-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetxy.py
43 lines (39 loc) · 1.95 KB
/
getxy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#从pose中提取xy保存
import os
import numpy as np
# 原始文件夹和新文件夹路径
original_folder = 'C:/Users/65309/Desktop/Cambridge_nerf/poses4'
new_folder = 'C:/Users/65309/Desktop/Cambridge_nerf/poses'
# 创建新文件夹(如果不存在)
if not os.path.exists(new_folder):
os.makedirs(new_folder)
# 遍历原始文件夹中的所有txt文件
for filename in os.listdir(original_folder):
if filename.endswith('.txt'):
original_filepath = os.path.join(original_folder, filename)
new_filepath = os.path.join(new_folder, filename)
parts = filename.split("_")
# 获取第一个部分作为目标字符部分
target_string = parts[0]
print(target_string)
# 读取原始txt文件的内容并提取第一行第四列和第二行第四列的数据
with open(original_filepath, 'r') as original_file:
lines = original_file.readlines()
if(target_string == "GreatCourt"):
element_1 = float(lines[0].split()[3])
element_2 = float(lines[1].split()[3])
if(target_string == "KingsCollege"):
element_1 = float(lines[0].split()[3])+1000
element_2 = float(lines[1].split()[3])+1000
if (target_string == "OldHospital"):
element_1 = float(lines[0].split()[3])+2000
element_2 = float(lines[1].split()[3])+2000
if(target_string == "ShopFacade"):
element_1 = float(lines[0].split()[3])+3000
element_2 = float(lines[1].split()[3])+3000
if(target_string == "StMarysChurch"):
element_1 = float(lines[0].split()[3])+4000
element_2 = float(lines[1].split()[3])+4000
pose_loc = np.array([[element_1, element_2]])
# 将提取的数据保存到新文件夹中与原文件同名的txt文件中
np.savetxt(new_filepath, pose_loc)