-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
365 lines (328 loc) · 14.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import json
import numpy as np
from tqdm import tqdm
from typing import Optional
from dataclasses import dataclass, field
import fcntl
import multiprocessing as standard_mp
import torch.multiprocessing as torch_mp
from transformers import (
HfArgumentParser
)
from utils.jmultiwoz import JMultiWOZDataset, JMultiWOZDatabase
@dataclass
class TODModelArguments:
tod_model_type: str = field(
metadata={"help": "Type of TOD model to use. Select from: 't5', 'openai-zs', 'openai-fs'"}
)
model_name_or_path: Optional[str] = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
dst_task_prefix: Optional[str] = field(
default="対話から信念状態を推定:",
metadata={"help": "A prefix to add before every input text of dialogue state tracking (DST) task."},
)
rg_task_prefix: Optional[str] = field(
default="対話から応答を生成:",
metadata={"help": "A prefix to add before every input text of response generation (RG) task."},
)
user_utterance_prefix: Optional[str] = field(
default="<顧客>",
metadata={"help": "A prefix to add before every user utterance text."},
)
system_utterance_prefix: Optional[str] = field(
default="<店員>",
metadata={"help": "A prefix to add before every system utterance text."},
)
state_prefix: Optional[str] = field(
default="<信念状態>",
metadata={"help": "A prefix to add before every belief state text."},
)
db_result_prefix: Optional[str] = field(
default="<検索結果>",
metadata={"help": "A prefix to add before every db result text."},
)
book_result_prefix: Optional[str] = field(
default="<予約結果>",
metadata={"help": "A prefix to add before every book result text."},
)
max_candidate_entities: int = field(
default=3,
metadata={"help": "The maximum number of candidate entities to show in DB result."}
)
max_input_length: Optional[int] = field(
default=512,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_output_length: Optional[int] = field(
default=256,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
faiss_db_fprefix: Optional[str] = field(
default="tod_models/llm/output/faiss_db/hf-sup-simcse-ja-large-ctx2-d20",
metadata={"help": "Path to the faiss db file. Only used for openai-fs model."},
)
num_fewshot_examples: Optional[int] = field(
default=2,
metadata={"help": "The number of few-shot examples to use for openai-fs model."},
)
@dataclass
class InferenceArguments:
output_dir: str = field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}
)
task_name: str = field(
metadata={"help": ("The name of the task to evaluate. Select from: 'e2e' (End-to-End Generation) and "
"'rg' (Response Generation from Dialogue State).")}
)
dataset_dpath: str = field(
default="dataset/JMultiWOZ_1.0",
metadata={"help": "Path to the dataset directory."}
)
num_dialogues: Optional[int] = field(
default=None,
metadata={"help": "The number of dialogues to use for evaluation. If None, use all dialogues."}
)
resume_last_run: bool = field(
default=False,
metadata={"help": "Whether to resume the last run. If True, use existing temporary results."}
)
world_size: int = field(
default=1,
metadata={"help": "The number of processes to use for evaluation."}
)
def load_tod_model(tod_model_args, device="cuda"):
if tod_model_args.tod_model_type == "t5":
from tod_models.t5 import T5TODModel
tod_model = T5TODModel(
model_name_or_path=tod_model_args.model_name_or_path,
device=device,
use_background_generation_server=False,
max_context_turns=0, # Use all context turns on T5 model
max_input_length=tod_model_args.max_input_length,
max_output_length=tod_model_args.max_output_length,
dst_task_prefix=tod_model_args.dst_task_prefix,
rg_task_prefix=tod_model_args.rg_task_prefix,
user_utterance_prefix=tod_model_args.user_utterance_prefix,
system_utterance_prefix=tod_model_args.system_utterance_prefix,
state_prefix=tod_model_args.state_prefix,
db_result_prefix=tod_model_args.db_result_prefix,
max_candidate_entities=tod_model_args.max_candidate_entities,
book_result_prefix=tod_model_args.book_result_prefix,
)
elif tod_model_args.tod_model_type == "openai-zs":
from tod_models.llm import OpenAIZeroShotTODModel
tod_model = OpenAIZeroShotTODModel(
openai_model_name=tod_model_args.model_name_or_path,
max_context_turns=5, # Use 5 context turns on OpenAI model
max_output_length=tod_model_args.max_output_length,
user_utterance_prefix=tod_model_args.user_utterance_prefix,
system_utterance_prefix=tod_model_args.system_utterance_prefix,
state_prefix=tod_model_args.state_prefix,
db_result_prefix=tod_model_args.db_result_prefix,
max_candidate_entities=tod_model_args.max_candidate_entities,
book_result_prefix=tod_model_args.book_result_prefix,
)
elif tod_model_args.tod_model_type == "openai-fs":
from tod_models.llm import OpenAIFewShotTODModel
tod_model = OpenAIFewShotTODModel(
openai_model_name=tod_model_args.model_name_or_path,
max_context_turns=5, # Use 5 context turns on OpenAI model
max_output_length=tod_model_args.max_output_length,
user_utterance_prefix=tod_model_args.user_utterance_prefix,
system_utterance_prefix=tod_model_args.system_utterance_prefix,
state_prefix=tod_model_args.state_prefix,
db_result_prefix=tod_model_args.db_result_prefix,
max_candidate_entities=tod_model_args.max_candidate_entities,
book_result_prefix=tod_model_args.book_result_prefix,
faiss_db_fprefix=tod_model_args.faiss_db_fprefix,
num_fewshot_examples=tod_model_args.num_fewshot_examples,
)
else:
raise ValueError(f"Invalid tod_model_type: {tod_model_args.tod_model_type}")
return tod_model
def e2e_inference(rank, tod_model_args, infer_args, dialogue_names_by_process, dataset, results_by_rank):
database = JMultiWOZDatabase(db_dpath=os.path.join(infer_args.dataset_dpath, "database"))
tod_model = load_tod_model(tod_model_args, device=rank)
dialogue_names = dialogue_names_by_process[rank]
results = {}
print(f"Rank {rank} is processing {len(dialogue_names)} dialogues...")
for dialogue_name in tqdm(dialogue_names):
goal = dataset.get_dialogue(split="test", dialogue_name=dialogue_name)["goal"]
results[dialogue_name] = {
"dialogue_name": dialogue_name,
"turns": [],
}
tod_model.set_memory(memory=None) # Initialize memory
for context, true_turn in dataset.iter_dialogue_turns(split="test", dialogue_name=dialogue_name):
assert true_turn["speaker"] == "SYSTEM", "Must be system turn."
# 1. Dialogue State Tracking
belief_state, book_state = tod_model.predict_state(
context=context,
)
# 2. Get DB result
db_result = database.get_db_result(
belief_state=belief_state,
goal=goal,
oracle_db_result=true_turn["dialogue_state"]["db_result"],
)
# 3. Get Book result
book_result = database.get_book_result(
book_state=book_state,
goal=goal,
oracle_book_result=true_turn["dialogue_state"]["book_result"],
)
# 4. Generate response
response = tod_model.generate_response(
context=context,
belief_state=belief_state,
book_state=book_state,
db_result=db_result,
book_result=book_result,
)
results[dialogue_name]["turns"].append({
"turn_id": true_turn["turn_id"],
"speaker": "SYSTEM",
"dialogue_state": {
"belief_state": belief_state,
"book_state": book_state,
"db_result": db_result,
"book_result": book_result,
},
"utterance": response,
})
# Save intermediate results temporarily
jsonline = json.dumps(results[dialogue_name], ensure_ascii=False)
with open(os.path.join(infer_args.output_dir, f"{infer_args.task_name}.inference.tmp.jsonl"), "a") as f:
fcntl.flock(f, fcntl.LOCK_EX)
f.write(jsonline + "\n")
fcntl.flock(f, fcntl.LOCK_UN)
results_by_rank[rank] = results
# return results
def rg_inference(rank, tod_model_args, infer_args, dialogue_names_by_process, dataset, results_by_rank):
tod_model = load_tod_model(tod_model_args, device=rank)
dialogue_names = dialogue_names_by_process[rank]
results = {}
print(f"Rank {rank} is processing {len(dialogue_names)} dialogues...")
for dialogue_name in tqdm(dialogue_names):
results[dialogue_name] = {
"dialogue_name": dialogue_name,
"turns": [],
}
tod_model.set_memory(memory=None) # Initialize memory
for context, true_turn in dataset.iter_dialogue_turns(split="test", dialogue_name=dialogue_name):
assert true_turn["speaker"] == "SYSTEM", "Must be system turn."
# Generate response from oracle state
response = tod_model.generate_response(
context=context,
belief_state=true_turn["dialogue_state"]["belief_state"],
book_state=true_turn["dialogue_state"]["book_state"],
db_result=true_turn["dialogue_state"]["db_result"],
book_result=true_turn["dialogue_state"]["book_result"],
)
results[dialogue_name]["turns"].append({
"turn_id": true_turn["turn_id"],
"speaker": "SYSTEM",
"utterance": response,
})
# Save intermediate results temporarily
jsonline = json.dumps(results[dialogue_name], ensure_ascii=False)
with open(os.path.join(infer_args.output_dir, f"{infer_args.task_name}.inference.tmp.jsonl"), "a") as f:
fcntl.flock(f, fcntl.LOCK_EX)
f.write(jsonline + "\n")
fcntl.flock(f, fcntl.LOCK_UN)
results_by_rank[rank] = results
# return results
def main():
parser = HfArgumentParser((TODModelArguments, InferenceArguments))
tod_model_args, infer_args = parser.parse_args_into_dataclasses()
os.makedirs(infer_args.output_dir, exist_ok=True)
json.dump(
{"tod_model_args": tod_model_args.__dict__, "infer_args": infer_args.__dict__},
open(os.path.join(infer_args.output_dir, f"{infer_args.task_name}.args.json"), "w"),
ensure_ascii=False,
indent=4,
)
dataset = JMultiWOZDataset(
dataset_dpath=infer_args.dataset_dpath
)
dialogue_names = dataset.list_dialogues(split="test")
if infer_args.num_dialogues is not None:
dialogue_names = dialogue_names[:infer_args.num_dialogues]
# Load intermediate results
results = {}
tmp_result_fpath = os.path.join(infer_args.output_dir, f"{infer_args.task_name}.inference.tmp.jsonl")
if infer_args.resume_last_run:
if os.path.exists(tmp_result_fpath):
print(f"Loading temporary results from last run.")
for line in open(tmp_result_fpath):
tmp_result = json.loads(line.strip())
results[tmp_result["dialogue_name"]] = tmp_result
dialogue_names = [dial for dial in dialogue_names if dial not in results]
else:
print("No temporary results found.")
else:
print("Not resuming last run.")
if os.path.exists(tmp_result_fpath):
print("Removing temporary results if exist.")
os.remove(tmp_result_fpath)
print(f"Toal number of dialogues to process: {len(dialogue_names)}")
dialogue_names_by_process = {
rank : names.tolist() for rank, names in enumerate(
np.array_split(dialogue_names, infer_args.world_size)
)
}
if infer_args.task_name == "e2e":
infer_fn = e2e_inference
elif infer_args.task_name == "rg":
infer_fn = rg_inference
else:
raise ValueError(f"Invalid task_name: {infer_args.task_name}")
if infer_args.world_size > 1:
print(f"Spawning {infer_args.world_size} processes...")
manager = standard_mp.Manager()
results_by_rank = manager.dict()
torch_mp.spawn(
fn=infer_fn,
args=(
tod_model_args,
infer_args,
dialogue_names_by_process,
dataset,
results_by_rank
),
nprocs=infer_args.world_size,
join=True,
)
else:
print("Computing on single process...")
results_by_rank = {}
infer_fn(
rank=0,
tod_model_args=tod_model_args,
infer_args=infer_args,
dialogue_names_by_process=dialogue_names_by_process,
dataset=dataset,
results_by_rank=results_by_rank,
)
for rank in range(infer_args.world_size):
results.update(results_by_rank[rank])
json.dump(
results,
open(os.path.join(infer_args.output_dir, f"{infer_args.task_name}.inference.json"), "w"),
ensure_ascii=False,
indent=4,
)
if __name__ == "__main__":
main()