-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptions.py
405 lines (373 loc) · 28.8 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import argparse
import json
import os
import random
import numpy as np
import torch
from genericpath import exists
class Options:
def __init__(self):
self.parser = argparse.ArgumentParser(description="Options")
self.parser.add_argument('--phase', type=str, default='train_tea', help='phase',
choices=['train_tea', 'test_tea', 'train_stu', 'test_stu'])
self.parser.add_argument('--dataset', type=str, default='Cambridge', help='choose dataset.')
self.parser.add_argument('--structDir', type=str, default='Cambridge', help='Path for structure.')
self.parser.add_argument('--imgDir', type=str, default='Cambridge/CambridgeNerf_train1_4',
help='Path for images.')
self.parser.add_argument('--com', type=str, default='', help='comment')
self.parser.add_argument('--height', type=int, default=224, help='number of sequence to use.')
self.parser.add_argument('--width', type=int, default=224, help='number of sequence to use.')
self.parser.add_argument('--net', type=str, default='mixvpr', help='network')
self.parser.add_argument('--trainer', type=str, default='trainer', help='trainer')
self.parser.add_argument('--loss', type=str, default='tri', help='triplet loss or bayesian triplet loss',
choices=['tri', 'cont', 'quad'])
self.parser.add_argument('--margin', type=float, default=0.1, help='Margin for triplet loss. Default=0.1')
self.parser.add_argument('--margin2', type=float, default=0.1, help='Margin2 for quadruplet loss. Default=0.1')
self.parser.add_argument('--output_dim', type=int, default=0, help='Number of feature dimension. Default=512')
self.parser.add_argument('--sigma_dim', type=int, default=0, help='Number of sigma dimension. Default=512')
self.parser.add_argument('--batchSize', type=int, default=8,
help='Number of triplets (query, pos, negs). Each triplet consists of 12 images.')
self.parser.add_argument('--cacheBatchSize', type=int, default=128, help='Batch size for caching and testing')
self.parser.add_argument('--cacheRefreshRate', type=int, default=0,
help='How often to refresh cache, in number of queries. 0 for off')
self.parser.add_argument('--nEpochs', type=int, default=200, help='number of epochs to train for')
self.parser.add_argument('--nGPU', type=int, default=1, help='number of GPU to use.')
self.parser.add_argument('--cGPU', type=int, default=2, help='core of GPU to use.')
self.parser.add_argument('--optim', type=str, default='adam', help='optimizer to use', choices=['sgd', 'adam'])
self.parser.add_argument('--lr', type=float, default=1e-5, help='Learning Rate.')
self.parser.add_argument('--lrStep', type=float, default=5, help='Decay LR ever N steps.')
self.parser.add_argument('--lrGamma', type=float, default=0.99, help='Multiply LR by Gamma for decaying.')
self.parser.add_argument('--weightDecay', type=float, default=0.001, help='Weight decay for SGD.')
self.parser.add_argument('--momentum', type=float, default=0.9, help='Momentum for SGD.')
self.parser.add_argument('--cuda', action='store_false', help='use cuda')
self.parser.add_argument('--d', action='store_true', help='debug mode')
self.parser.add_argument('--threads', type=int, default=8, help='Number of threads for each data loader to use')
self.parser.add_argument('--seed', type=int, default=1234, help='Random seed to use.')
self.parser.add_argument('--logsPath', type=str, default='./logs', help='Path to save runs to.')
self.parser.add_argument('--runsPath', type=str, default='not defined', help='Path to save runs to.')
self.parser.add_argument('--resume', type=str, default='',
help='Path to load checkpoint from, for resuming training or testing.')
self.parser.add_argument('--evalEvery', type=int, default=1,
help='Do a validation set run, and save, every N epochs.')
self.parser.add_argument('--cacheRefreshEvery', type=int, default=1,
help='refresh embedding cache, every N epochs.')
self.parser.add_argument('--patience', type=int, default=10, help='Patience for early stopping. 0 is off.')
self.parser.add_argument('--split', type=str, default='test', help='Split to use', choices=['val', 'test'])
self.parser.add_argument('--encoder_dim', type=int, default=512,
help='Number of feature dimension. Default=512')
self.parser.add_argument('--Datasetname', type=str, default='Cambridge', help='phase',
choices=['Cambridge', 'NEU', 'SIASUN'])
# NBP
self.parser.add_argument("--model_name", "-M", type=str, default="Cam_mixvpr_NBP",
help="model name of pretrained model", )
# Nerf-h
self.parser.add_argument("-f", "--fff", help="a dummy argument to fool ipython", default="1")
self.parser.add_argument("--device", type=int, default=-1, help='CUDA_VISIBLE_DEVICES')
self.parser.add_argument("--multi_gpu", action='store_true', help='use multiple gpu on the server')
self.parser.add_argument('--config', is_config_file=True, help='config file path')
self.parser.add_argument("--expname", type=str, default='nerfh', help='experiment name')
self.parser.add_argument("--basedir", type=str, default='logs', help='where to store ckpts and logs')
self.parser.add_argument("--datadir", type=str, default='./data/llff/fern', help='input data directory')
# 7Scenes
self.parser.add_argument("--trainskip", type=int, default=1,
help='will load 1/N images from train sets, useful for large datasets like 7 Scenes')
self.parser.add_argument("--df", type=float, default=1., help='image downscale factor')
self.parser.add_argument("--reduce_embedding", type=int, default=-1, help='fourier embedding mode: -1: paper default, \
0: reduce by half, 1: remove embedding, 2: DNeRF embedding')
self.parser.add_argument("--epochToMaxFreq", type=int, default=-1, help='DNeRF embedding mode: (based on Nerfie paper): \
hyper-parameter for when α should reach the maximum number of frequencies m')
self.parser.add_argument("--render_pose_only", action='store_true', help='render a spiral video for 7 Scene')
self.parser.add_argument("--save_pose_avg_stats", action='store_true',
help='save a pose avg stats to unify NeRF, posenet, direct-pn training')
self.parser.add_argument("--load_pose_avg_stats", action='store_true',
help='load precomputed pose avg stats to unify NeRF, posenet, nerf tracking training')
self.parser.add_argument("--train_local_nerf", type=int, default=-1,
help='train local NeRF with ith training sequence only, ie. Stairs can pick 0~3')
self.parser.add_argument("--render_video_train", action='store_true',
help='render train set NeRF and save as video, make sure render_test is True')
self.parser.add_argument("--render_video_test", action='store_true',
help='render val set NeRF and save as video, make sure render_test is True')
self.parser.add_argument("--frustum_overlap_th", type=float, help='frustsum overlap threshold')
self.parser.add_argument("--no_DNeRF_viewdir", action='store_true', default=False,
help='will not use DNeRF in viewdir encoding')
self.parser.add_argument("--load_unique_view_stats", action='store_true', help='load unique views frame index')
# NeRF training options
self.parser.add_argument("--netdepth", type=int, default=8, help='layers in network')
self.parser.add_argument("--netwidth", type=int, default=128, help='channels per layer')
self.parser.add_argument("--netdepth_fine", type=int, default=8, help='layers in fine network')
self.parser.add_argument("--netwidth_fine", type=int, default=128, help='channels per layer in fine network')
self.parser.add_argument("--N_rand", type=int, default=1536,
help='batch size (number of random rays per gradient step)')
self.parser.add_argument("--lrate", type=float, default=5e-4, help='learning rate')
self.parser.add_argument("--lrate_decay", type=float, default=250,
help='exponential learning rate decay (in 1000 steps)')
self.parser.add_argument("--chunk", type=int, default=1024 * 32,
help='number of rays processed in parallel, decrease if running out of memory')
self.parser.add_argument("--netchunk", type=int, default=1024 * 64,
help='number of pts sent through network in parallel, decrease if running out of memory')
self.parser.add_argument("--no_batching", action='store_true',
help='only take random rays from 1 image at a time')
self.parser.add_argument("--no_reload", action='store_true', help='do not reload weights from saved ckpt')
self.parser.add_argument("--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
self.parser.add_argument("--no_grad_update", action='store_true', default=False,
help='do not update nerf in training')
# NeRF-Hist training options
self.parser.add_argument("--NeRFH", action='store_true', default=True,
help='my implementation for NeRFH, to enable NeRF-Hist training, please make sure to add --encode_hist, otherwise it is similar to NeRFW')
self.parser.add_argument("--N_vocab", type=int, default=1000,
help='''number of vocabulary (number of images)
in the dataset for nn.Embedding''')
self.parser.add_argument("--fix_index", action='store_true', help='fix training frame index as 0')
self.parser.add_argument("--encode_hist", default=True, action='store_true',
help='encode histogram instead of frame index')
self.parser.add_argument("--hist_bin", type=int, default=10, help='image histogram bin size')
self.parser.add_argument("--in_channels_a", type=int, default=50,
help='appearance embedding dimension, hist_bin*N_a when embedding histogram')
self.parser.add_argument("--in_channels_t", type=int, default=20,
help='transient embedding dimension, hist_bin*N_tau when embedding histogram')
# NeRF rendering options
self.parser.add_argument("--N_samples", type=int, default=64, help='number of coarse samples per ray')
self.parser.add_argument("--N_importance", type=int, default=64,
help='number of additional fine samples per ray')
self.parser.add_argument("--perturb", type=float, default=1., help='set to 0. for no jitter, 1. for jitter')
self.parser.add_argument("--use_viewdirs", default=True, action='store_true',
help='use full 5D input instead of 3D')
self.parser.add_argument("--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none')
self.parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
self.parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
self.parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
self.parser.add_argument("--render_only", action='store_true',
help='do not optimize, reload weights and render out render_poses path')
self.parser.add_argument("--render_test", action='store_true',
help='render the test set instead of render_poses path')
self.parser.add_argument("--render_factor", type=int, default=0,
help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')
# legacy mesh options
self.parser.add_argument("--mesh_only", action='store_true',
help='do not optimize, reload weights and save mesh to a file')
self.parser.add_argument("--mesh_grid_size", type=int, default=80,
help='number of grid points to sample in each dimension for marching cubes')
# training options
self.parser.add_argument("--precrop_iters", type=int, default=0,
help='number of steps to train on central crops')
self.parser.add_argument("--precrop_frac", type=float, default=.5,
help='fraction of img taken for central crops')
self.parser.add_argument("--epochs", type=int, default=600, help='number of epochs to train')
# dataset options
self.parser.add_argument("--dataset_type", type=str, default='NE', help='options: llff / 7Scenes')
self.parser.add_argument("--testskip", type=int, default=1,
help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels')
## legacy blender flags
self.parser.add_argument("--white_bkgd", action='store_true',
help='set to render synthetic data on a white bkgd (always use for dvoxels)')
# parser.add_argument("--half_res", action='store_true', help='load blender synthetic data at 400x400 instead of 800x800')
## llff flags
self.parser.add_argument("--factor", type=int, default=8, help='downsample factor for LLFF images')
self.parser.add_argument("--no_ndc", action='store_true',
help='do not use normalized device coordinates (set for non-forward facing scenes)')
self.parser.add_argument("--lindisp", action='store_true',
help='sampling linearly in disparity rather than depth')
self.parser.add_argument("--spherify", action='store_true', help='set for spherical 360 scenes')
self.parser.add_argument("--llffhold", type=int, default=8,
help='will take every 1/N images as LLFF test set, paper uses 8')
self.parser.add_argument("--no_bd_factor", action='store_true', default=False, help='do not use bd factor')
# d_max
self.parser.add_argument("--d_max", type=int, default=0.5, help='d_max')
# logging/saving options
self.parser.add_argument("--i_print", type=int, default=1,
help='frequency of console printout and metric loggin')
self.parser.add_argument("--i_img", type=int, default=500, help='frequency of tensorboard image logging')
self.parser.add_argument("--i_weights", type=int, default=200, help='frequency of weight ckpt saving')
self.parser.add_argument("--i_testset", type=int, default=200, help='frequency of testset saving')
self.parser.add_argument("--i_video", type=int, default=50000, help='frequency of render_poses video saving')
self.parser.add_argument("--rvs_trans", type=float, default=7.5, help='jitter range for rvs on translation')
self.parser.add_argument("--rvs_rotation", type=float, default=0.2,
help='jitter range for rvs on rotation, this is in log_10 uniform range, log(15) = 1.2')
"""
# nerf
self.parser.add_argument('--config', is_config_file=True,
help='config file path')
self.parser.add_argument("--expname", type=str, default='nerfh', help='experiment name')
self.parser.add_argument("--basedir", type=str, default='logs', help='where to store ckpts and logs')
self.parser.add_argument("--datadir", type=str, default='./data/llff/fern', help='input data directory')
# training options
self.parser.add_argument("--netdepth", type=int, default=8,
help='layers in network')
self.parser.add_argument("--netwidth", type=int, default=256,
help='channels per layer')
self.parser.add_argument("--netdepth_fine", type=int, default=8,
help='layers in fine network')
self.parser.add_argument("--netwidth_fine", type=int, default=256,
help='channels per layer in fine network')
self.parser.add_argument("--N_rand", type=int, default=1024,
help='batch size (number of random rays per gradient step)')
self.parser.add_argument("--lrate", type=float, default=5e-4,
help='learning rate')
self.parser.add_argument("--lrate_decay", type=int, default=250,
help='exponential learning rate decay (in 1000 steps)')
self.parser.add_argument("--chunk", type=int, default=1024 * 32,
help='number of rays processed in parallel, decrease if running out of memory')
self.parser.add_argument("--netchunk", type=int, default=1024 * 64,
help='number of pts sent through network in parallel, decrease if running out of memory')
self.parser.add_argument("--no_batching", action='store_true',
help='only take random rays from 1 image at a time')
self.parser.add_argument("--no_reload", action='store_true',
help='do not reload weights from saved ckpt')
self.parser.add_argument("--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
# rendering options
self.parser.add_argument("--N_samples", type=int, default=64,
help='number of coarse samples per ray')
self.parser.add_argument("--N_importance", type=int, default=64,
help='number of additional fine samples per ray')
self.parser.add_argument("--perturb", type=float, default=1.,
help='set to 0. for no jitter, 1. for jitter')
self.parser.add_argument("--use_viewdirs", default=True,action='store_true',
help='use full 5D input instead of 3D')
self.parser.add_argument("--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none')
self.parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
self.parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
self.parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
self.parser.add_argument("--render_only", action='store_true',
help='do not optimize, reload weights and render out render_poses path')
self.parser.add_argument("--render_test", action='store_true',
help='render the test set instead of render_poses path')
self.parser.add_argument("--render_factor", type=int, default=0,
help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')
# training options
self.parser.add_argument("--precrop_iters", type=int, default=500,
help='number of steps to train on central crops')
self.parser.add_argument("--precrop_frac", type=float,
default=.5, help='fraction of img taken for central crops')
# dataset options
self.parser.add_argument("--dataset_type", default='Cambridge', type=str,
help='options: llff / blender / deepvoxels')
self.parser.add_argument("--testskip", type=int, default=8,
help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels')
## deepvoxels flags
self.parser.add_argument("--shape", type=str, default='greek',
help='options : armchair / cube / greek / vase')
## blender flags
self.parser.add_argument("--white_bkgd", action='store_true',
help='set to render synthetic data on a white bkgd (always use for dvoxels)')
self.parser.add_argument("--half_res", default=False,action='store_true',
help='load blender synthetic data at 400x400 instead of 800x800')
## llff flags
self.parser.add_argument("--factor", type=int, default=8,
help='downsample factor for LLFF images')
self.parser.add_argument("--no_ndc", action='store_true',
help='do not use normalized device coordinates (set for non-forward facing scenes)')
self.parser.add_argument("--lindisp", action='store_true',
help='sampling linearly in disparity rather than depth')
self.parser.add_argument("--spherify", action='store_true',
help='set for spherical 360 scenes')
self.parser.add_argument("--llffhold", type=int, default=8,
help='will take every 1/N images as LLFF test set, paper uses 8')
# logging/saving options
self.parser.add_argument("--i_print", type=int, default=100,
help='frequency of console printout and metric loggin')
self.parser.add_argument("--i_img", type=int, default=500,
help='frequency of tensorboard image logging')
self.parser.add_argument("--i_weights", type=int, default=10000,
help='frequency of weight ckpt saving')
self.parser.add_argument("--i_testset", type=int, default=50000,
help='frequency of testset saving')
self.parser.add_argument("--i_video", type=int, default=50000,
help='frequency of render_poses video saving')
self.parser.add_argument("--trainskip", type=int, default=1,
help='will load 1/N images from train sets, useful for large datasets like 7 Scenes')
self.parser.add_argument("--df", type=float, default=1., help='image downscale factor')
self.parser.add_argument("--load_pose_avg_stats", action='store_true',
help='load precomputed pose avg stats to unify NeRF, posenet, nerf tracking training')
self.parser.add_argument("--NeRFH", action='store_true', default=True,
help='new implementation for NeRFH, please add --encode_hist')
self.parser.add_argument("--epochs", type=int, default=2000, help='number of epochs to train')
self.parser.add_argument("--encode_hist", default=False, action='store_true',
help='encode histogram instead of frame index')
self.parser.add_argument("--tinyimg", action='store_true', default=False,
help='render nerf img in a tiny scale image, this is a temporal compromise for direct feature matching, must FIX later')
self.parser.add_argument("--DFNet", action='store_true', default=False, help='use DFNet')
self.parser.add_argument("--tripletloss", action='store_true',
help='use triplet loss at training featurenet, this is to prevent catastophic failing')
self.parser.add_argument("--featurenet_batch_size", type=int, default=4,
help='featurenet training batch size, choose smaller batch size')
self.parser.add_argument("--rvs_refresh_rate", type=int, default=20, help='re-synthesis new views per X epochs')
self.parser.add_argument("--d_max", type=float, default=0.5, help='rvs bounds d_max')
self.parser.add_argument("--eval", action='store_true', help='eval model')
self.parser.add_argument("--render_pose_only", action='store_true', help='render a spiral video for 7 Scene')
self.parser.add_argument("--pose_only", type=int, default=1, help='posenet type to train, \
1: train baseline posenet, 2: posenet+nerf manual optimize, \
3: VLocNet, 4: DGRNet')
self.parser.add_argument("--fix_index", action='store_true', help='fix training frame index as 0')
self.parser.add_argument("--hist_bin", type=int, default=10, help='image histogram bin size')
self.parser.add_argument("--finetune_unlabel", action='store_true', help='finetune unlabeled sequence like MapNet')
self.parser.add_argument("--save_pose_avg_stats", action='store_true',
help='save a pose avg stats to unify NeRF, posenet, direct-pn training')
self.parser.add_argument("--batch_size", type=int, default=1, help='dataloader batch size, Attention: this is NOT the actual training batch size, \
please use --featurenet_batch_size for training')
self.parser.add_argument("--no_grad_update", action='store_true', default=False,
help='do not update nerf in training')
self.parser.add_argument("--reduce_embedding", type=int, default=-1, help='fourier embedding mode: -1: paper default, \
0: reduce by half, 1: remove embedding, 2: DNeRF embedding')
#rvs_trans Cambridge=7.5 0.2 NEU=1 0.1
"""
def parse(self):
options = self.parser.parse_args()
return options
def update_opt_from_json(self, flag_file, options):
if not exists(flag_file):
raise ValueError('{} not exist'.format(flag_file))
# restore_var = ['runsPath', 'net', 'seqLen', 'num_clusters', 'output_dim', 'structDir', 'imgDir', 'lrStep', 'lrGamma', 'weightDecay', 'momentum', 'num_clusters', 'optim', 'margin', 'seed', 'patience']
do_not_update_list = ['resume', 'mode', 'phase', 'optim', 'split']
if os.path.exists(flag_file):
with open(flag_file, 'r') as f:
# stored_flags = {'--' + k: str(v) for k, v in json.load(f).items() if k in restore_var}
stored_flags = {'--' + k: str(v) for k, v in json.load(f).items() if k not in do_not_update_list}
to_del = []
for flag, val in stored_flags.items():
for act in self.parser._actions:
if act.dest == flag[2:]: # stored parser match current parser
# store_true / store_false args don't accept arguments, filter these
if type(act.const) == type(True):
if val == str(act.default):
to_del.append(flag)
else:
stored_flags[flag] = ''
else:
if val == str(act.default):
to_del.append(flag)
for flag, val in stored_flags.items():
missing = True
for act in self.parser._actions:
if flag[2:] == act.dest:
missing = False
if missing:
to_del.append(flag)
for flag in to_del:
del stored_flags[flag]
train_flags = [x for x in list(sum(stored_flags.items(), tuple())) if len(x) > 0]
print('restored flags:', train_flags)
options = self.parser.parse_args(train_flags, namespace=options)
return options
class FixRandom:
def __init__(self, seed) -> None:
self.seed = seed
torch.manual_seed(self.seed)
random.seed(self.seed)
np.random.seed(self.seed)
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
def seed_worker(self):
worker_seed = self.seed
np.random.seed(worker_seed)
random.seed(worker_seed)