pppp n i)))
where
pppp : ∀ n i → toℕ i + (ℕsuc n - i) ≡ ℕsuc n
pppp 0 zero = refl
pppp 0 (suc zero) = refl
pppp (ℕsuc n) zero = refl
pppp (ℕsuc n) (suc i) = cong ℕsuc (pppp n i)
p3 : ∀ {n} {i : Fin n} → ℕsuc (ℕsuc (ℕsuc (toℕ i + (n - suc i)))) ℕ.≤ ℕsuc (ℕsuc n)
p3 {ℕsuc n} {zero} = s≤s (s≤s (s≤s ≤-refl))
p3 {ℕsuc n} {suc i} = s≤s (s≤s (s≤s (pppp n i)))
where
pppp : ∀ n i → ℕsuc (toℕ i + (n - suc i)) ℕ.≤ n
pppp (ℕsuc n) zero = s≤s ≤-refl
pppp (ℕsuc n) (suc i) = ≤-pred (s≤s (s≤s (pppp n i)))
-- i₁ and (i₂ + δi₂) denote the same context
theSame : ∀ {n} → Fin n → (i₂ : Fin n) → Fin (n - suc i₂) → Bool
theSame {ℕsuc (ℕsuc _)} i₁ i₂ δi₂ with (toℕ i₁) ℕ.≟ ℕsuc ((toℕ i₂) ℕ.+ (toℕ δi₂))
... | yes _ = true
... | no _ = false
theSame _ _ _ = false -- for n = 0, 1
-- i, δi → i ("real" index)
_≻_ : ∀ {n} → (i : Fin (ℕsuc n)) → Fin (n - i) → Fin (ℕsuc n)
zero ≻ δi = inject≤ (suc δi) (s≤s (≤-reflexive refl))
(suc zero) ≻ δi = inject≤ (suc (suc δi)) (s≤s (≤-reflexive refl))
(suc (suc i)) ≻ δi = inject≤ (suc ((suc (suc i)) Fin.+ δi)) p3
-- should be true, but I can't prove it
-- lm : ∀ n i δi → theSame {n} (realIdx {n} i δi) i δi ≡ true
-- lm .(ℕsuc _) zero δi = {!!}
-- lm .(ℕsuc _) (suc i) δi = {!!}
-- extracting info from the i-th context
isInode : ALNode → Bool
isInode (Ln (Lni _) _) = true
isInode _ = false
isRAnode : ALNode → Bool
isRAnode (Ln (Lnr _) _) = true
isRAnode _ = false
isCAnode : ALNode → Bool
isCAnode (Ln (Lnc _) _) = true
isCAnode _ = false
isPAnode : ALNode → Bool
isPAnode (Ln (Lnp _) _) = true
isPAnode _ = false
tryRAnode : ALNode → Maybe ALNode
tryRAnode n@(Ln (Lnr _) _) = just n
tryRAnode _ = nothing
-- ALNode of the i-th context
ALNode←i : ∀ {n} → AGraph n → Fin n → ALNode
ALNode←i g i = label (g ! i)
ALNode←δi : ∀ {n} → AGraph (ℕsuc n) → (i : Fin (ℕsuc n)) → Fin (n - i) → ALNode
ALNode←δi g i δi = ALNode←i g (i ≻ δi)
-- value from the node of the i-th context
val←i : ∀ {n} → AGraph n → Fin n → MC
val←i g i = LNode.value (ALNode←i g i)
-- replace value in context
replaceVal : ∀ {n} → AContext n → MC → AContext n
replaceVal (context (Ln nd _) sucs) v = context (Ln nd v) sucs
-- successors
-- successors data of the i-th context
sucs←i : ∀ {n} → AGraph n
→ (i : Fin n)
→ Sucs (n - suc i)
sucs←i g i = successors (g ! i )
-- successors data for i, δi
sucs←δi : ∀ {n} → AGraph (ℕsuc n)
→ (i : Fin (ℕsuc n))
→ (δi : Fin (n - i))
→ Sucs (n - i - suc δi)
sucs←δi g i δi = successors (g ! i ≻ δi)
-- extract δi-th role from the successors list, if exists
Role←sucs : ∀ {n} → Sucs n → Fin n → Maybe Role
Role←sucs [] _ = nothing
Role←sucs (x ∷ xs) δi with (δi Fin.≟ proj₂ x)
... | yes _ = just (proj₁ x)
... | no _ = Role←sucs xs δi
-- the role of the δi-th edge of the i-th context, if exists
Role←i : ∀ {n} → AGraph n → (i : Fin n) → (δi : Fin (n - suc i)) → Maybe Role
Role←i g i δi = Role←sucs (sucs←i g i) δi
-- extract the Role's index from the successors list, if exists
RoleIdx←sucs : ∀ {n} → Sucs n → Role → Maybe (Fin n)
RoleIdx←sucs [] _ = nothing
RoleIdx←sucs ((r' , δi) ∷ xs) r with (r =ᵇ r')
... | true = just δi
... | false = RoleIdx←sucs xs r
-- the role index of the 'Role' edge of the i-th context
RoleIdx←i : ∀ {n} → AGraph n → (i : Fin n) → Role → Maybe (Fin (n - suc i))
RoleIdx←i g i r = RoleIdx←sucs (sucs←i g i) r
-- I don't use these two
isSupport : ∀ {n} → AGraph n → (i : Fin n) → (δi : Fin (n - suc i)) → Bool
isSupport g i δi with Role←i g i δi
... | nothing = false
... | just r = isRAnode (ALNode←i (g [ i ]) (suc δi)) ∧ (r =ᵇ поддержка)
isAttack : ∀ {n} → AGraph n → (i : Fin n) → (δi : Fin (n - suc i)) → Bool
isAttack g i δi with Role←i g i δi
... | nothing = false
... | just r = isRAnode (ALNode←i (g [ i ]) (suc δi)) ∧ (r =ᵇ атака)
-- the list of supports (supporting RA-nodes) of the i-th context
NArgs+ : ∀ {n} → AGraph n → (i : Fin n) → Sucs (n - suc i)
NArgs+ {n} g i = filterb (λ s → isSupport g i (proj₂ s)) (sucs←i g i)
-- the list of attacks (attacking RA-nodes) of the i-th context
NArgs- : ∀ {n} → AGraph n → (i : Fin n) → Sucs (n - suc i)
NArgs- {n} g i = filterb (λ s → isAttack g i (proj₂ s)) (sucs←i g i)
-- the list of premises of the i-th context (empty if not RA-node)
NPremises : ∀ {n} → AGraph n → (i : Fin n) → Sucs (n - suc i)
NPremises {n} g i with isRAnode (ALNode←i g i)
... | true = sucs←i g i
... | false = []
-- nodes on which nothing depends (no predecessors)
roots : ∀ {n} → AGraph n → List (Fin n × ALNode)
roots ∅ = []
roots {n} g = filterb (P g) (Vec.toList (nodes g))
where
P : ∀ {n} → AGraph n → Fin n × ALNode → Bool
P g (i , _) with (preds g i)
... | [] = true
... | _ = false
-- preds skipping conflicts
preds¬CA : ∀ {n} → AGraph n → (i : Fin n) → List (Fin′ i × Role)
preds¬CA g zero = []
preds¬CA ((context nd sucs) & g) (suc i) with (isCAnode nd)
... | true = List.map (Data.Product.map suc id) $ preds¬CA g i
... | false = List._++_ (List.mapMaybe (p i) sucs)
(List.map (Data.Product.map suc id) $ preds¬CA g i)
where
p : ∀ {n} (i : Fin n) → Role × Fin n → Maybe (Fin′ (suc i) × Role)
p i (r , j) with i Fin.≟ j
p i (r , .i) | yes refl = just (zero , r)
p i (r , j) | no _ = nothing
-- nodes on which nothing depends (no predecessors)
-- skipping conflicts
roots¬CA : ∀ {n} → AGraph n → List (Fin n × ALNode)
roots¬CA ∅ = []
roots¬CA {n} g = filterb (P g) (Vec.toList (nodes g))
where
P : ∀ {n} → AGraph n → Fin n × ALNode → Bool
P g (i , nd) with isCAnode nd | (preds¬CA g i)
... | true | _ = false -- skip CA nodes
... | false | [] = true
... | false | _ = false
-- fold down on the whole Fin n
{-# TERMINATING #-}
fold↓ : ∀ {t n}
→ {Ty : Set t}
→ (Fin n → Ty → Ty)
→ Ty -- initial
→ Ty
fold↓ {n = ℕzero} f init = init
fold↓ {n = ℕsuc n} f init = fold' f init (fromℕ n)
where
fold' : ∀ {t n}
→ {Ty : Set t}
→ (Fin n → Ty → Ty)
→ Ty -- initial
→ Fin n
→ Ty
fold' f init zero = init
fold' f init (suc i) = f (suc i) (fold' f init (inject₁ i))
{-# TERMINATING #-} -- the termination check fails
-- fold up on the whole Fin n
fold↑ : ∀ {t n}
→ {Ty : Set t}
→ (Fin n → Ty → Ty)
→ Ty -- initial
→ Ty
fold↑ {n = ℕzero} f init = init
fold↑ {n = ℕsuc n} f init = fold' f init (zero)
where
fold' : ∀ {t n}
→ {Ty : Set t}
→ (Fin n → Ty → Ty)
→ Ty -- initial
→ Fin n
→ Ty
fold' {n = n} f init i with n - suc i ≥? ℕzero
... | yes _ = init
... | no _ = f i (fold' f init (Fin.reduce≥ (suc i) (s≤s z≤n)))
-- Conflicts --------------------------------------------
-- 'conflicting' and 'conflicted' indexes
c-ing : ∀ {n} → AGraph n → (ic : Fin n) → Maybe (Fin (n - suc ic))
c-ing {ℕzero} _ _ = nothing
c-ing g ic = RoleIdx←i g ic conflicting
c-ed : ∀ {n} → AGraph n → (ic : Fin n) → Maybe (Fin (n - suc ic))
c-ed g ic = RoleIdx←i g ic conflicted
-- extract the 'conflicted' index for the 'conflicting' i from the (ic-th) CA-node
-- (I don't actually use it)
c-ed←CA : ∀ {n} → AGraph n → (ic : Fin n) → Fin (n - suc ic) → Maybe (Fin (n - suc ic))
c-ed←CA {ℕsuc (ℕsuc (ℕsuc n))} g ic i with c-ing g ic
... | nothing = nothing
... | just δic with theSame (inject≤ i (p1 (ℕsuc (ℕsuc (ℕsuc n))) ic)) ic δic
... | false = nothing
... | true = c-ed g ic
c-ed←CA {_} _ _ _ = nothing -- for n = 0, 1, 2
-- the list of conflicts (= conflicting indexes) of the i-th context
NConflicts : ∀ {n} → AGraph n → Fin n → List (Fin n × Fin n)
NConflicts {ℕzero} _ _ = []
NConflicts {ℕsuc n} g i = fold↓ f (NConflicts0 g i)
where
f : Fin (ℕsuc n) → List (Fin (ℕsuc n) × Fin (ℕsuc n)) → List (Fin (ℕsuc n) × Fin (ℕsuc n))
f ic l with c-ed g ic
... | nothing = l
... | just ied with theSame i ic ied | c-ing g ic
... | true | just ing = (ic , ic ≻ ing) ∷ l
... | _ | _ = l
-- the list of conflicts of the 0-th context
NConflicts0 : ∀ {n} → AGraph n → Fin n → List (Fin n × Fin n)
NConflicts0 {ℕsuc n} g i with c-ed g (# 0)
... | nothing = []
... | just ied with theSame i (# 0) ied | c-ing g (# 0)
... | true | just ing = (# 0 , (inject≤ (suc ing) (s≤s (≤-reflexive refl)))) ∷ []
... | _ | _ = []
-- Conflict iterations
-- replace value in i-th context
replaceInGraph : ∀ {n} → AGraph n → Fin n → MC → AGraph n
replaceInGraph {n} g i v = foldr (λ k → AGraph k) f ∅ g
where
f : ∀ {k} → AContext k → AGraph k → AGraph (ℕsuc k)
f {k} c g with k =ᵇ (n - suc i)
... | true = (replaceVal c v) & g
... | false = c & g
-- the cumulative value of all conflicts of the i-th context
fold¬Conflicts : ∀ {n} → AGraph n → Fin n → MC
fold¬Conflicts {n} g i = List.foldr f MC⊥ (NConflicts g i)
where
f : Fin n × Fin n → MC → MC
f (i1 , i2) v = v ⟪⨁⟫⁺ (⟪neg⟫ (val←i g i1 ⟪⨂⟫ val←i g i2))
-- negation of foldConflicts
-- ¬foldConflicts : ∀ {n} → AGraph n → Fin n → MC
-- ¬foldConflicts {n} g i = ⟪ ⊘ la ⟫ foldConflicts g i
zipTree3 : ATree → ATree → ATree → ATree3
zipTree3 (Ac.node (Ln nd1 v1) rts1) (Ac.node (Ln nd2 v2) rts2) (Ac.node (Ln nd3 v3) rts3)
= Ac.node (Ln nd1 (v1 , v2 , v3)) (zip' rts1 rts2 rts3)
where
zip' : List (Role × ATree) → List (Role × ATree) → List (Role × ATree) → List (Role × ATree3)
zip' [] [] [] = []
zip' ((r1 , t1) ∷ rts1) ((r2 , t2) ∷ rts2) ((r3 , t3) ∷ rts3)
= ((r1 , zipTree3 t1 t2 t3)) ∷ zip' rts1 rts2 rts3
zip' _ _ _ = []
valTree3 : ATree3 → MC
private
fff : (Role × ATree3) → MC → MC
fff (_ , t) v = valTree3 t ⟪⨂⟫ v
-- deduction
foldPremises3 : MC × MC × MC → MC × MC × MC → List (Role × ATree3) → MC
foldPremises3 (nothing , _ , _) (_ , _ , varg) prems = List.foldr fff varg prems
foldPremises3 (just v0 , _ , _) (_ , _ , varg) prems with List.foldr fff varg prems
... | just v = just v0 ⟪⨂⟫ just v
... | nothing = just v0
-- fold incoming
foldIns3 : MC × MC × MC → List (Role × ATree3) → MC
foldIns3 vroot ins = List.foldr f MC⊥ ins
where
f : Role × ATree3 → MC → MC
f (role "conflicting" , (Ac.node (Ln (Lnr _) _) _)) v = v
f (role "conflicted" , (Ac.node (Ln (Lnr _) _) _)) v = v
f (_ , (Ac.node (Ln (Lnr _) varg) prems)) v = v ⟪⨁⟫⁺ (foldPremises3 vroot varg prems)
f (_ , (Ac.node _ _)) v = v
{-# TERMINATING #-}
valTree3 (Ac.node (Ln _ (v0 , _ , _)) []) = v0
valTree3 (Ac.node (Ln _ vroot@(nothing , _ , _)) rts) = foldIns3 vroot rts
valTree3 (Ac.node (Ln _ vroot@(just v0 , _ , _)) rts) = (just v0 ⟪⨁⟫⁺ foldIns3 vroot rts)
-- gprev currently is not used !
valTree3←i : ∀ {n} → AGraph n → AGraph n → AGraph n → Fin n → MC
valTree3←i g0 gprev g i = valTree3 (zipTree3 (toTree g0 i) (toTree gprev i) (toTree g i))
-- difference for i
valδ : ∀ {n} → AGraph n → AGraph n → Fin n → MC
valδ g0 g i = ⟪adiff⟫ (val←i g i) $ valTree3←i g0 g0 g i
⟪⨁⟫⁺
-- ⟪⨂⟫
(fold¬Conflicts g i)
-- среднее от i до zero --- из Fin(n+1) --- max i = # n
Mean′ : ∀ {a n} → (A : Set a) → Fin (ℕsuc n) → Set a
Mean′ {n = n} A i = Mean A (toℕ (suc i))
⟪meanv⟫ : ∀ {n i} → Mean′ {n = n} MC i → MC
⟪meanv⟫ {_} {zero} (mn1 a) = a
⟪meanv⟫ {ℕsuc n} {suc i} (mn+ nothing acc) = nothing -- ⟪meanv⟫ acc
⟪meanv⟫ {ℕsuc n} {suc i} (mn+ (just a) acc) = ⟪mean⟫ (just a) (⟪meanv⟫ acc) (toℕ i)
Correctness : ∀ {n} → AGraph n → AGraph n → MC
Correctness {ℕzero} _ _ = nothing
Correctness {ℕsuc n} g0 g = ⟪meanv⟫ $ fold′ Ty f (mn1 (valδ g0 g (# 0))) $ suc (fromℕ n)
where
Ty : Fin (ℕsuc (ℕsuc n)) → Set c
Ty i = Mean′ MC i
f : ∀ i → Mean′ MC (inject₁ i) → Mean′ MC (suc i)
f i acc rewrite toℕ-inject₁ i = mn+ (valδ g0 g i) acc
private
step' : ∀ {n}
→ AGraph n -- initial graph
→ AGraph n -- previous iteration
→ AGraph n -- current iteration
→ AGraph n -- next iteration
step' {ℕzero} ∅ _ _ = ∅
step' {ℕsuc n} g0 gprev g = foldr (λ k → AGraph k) f ∅ g
where
newval : ℕ → MC
newval k = valTree3←i g0 gprev g (inject≤ (fromℕ (n ∸ k)) (s≤s (m∸n≤m n k)))
⟪⨁⟫⁺
-- ⟪⨂⟫
fold¬Conflicts gprev (inject≤ (fromℕ (n ∸ k)) (s≤s (m∸n≤m n k)))
f : ∀ {k} → AContext k → AGraph k → AGraph (ℕsuc k)
f {k} (context (Ln nd v) sucs) g = context (Ln nd (newval k)) sucs & g
steps : ∀ {n}
→ ℕ -- number of iterations
→ AGraph n -- initial graph
→ AGraph n -- final iteration
steps 0 g = g
steps 1 g = step' g g g
steps (ℕsuc (ℕsuc i)) g = step' g (steps i g) (steps (ℕsuc i) g)